
Chapter 21

The porous medium

equation

Prerequisites: Chapters 7, 8, 20

21.1 Introduction

The porous medium equation

𝜕𝑢𝜕𝑡 =
𝜕2𝑢𝑚𝜕𝑥2 (𝑚 > 1) (21.1)

is a model of diffusion of a substance, typically gas, through a porous medium. The un-
known 𝑢(𝑥 , 𝑡) is the gas density at the point 𝑥 at time 𝑡 . The exponent 𝑚—which is not
necessarily an integer—is a physical property of the diffusing material. Equation (21.1)
arises in other contexts as well. Have a look at this chapter’s appendix to see how it
comes about as a model in population dynamics. You will find a quite readable treatise
on the subject, along with an extensive bibliography, in Vázquez [77]. One thing you
should know is that if the initial condition 𝑢(𝑥 , 0) is nonnegative, then the solution 𝑢(𝑥 , 𝑡)
is nonnegative for all 𝑡 > 0, and therefore the exponentiation makes sense in that case.
See Section 21.3 for a generalization to solutions of varying sign.

The goal in this chapter is to develop a finite difference scheme to solve initial/bound-
ary value problems corresponding to (21.1). As we will see, the Seidman sweep scheme
introduced in Section 20.5 leads to quite a simple implementation.

21.2 Barenblatt’s solution

When 𝑚 = 1, (21.1) reduces to the heat equation; cf. (20.1) on page 251. The condition𝑚 > 1, however, makes the porous medium equation a totally different beast compared to
the heat equation. You may intuit a sign of trouble if you express (21.1) in the equivalent
form 𝜕𝑢𝜕𝑡 = 𝜕𝜕𝑥 (𝑚𝑢𝑚−1 𝜕𝑢𝜕𝑥), whichmakes it clear that it is a nonlinear diffusion equation, as

in 𝜕𝑢𝜕𝑡 = 𝜕𝜕𝑥 (𝜅 𝜕𝑢𝜕𝑥), whose diffusion coefficient, 𝜅 = 𝑚𝑢𝑚−1, varies with the density. Since𝑚 > 1, 𝜅 tends to zero as density tends to zero. Thus, the diffusion process degenerates near
zero densities. The porous medium equation is the archetype of the class of degenerate
parabolic equations.

The bulk of the theory of parabolic equations concerns the nondegenerate case. Just
about everything breaks down when degeneracy occurs. One of the striking facts about

281

282 Chapter 21. The porous medium equation

the porous medium equation—a consequence of the degeneracy—is that its solutions ex-
hibit a finite speed of propagation into vacuum (i.e., a zero density region). This is very
much in contrast to the heat equation whose solutions spread out at infinite speed. The
finite speed of propagation is evident in the class of self-similar solutions to (21.1) con-
structed by Barenblatt:

𝑢(𝑥 , 𝑡) = 1

(𝑡 + 𝛿)𝛽 ([𝑐 − 𝛾(𝑥
(𝑡 + 𝛿)𝛽)2]+)𝛼 , −∞ < 𝑥 < ∞, 𝑡 ≥ 0, (21.2)

where 𝛼 =
1𝑚 − 1

, 𝛽 =
1𝑚 + 1

, 𝛾 =
𝑚 − 1

2𝑚(𝑚 + 1)
,

and where 𝑐 ≥ 0 and 𝛿 ≥ 0 are arbitrary constants. The notation [⋅]+ meansmax(⋅, 0). We
see that at any time 𝑡 > 0 the support83 of the solution is|𝑥 | < √𝑐𝛾 (𝑡 + 𝛿)𝛽 ,
which propagates at a finite (but nonconstant) speed, as asserted.

In the special case of 𝑚 = 3, Barenblatt’s solution takes on a particularly simple form

𝑢(𝑥 , 𝑡) = 1(𝑡 + 𝛿)1/4√𝑐 − 𝑥212(𝑡 + 𝛿)1/2 , (21.3)

or equivalently, 𝑥212𝑐(𝑡 + 𝛿)1/2 + 𝑢2𝑐(𝑡 + 𝛿)−1/2 = 1.
Therefore, the graph of 𝑢 versus 𝑥 (for any fixed 𝑡) is precisely the upper half of an el-

lipse with semimajor and semiminor axes lengths of
√𝑐(𝑡 + 𝛿)−1/2 and√12𝑐(𝑡 + 𝛿)1/2. The

ellipse flattens and spreads out as 𝑡 increases. The area under the ellipse, which is pro-
portional to the mass of the diffusing substance, remains constant at

√3𝜋𝑐. Figure 21.1
shows snapshots of the graphs of 𝑢(𝑥 , 𝑡) for several choices of 𝑡 .

Barenblatt’s solution is quite handy as a test case for our finite difference solver. We
set up a problem with initial and boundary data derived from Barenblatt’s solution, and
then we expect that the solution produced by our solver will agree with Barenblatt’s.

21.3 Generalizations

Since the exponent𝑚 in (21.1) is not necessarily an integer, the expression 𝑢𝑚 is not well
defined if 𝑢 is negative. The extension

𝜕𝑢𝜕𝑡 = 𝜕2(|𝑢|𝑚−1𝑢)𝜕𝑥2 (21.4)

of (21.1) admits negative 𝑢, is well-posed as a partial differential equation, and reduces
to (21.1) when 𝑢 is nonnegative. For this reason, most of the literature on the porous
medium equation addresses (21.4) rather than the special case (21.1). Yet a further gener-
alization of (21.4) is the equation

𝜕𝑢𝜕𝑡 = 𝜕2𝜙(𝑢)𝜕𝑥2 , (21.5)

83The support of a function is the closure of the set where it is nonzero.

21.4. The finite difference scheme 283

𝑥

𝑢(𝑥 , 𝑡)

−1 − 2
5

0 2
5

1

1 𝑡0 = 0
𝑡1 = 7/100

𝑡2 = 203/400 𝑡3 = 4

Figure 21.1: These flattening and spreading ellipses are snapshots of Barenblatt’s solu-

tion, (21.3), of the porous medium equation with 𝑚 = 3 at various times.

The parameters 𝛿 = 1/75 and 𝑐 =
√
3/15 are chosen so that the solution at

time 𝑡0 = 0 has amplitude 1 and support [−2/5, 2/5]. I will leave it to you

to verify that (a) at time 𝑡1 = 7/100 the solution curve takes the form of

a semicircle of radius
√
2/5, and (b) the solution front arrives at 𝑥 = ±1 at

time 𝑡2 = 203/400. The solution curve at 𝑡3 = 4 is also shown to give a better

feel for how the solution spreads out in time.

where 𝜙 ∶ R → R is some smooth monotonically increasing function with 𝜙(0) = 0
and 𝜙′(0) = 0. Much of the theory pertaining to the porous medium equation may be
developed in the context of (21.5) with very minimal assumptions on 𝜙. See, for instance,
the articles [2, 9] and the book [77]. Clearly, (21.4) is the special case of (21.5) with 𝜙(𝑢) =|𝑢|𝑚−1𝑢. I will state and explain this chapter’s algorithm in the context of (21.5) for the
sake of generality but will drop to the simple case of (21.1) for illustrations.

21.4 The finite difference scheme

The porous medium equation’s counterpart of the initial/boundary value problem (20.2)
is the following:

Find 𝑢 = 𝑢(𝑥 , 𝑡) so that

𝜕𝑢𝜕𝑡 = 𝜕2𝜙(𝑢)𝜕𝑥2 , 𝑥 ∈ (𝑎, 𝑏), 𝑡 > 0, (21.6a)

𝑢(𝑥 , 0) = 𝑢0(𝑥), 𝑥 ∈ (𝑎, 𝑏), (21.6b)𝑢(𝑎, 𝑡) = 𝑢𝐿(𝑡), 𝑢(𝑏, 𝑡) = 𝑢𝑅(𝑡), 𝑡 > 0. (21.6c)

As in the case of Chapter 20’s heat equation, the initial condition 𝑢0(𝑥) and the left and
right boundary conditions 𝑢𝐿(𝑡) and 𝑢𝑅(𝑡) serve to define a unique solution 𝑢(𝑥 , 𝑡) in the
semi-infinite strip 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑡 > 0 in the 𝑥-𝑡 plane. Also as before, in a finite difference
approximation we replace the interval 𝑎 ≤ 𝑥 ≤ 𝑏 with a collection of 𝑛 + 1 equally spaced
points 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 , where 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏, and we let Δ𝑥 = (𝑏 − 𝑎)/𝑛. Similarly, we
discretize the time into “time-slices” 𝑡0 < 𝑡1 < 𝑡2⋯, where 𝑡0 = 0, and the spacing between
the slices is a prescribed Δ𝑡 . Figure 20.2 on page 253 shows the resulting finite difference
grid.

In the rest of this section I will use the notation and ideas introduced in Section 20.5
without further elaboration. The forward and reverse difference formulas (20.16) (on

284 Chapter 21. The porous medium equation

page 261) now take the form

𝑣𝑗 − 𝑢𝑗 = −𝑟(𝜙(𝑣𝑗) − 𝜙(𝑣𝑗−1)) − 𝑟(𝜙(𝑢𝑗) − 𝜙(𝑢𝑗+1)), 𝑗 = 1, 2,… , 𝑛 − 1, (21.7a)𝑤𝑗 − 𝑣𝑗 = −𝑟(𝜙(𝑣𝑗) − 𝜙(𝑣𝑗−1)) − 𝑟(𝜙(𝑤𝑗) − 𝜙(𝑤𝑗+1)), 𝑗 = 𝑛 − 1,… , 2, 1, (21.7b)

where 𝑟 = Δ𝑡2(Δ𝑥)2 ,
as in (20.15). (I have changed the notation from 𝑟 ′ to 𝑟 here since there is no chance of
confusion within this chapter.) We rearrange the equations (21.7) into𝑣𝑗 + 𝑟𝜙(𝑣𝑗) = 𝑟𝜙(𝑣𝑗−1) + 𝑢𝑗 − 𝑟𝜙(𝑢𝑗) + 𝑟𝜙(𝑢𝑗+1), 𝑗 = 1, 2,… , 𝑛 − 1, (21.8a)𝑤𝑗 + 𝑟𝜙(𝑤𝑗) = 𝑟𝜙(𝑣𝑗−1) + 𝑣𝑗 − 𝑟𝜙(𝑣𝑗) + 𝑟𝜙(𝑤𝑗+1), 𝑗 = 𝑛 − 1,… , 2, 1. (21.8b)

During the forward sweep, all the terms on the right-hand side of (21.8a) are known.
We solve the nonlinear equation 𝑣𝑗 + 𝑟𝜙(𝑣𝑗) = “known” to find 𝑣𝑗 . Similarly, during the
reverse sweep, all the terms on the right-hand side of (21.8b) are known. We solve the
nonlinear equation 𝑤𝑗 + 𝑟𝜙(𝑤𝑗) = “known” to find 𝑤𝑗 . Thus, in comparison with the heat
equation of Chapter 20, the only extra effort is in solving a nonlinear equation of the
form 𝜉 + 𝑟𝜙(𝜉) = 𝑐 at each step. This may be accomplished through a Newton’s iteration
without much trouble by starting with an initial guess 𝜉0. Since 𝜙 is expected to be a
monotonically increasing function, any reasonable choice for 𝜉0 will do. I suggest taking
𝜉0 = 𝑐 and leave its implementation as an instructive project. In the rest of this chapter,
however, I will focus on the special case of 𝜙(𝑢) = 𝑢3, which avoids Newton’s iteration
altogether. Here is why.

To solve the cubic equation 𝜉 + 𝑟𝜉 3 = 𝑐 for 𝜉 , we multiply it through by 𝑟1/2 to get
𝑟1/2𝜉 + 𝑟3/2𝜉 3 = 𝑟1/2𝑐. Letting 𝜂 = 𝑟1/2𝜉 and 𝑘 = 𝑟1/2𝑐, we arrive at the cubic equation
𝜂 + 𝜂3 = 𝑘. You may verify that the unique real root of 𝜂 + 𝜂3 = 𝑘 has the explicit form

𝜂 = 𝛾6 − 2
𝛾
, where 𝛾 = [108𝑘 + 12√12 + 81𝑘2]1/3. (21.9)

Thus, we evaluate 𝜂 and then set 𝜉 = 𝑟−1/2𝜂 = 𝜂 /√𝑟 .
21.5 The program

The rest of this chapter is devoted to details of the implementations of the Seidman sweep
for solving the initial/boundary value problem (21.6) in the special case when 𝜙(𝑢) =
𝑢3. The case of a general 𝜙 is left as a project. Our program relies on xmalloc.[ch] from
Chapter 7 to allocate memory, the file array.h from Chapter 8 to construct vectors and
matrices, and the files plot3d.[ch] from Chapter 20 to generate plotting scripts. We
also adapt Chapter 20’s heat-solve.h header file, withminor alterations, to the case in hand,
and name it pme-solve.h. Thus, following the suggestions in Chapters 2 and 6, the contents
of the project’s directory will look like this:

$ cd pme

$ ls -F

Makefile demo1.c plot3d.c@ pme-solve.c xmalloc.c@

array.h@ demo2.c plot3d.h@ pme-solve.h xmalloc.h@

The files demo1.c and demo2.c contain the specifications of two initial/boundary value
problems for the porous medium equation, both with 𝜙(𝑢) = 𝑢3. These are the following:

21.6. The file pme-solve.h 285

Figure 21.2: Graphs of the solutions 𝑢(𝑥 , 𝑡) of problems pme1 (left) and pme2 (right) as

surfaces in three dimensions computed by our finite difference solver and

rendered in Geomview. Compare the graph of pme1 to the corresponding

snapshots in Figure 21.1.

.

Problem pme1: This produces a finite difference approximation to Barenblatt’s solu-
tion (21.2) of the porous medium equation with 𝑚 = 3, 𝑐 = √3/15, and 𝛿 = 1/75
on the bounded interval −1 ≤ 𝑥 ≤ 1. The values of 𝑐 and 𝛿 are chosen so that the
initial condition (whose graph is the upper half of an ellipse) has amplitude 1 and is
supported on the interval [−2/5,−2/5]. Figure 21.1 shows snapshots of the solution
at a few selected times. Figure 21.2(left) shows the graph of the solution 𝑢(𝑥 , 𝑡) as a
surface in three dimensions.

Implementing the problem involves writing a function to evaluate Barenblatt’s so-
lution 𝑢(𝑥 , 𝑡) in (21.2) and then extracting its initial and boundary data by evaluat-
ing 𝑢(𝑥 , 0) and 𝑢(±1, 𝑡), as explained in the “reverse engineering” idea in (20.19) on
page 263.

Problem pme2: This solves the initial/boundary value problem (21.6) on the interval−1 ≤ 𝑥 ≤ 1 with the boundary data 𝑢𝐿(𝑡) = 𝑢𝑅(𝑡) ≡ 0 and the initial data
𝑢0(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/2 if 0 < 𝑥 < 1/2,−1/2 if − 1/2 < 𝑥 < 0,0 otherwise.

In particular, this tests the scheme’s ability to handle initial data of variable sign.
Figure 21.2(right) shows the graph of the solution 𝑢(𝑥 , 𝑡) as a surface in three di-
mensions. No exact solution is available in this case.

Listing 21.1 shows a transcript of a sample interactive session. The largish error is due
to the steep (actually infinite) slope of the solution 𝑢(𝑥 , 𝑡) at the edge of its propagating
front.

21.6 The file pme-solve.h

The file pme-solve.h, shown in Listing 21.2, is a slight modification of the file heat-solve.h
of Chapter 20. Specifically, the declaration of enum method has been removed since

286 Chapter 21. The porous medium equation

Listing 21.1: A transcript of a sample interactive session.

$./demo1

Usage: ./demo1 T n m

T : solve over 0 ≤ t ≤ T

n : number of subintervals in the x direction

m : number of subintervals in the t direction

$./demo1 1 20 40

r = 1.25

Geomview script written to zz.gv

absolute error = 0.197579

Listing 21.2: The contents of the file pme-solve.h.

1 #ifndef H_PME_SOLVE_H

2 #define H_PME_SOLVE_H

3

4 struct pme_solve {

5 double a; / / left end at x = a

6 double b; / / right end at x = b

7 double T; / / solve for 0 < t < T

8 int n; / / number of x subintervals

9 int m; / / number of t subintervals

10 double (*ic)(double x); / / initial condition

11 double (*bcL)(double t); / / left boundary condition

12 double (*bcR)(double t); / / right boundary condition

13 double **u; / / solution array

14 double (*exact_sol)(double x, double t); / / exact solution, if any

15 double error; / / error vs exact solution

16 char *maple_out; / / output file for maple graphics

17 char *matlab_out; / / output file for matlab graphics

18 char *geomview_out; / / output file for geomview graph-

ics

19 };

20

21 void show_usage_and_exit(char *progname);

22 void pme_solve(struct pme_solve *prob);

23

24 #endif /� H_PME_SOLVE_H */

the only method used in the chapter is the Seidman sweep. Furthermore, we have re-
moved the method field from what was struct heat_solve and is now renamed
struct pme-solve. And finally, near the end we have changed the name of the solver
from heat_solve() to pme_solve().

21.7 The file pme-solve.c

The file pme-solve.c also shares a number of common elements with Chapter 20’s heat-
solve.c. Listing 21.3 shows an outline. Here are a few comments on that listing.

Line 2. Here we define the function 𝜙(𝑥) = 𝑥3 as a preprocessor macro. Alternatively,

21.8. The function pme_solve() 287

Listing 21.3: An outline of the file pme-solve.c.

1 ▶ #include ...

2 #define phi(x) pow((x),3)

3 ▶ static void write_plotting_script(struct pme_solve *prob) ...

4 ▶ void show_usage_and_exit(char *progname) ...

5 ▶ static double error_vs_exact(struct pme_solve *prob) ...

6 ▶ static double croot(double k) ...

7 ▶ void pme_solve(struct pme_solve *prob) ...

we could have defined 𝜙 as a function. There is no significant difference between
the two.

Line 3. The functionwrite_plotting_script() is essentially identical to that form
heat-solve.c. The only difference is the change in the argument type from what used
to be struct heat_solve to struct pme_solve.

Lines 4 and 5. These functions are identical to those in heat-solve.c.

Line 6. The function croot() calculates and returns the unique real root of the cubic
equation 𝜂 + 𝜂3 = 𝑘 according to the formula given in (21.9). I will leave it to you to
write the code.

Line 7. The function pme_solve() is the main workhorse of this module. I will de-
scribe its contents in the next section.

21.8 The function pme_solve()

The function pme_solve()which occurs on line 7 of Listing 21.3 contains an adaptation
of the Seidman sweep scheme to solving the porous medium equation. The bulk of the
function is shown Listings 21.4. The first few lines of Listing21.4 are self-explanatory.
Here are some comments on the rest of those listings.

Line 9. We set 𝑠 = √
𝑟 for convenience since

√
𝑟 appears in a few places in the calculations

surround the equation (21.9).

Lines 10 and 12. The Seidman sweep scheme goes from time step 𝑖 to time step 𝑖 + 1
through an intermediate half-way-in-between time. The array v is a temporary
storage to hold the values of the solution at that intermediate time.

Line 16. We initialize the solution array u by filling its first row with the values supplied
by the initial condition.

Line 21. Seidman sweep’s main iterative loop begins here and extends to line 40. It con-
sists of the forward sweep (lines 24–30), and the reverse sweep (lines 33–35).

Line 24. The left boundary condition determines the value v[0] of the intermediate
array v.

Lines 26 and 28. Here we solve the equation (21.8a) for 𝑣𝑗 . As it was explained in Sec-
tion 21.4, this amounts to solving the cubic equation 𝜉 + 𝑟𝜉 3 = 𝑐, or the transformed
version 𝜂 + 𝜂3 = 𝑟1/2𝑐, where 𝜉 = 𝜂/𝑟1/2. Therefore, on line 26 we calculate 𝑐, and
then on line 28 we apply the function croot() to solve the cubic, divide the result
by 𝑟1/2, and assign the result to v[j].

288 Chapter 21. The porous medium equation

Listing 21.4: Here is the function pme-solve(). Lines 24–30 implement the forward sweep.

You need to supply the missing code for the reverse sweep on lines 35–37.

1 void pme_solve(struct pme_solve *prob)

2 {

3 int m = prob→m;

4 int n = prob→n;

5 double **u = prob→u;

6 double dx = (prob→b - prob→a) / n; / / space-step

7 double dt = prob→T / m; / / time-step

8 double r = dt/(2*dx*dx);

9 double s = sqrt(r);

10 double *v;

11

12 make_vector(v, n+1);

13

14 printf("r = %g\n", r);

15

16 for (int j = 0; j ≤ n; j++) {

17 double x = prob→a + j*dx;

18 u[0][j] = prob→ic(x);

19 }

20

21 for (int i = 1; i ≤ m; i++) {

22 double t = i*dt;

23

24 v[0] = prob→bcL(t-dt/2); / / forward sweep

25 for (int j = 1; j ≤ n-1; j++) {

26 double c = r*phi(v[j-1]) + u[i-1][j]

27 - r*phi(u[i-1][j]) + r*phi(u[i-1][j+1]);

28 v[j] = croot(s*c)/s;

29 }

30 v[n] = prob→bcR(t-dt/2); / / not used

31

32

33 u[i][n] = prob→bcR(t); / / reverse sweep

34 for (int j = n-1; j ≥ 1; j--) {

35 ▶ / / ... supply the missing code ...

36 ▶ ...

37 ▶ u[i][j] = ...

38 }

39 u[i][0] = prob→bcL(t);

40 }

41 free_vector(v);

42

43 write_plotting_script(prob);

44

45 if (prob→exact_sol ≠ NULL)

46 prob→error = error_vs_exact(prob);

47 }

21.9. The file demo1.c 289

Line 30. We complete the evaluation of the array v by assigning v[n] from the right
boundary condition. Actually this is not necessary at all since the value of v[n] is
not needed in the subsequent calculations. This line can be safely commented out.

Lines 33–39. In the reverse sweep we calculate the array entries u[i][j], based on
the values of the intermediate array v, by solving the equation (21.8b). You need to
supply a couple of lines of missing code very much similar to those in the forward
sweep case.

21.9 The file demo1.c

The file demo1.c, shown in an outline form in Listing 21.5, formulates and solve an initial
boundary value for the porous medium equation with a known exact solution. Let’s look
at its details.

Line 3. The function barenblatt() encodes Barenblatt’s solution given in (21.2). The
evaluation depend on the independent variables 𝑥 and 𝑡 , and on the parameters 𝑚,
𝑐, and 𝛿 , which we supply as arguments.

Lines 7–11. The function exact_sol() evaluates and returns the Barenblatt’s solu-
tion with the parameters 𝑚 = 3, 𝑐 = √3/15, and 𝛿 = 1/75. The choice of these
parameters was explained in the description of Problem pme1 on page 284. We
generate initial and boundary data based on this function, and then validate the
solution produced by our finite difference solver by comparing to it.

Lines 13–15. The functionsic(),bc_L(), andbc_R() simply evaluateexact_sol()
at 𝑡 = 0 and 𝑥 = ±1 to produce the problem’s initial and left and right boundary
conditions.

Line 21. Populate the entries of a struct pme_solve. See the complete description
of that structure in Section 21.6.

Lines 28–30. Allocate an (𝑚+1) × (𝑛+1) array u to hold the values of the solution on the
grid points, call pme_solve() to solve the problem, and then free the allocated
memory.

Recalling our implementation of pme_solve(), it will produce scripts for plotting
solutions if the prob structure provides file names for the scripts, and it will print
to stdout the absolute error between the calculated and exact solutions if an exact
solution is provided.

21.10 Project Porous Medium

Part 21.1. Complete the implementation of this chapter’s finite difference solver and
try it out with demo1.c which formulates Problem pme1 on page 284. The output of the
program is shown in Listing 21.1. The solution is plotted in Figure 21.2 on the left.

Part 21.2. Write a file demo2.c which formulates and solves Problem pme2 on page 285.

Part 21.3. [Optional] Modify your program to handle a general 𝜙 ∶ R → R assuming
𝜙(0) = 0, 𝜙′(0) = 0, and 𝜙 is monotonically increasing. You will replace the function
croot() with a solver (using Newton’s iteration) for the equation 𝜉 + 𝑟𝜙(𝜉) = 𝑐.

290 Chapter 21. The porous medium equation

Listing 21.5: An outline of the file demo1.c.

1 ▶ #include ...

2 / / Barenblatt’s solution

3 ▶ static double barenblatt(double x, double t, double m,

4 double c, double delta) ...

5

6 / / pme1: Barenblatt’s solution with 𝑚 = 3, and special choices of 𝑐 and 𝛿

7 static double exact_sol(double x, double t)

8 {

9 double c = sqrt(3)/15, delta = 1.0/75;

10 return barenblatt(x, t, 3, c, delta);

11 }

12

13 ▶ static double ic(double x) ...

14 ▶ static double bc_L(double t) ...

15 ▶ static double bc_R(double t) ...

16

17 int main(int argc, char **argv)

18 {

19 ▶ extract the command-line arguments T, n, m

20 call show_usage_and_exit() if invalid arguments

21 ▶ struct pme_solve prob = {

22 .a = -1,

23 .b = 1,

24 .T = T,

25 ...

26 };

27

28 make_matrix(prob.u, m+1, n+1);

29 pme_solve(&prob);

30 free_matrix(prob.u);

31

32 return EXIT_SUCCESS;

33 }

21.11 Appendix: The porous medium equation as a population
dynamics model

It is not out of place to show how (21.6a) arises out of a simple populationmodel. Although
the treatment of this chapter has been limited to a one-dimensional space, the derivation
of the model works more transparently in an 𝑛-dimensional setting, and that’s what I will
do. At the very end you may set 𝑛 = 1 if you like.

Consider a certain hypothetical population that lives in the 𝑛-dimensional space R𝑛 .
Assume that there exists a population density function 𝑢(x, 𝑡) so that the population in any
arbitrary region 𝜔 ⊂ R𝑛 at time 𝑡 is given by ∫𝜔 𝑢(x, 𝑡) 𝑑x. Also assume that there exists
a vector function v(x, 𝑡) that gives the velocity of the movement of the individuals at the
point x at time 𝑡 . For simplicity’s sake, let’s assume that the members of the population
don’t reproduce and don’t die. Then the rate of increase of the population in 𝜔 equals

21.11. Appendix: The porous medium equation as a population dynamics model 291

exactly the inflow of the population through its boundary, that is,

𝑑

𝑑𝑡 ∫𝜔 𝑢 𝑑x = −∫𝜕𝜔 𝑢v ⋅ n 𝑑𝑎,

where n is the outward unit normal to the boundary 𝜕𝜔 of 𝜔.
We move the time derivative to under the integration sign. That’s permissible since 𝜔

is independent of time. On the right-hand side, wemay apply theDivergence Theorem (see,
e.g., the section titled “Curl and Divergence” in Stewart [65]) from multivariable calculus
to change the boundary integral to a volume integral. We get

∫𝜔 𝜕𝑢

𝜕𝑡
𝑑x = −∫𝜔 div(𝑢v) 𝑑𝑎.

Since 𝜔 is arbitrary, we conclude that

𝜕𝑢

𝜕𝑡
+ div(𝑢v) = 0.

What we have obtained is the equation of conservation of mass. That we derived it in the
context of population dynamics is quite irrelevant. The density 𝑢 and velocity v could
have been those of the exhaust gases of a rocket, the air flowing around an airplane’s
wings, blood coursing through an animal’s veins, or a vibrating metal plate. The equation
of the conservation of mass links a material’s velocity and density functions, assuming
that the material is neither created nor destroyed.

Returning to the population model, assume that the species are averse to living in
high density areas. More precisely, if the population density is not constant in a particular
individual’s neighborhood, the individual runs to a lower density area; that is, it moves
in the opposite direction of the density gradient, ∇𝑢, and the speed of the movement is a
function of the density itself, let’s say v = −𝜓 (𝑢)∇𝑢. Substituting this in the equation of
conservation of mass results in

𝜕𝑢

𝜕𝑡
= div [𝑢𝜓 (𝑢)∇𝑢].

To connect this to the porous medium equation, introduce a function 𝜙 through 𝜙(𝑢) =∫ 𝑢
0 𝜎𝜓 (𝜎) 𝑑𝜎 , that is, 𝜙′(𝑢) = 𝑢𝜓 (𝑢) and 𝜙(0) = 0. Then the expression inside the square
brackets becomes 𝜙′(𝑢)∇𝑢, that is, ∇𝜙(𝑢), and we conclude that

𝜕𝑢

𝜕𝑡
= div ∇𝜙(𝑢) = ∇2𝜙(𝑢).

In the one-dimensional case this reduces to (21.6a).

