
Chapter 27

Neural networks for

solving ODEs

Prerequisites: Chapters 7, 8 18

27.1 Introduction

The schematic diagram in Figure 27.1 depicts a neural network consisting of four input
units, two hidden layers of three and four units each, and a single output unit. A general
neural network may have any number of hidden layers, and the number of units within
the hidden, input, and output layers may vary. The units are interconnected and influence
each other in the directions of the arrows depicted in the figure.

input 1

input 2

input 3

input 4

input layer hidden layer 1 hidden layer 2 output layer

Figure 27.1: The schematic of a neural network of four inputs, two hidden layers, and

one output.

The details of a single unit, let’s call it the unit 𝑖, are shown in Figure 27.2. It receives
inputs 𝑥1, 𝑥2,… , 𝑥𝑛 from the units in the preceding layer and forms the weighted sum

𝑧𝑖 = 𝑢𝑖 + 𝑛∑𝑗=1 𝑤𝑖𝑗𝑥𝑗 ,
375

376 Chapter 27. Neural networks for solving ODEs

where the weights 𝑤𝑖𝑗 , and the bias 𝑢𝑖 are specific to this unit. Then it passes the sum
through a function 𝜎 , called the activation function, and produces the output 𝜎(𝑧𝑖). A
typical choice for 𝜎 is the sigmoidal function95

𝜎(𝑥) = 1

1 + 𝑒−𝑥 . (27.1)

It is also typical to use the same activation function for all units, with the exception of the
output unit whose activation function is often the identity function 𝜎(𝑥) = 𝑥 .

𝑧𝑖 = 𝑢𝑖 + 𝑛∑𝑗=1 𝑤𝑖𝑗𝑥𝑗
𝜎(𝑥) = 1

1 + 𝑒−𝑥
𝑥1

𝑤𝑖1𝑥2 𝑤𝑖2
⋮
𝑥𝑛 𝑤𝑖𝑛

𝜎(𝑧𝑖)
𝑥0

𝜎(𝑥)
1

Figure 27.2: The 𝑖th neural network unit receives inputs 𝑥1, 𝑥2,… and produces output𝜎 (𝑧𝑖). The activation function 𝜎 is typically the sigmoid (27.1).

27.2 A single-layer neural network

In these noteswe focus on a simple neural network consisting of 𝑛 inputs, one hidden layer
of 𝑞 units, and one output, as shown in Figure 27.3. The unit 𝑖 in the hidden layer combines
the inputs 𝑥1, 𝑥2,… , 𝑥𝑛 from the input layer into 𝑧𝑖 = 𝑢𝑖 + ∑𝑛𝑗=1 𝑤𝑖𝑗𝑥𝑗 , and produces the
output 𝜎(𝑧𝑖), where 𝜎 is as in (27.1). The output unit computes and outputs the weighted
sum 𝑁 (x) = ∑𝑞𝑖=1 𝑣𝑖𝜎(𝑧𝑖). The activation function of the output unit is the identity 𝜎(𝑥) =𝑥 .

𝑥1
𝑥2
𝑥3
𝑥4

𝑣1
𝑣2
𝑣3

𝑦 = 𝑁 (x)

Figure 27.3: A simple neural network of 𝑛 = 4 input units, a single hidden layer of 𝑞 = 3

units, and one output unit.

As a whole, this neural network acts as a function 𝑁 ∶ 𝑅𝑛 → 𝑅, where
𝑁 (x) =

𝑞∑𝑖=1 𝑣𝑖𝜎(𝑧𝑖) = 𝑞∑𝑖=1 𝑣𝑖𝜎(𝑢𝑖 + 𝑛∑𝑗=1 𝑤𝑖𝑗𝑥𝑗). (27.2)

95This sigmoidal function acts as a cut-off—its output is zero when the input is small, and is one when the
output is large.

27.2. A single-layer neural network 377

In Section 27.3 we will see that solving an ODE through neural networks leads to an
optimization problem involving 𝑁 (x) and its derivatives of up to order 𝑚 with respect to
x, where𝑚 is the order of the ODE. Thus, we proceed to calculate those derivatives now.
We have: 𝜕𝑧𝑖𝜕𝑥𝑘 =

𝜕𝜕𝑥𝑘 (𝑢𝑖 + 𝑛∑𝑗=1 𝑤𝑖𝑗𝑥𝑗) =
𝜕𝜕𝑥𝑘 (𝑤𝑖1𝑥1 + 𝑤𝑖1𝑥2 +⋯ + 𝑤𝑖𝑛𝑥𝑛) = 𝑤𝑖𝑘 ,

and therefore 𝜕𝜕𝑥𝑘 𝜎(𝑧𝑖) = 𝜎 ′(𝑧𝑖) 𝜕𝑧𝑖𝜕𝑥𝑘 = 𝑤𝑖𝑘𝜎 ′(𝑧𝑖).
We conclude that

𝜕𝜕𝑥𝑘 𝑁 (x) =
𝜕𝜕𝑥𝑘

𝑞∑𝑖=1 𝑣𝑖𝜎(𝑧𝑖) = 𝑞∑𝑖=1 𝑣𝑖𝑤𝑖𝑘𝜎 ′(𝑧𝑖).
Higher order derivatives of 𝑁 may be computed in the same way. Here is the 𝜆𝑘th

derivative with respect to 𝑥𝑘 :
𝜕𝜆𝑘𝜕𝑥𝜆𝑘𝑘 𝑁 (x) =

𝑞∑𝑖=1 𝑣𝑖𝑤𝜆𝑘𝑖𝑘 𝜎 (𝑘)(𝑧𝑖),
where 𝜎 (𝑘) is the 𝑘th derivative of 𝜎 . This extends in the obvious way to mixed deriva-
tives of any order. Thus, consider the multi-index 𝜆 = (𝜆1, 𝜆2,… , 𝜆𝑛), where each 𝜆𝑘 is a
nonnegative integer, and let’s write |𝜆| = ∑𝑛𝑘=1 𝜆𝑘 . Then

𝜕𝜆𝑁 (x)𝜕𝑥𝜆11 𝜕𝑥𝜆22 ⋯ 𝜕𝑥𝜆𝑛𝑛 =

𝑞∑𝑖=1 𝑣𝑖𝑤𝜆𝑖𝑖𝑖 𝑤𝜆2𝑖2 ⋯𝑤𝜆𝑛𝑖𝑛 𝜎 (|𝜆|)(𝑧𝑖),
which we may write in the compact notation

∇𝜆𝑁 (x) =

𝑞∑𝑖=1 𝑣𝑖𝑃Λ,𝑖𝜎 (|𝜆|)(𝑧𝑖), (27.3)

where 𝑃𝜆,𝑖 = 𝑤𝜆𝑖𝑖𝑖 𝑤𝜆2𝑖2 ⋯𝑤𝜆𝑛𝑖𝑛 =
𝑛∏𝑘=1 𝑤𝜆𝑘𝑖𝑘 . (27.4)

The derivatives calculated in (27.3) are all that is needed for applying a gradient-free
method (such as theNelder–Mead algorithm) to solve the optimization problem that arises
in solving ODEs. If, however, we wish to apply a gradient-based optimization algorithm
(such as a conjugate gradient method), then we will also need the first derivatives of (27.3)
with respect to the parameters 𝑢, 𝑣, and 𝑤 .96 For completeness, here we present the
calculation of those derivatives, although in our implementation, which is based on the
Nelder–Mead algorithm, these are not needed.

Derivatives with respect to 𝑢𝑘 and 𝑣𝑘 calculated in a straightforward way by applying
the chain rule to (27.3). We have:𝜕𝜕𝑢𝑘 ∇𝜆𝑁 (x) = 𝑣𝑘𝑃Λ,𝑘𝜎 (|𝜆|+1)(𝑧𝑖), (27.5a)

𝜕𝜕𝑣𝑘 ∇𝜆𝑁 (x) = 𝑃Λ,𝑘𝜎 (|𝜆|)(𝑧𝑖). (27.5b)

96There are 𝑞 components of 𝑢, 𝑞 components of 𝑣, and 𝑞𝑛 components of 𝑤, and therefore a total of 2𝑞+𝑞𝑛 =

(2 + 𝑛)𝑞 parameters.

378 Chapter 27. Neural networks for solving ODEs

Calculating the derivative with respect to 𝑤𝑝𝑞 is a little bit more tedious. Here we give
the details.

From (27.4) we get:

ln 𝑃𝜆,𝑖 = 𝑛∑𝑘=1 𝜆𝑘 ln𝑤𝑖𝑘 ,
and therefore

1𝑃𝜆,𝑖 𝜕𝑃𝜆,𝑖𝜕𝑤𝑝𝑞 =
𝑛∑𝑘=1 𝜆𝑘 1𝑤𝑖𝑘 𝜕𝑤𝑖𝑘𝜕𝑤𝑝𝑞 =

𝑛∑𝑘=1 𝜆𝑘 1𝑤𝑖𝑘 𝛿𝑖𝑝𝛿𝑘𝑞 = 𝜆𝑞 1𝑤𝑖𝑞 𝛿𝑖𝑝 ,
and therefore 𝜕𝑃𝜆,𝑖𝜕𝑤𝑝𝑞 = 𝜆𝑞 𝑃𝜆,𝑖𝑤𝑖𝑞 𝛿𝑖𝑝 .
Additionally, we have

𝜕𝑧𝑖𝜕𝑤𝑝𝑞 =
𝜕𝜕𝑤𝑝𝑞 (𝑢𝑖 + 𝑛∑𝑗=1 𝑤𝑖𝑗𝑥𝑗) =

𝑛∑𝑗=1 𝜕𝑤𝑖𝑗𝜕𝑤𝑝𝑞 𝑥𝑗 = 𝑛∑𝑗=1 𝛿𝑖𝑝𝛿𝑗𝑞𝑥𝑗 = 𝛿𝑖𝑝𝑥𝑞 ,
and therefore 𝜕𝜕𝑤𝑝𝑞 𝜎 (|𝜆|)(𝑧𝑖) = 𝜎 (|𝜆|+1)(𝑧𝑖) 𝜕𝑧𝑖𝜕𝑤𝑝𝑞 = 𝜎 (|𝜆|+1)(𝑧𝑖)𝛿𝑖𝑝𝑥𝑞 .
Now we are ready to calculate the derivative of (27.3):

𝜕𝜕𝑤𝑝𝑞 ∇𝜆𝑁 (x) =

𝑞∑𝑖=1 𝑣𝑖 𝜕𝑃𝜆,𝑖𝜕𝑤𝑝𝑞 𝜎 (|𝜆|)(𝑧𝑖) +
𝑞∑𝑖=1 𝑣𝑖𝑃𝜆,𝑖 𝜕𝜕𝑤𝑝𝑞 𝜎 (|𝜆|)(𝑧𝑖)

=

𝑞∑𝑖=1 𝑣𝑖𝜆𝑞 𝑃𝜆,𝑖𝑤𝑖𝑞 𝛿𝑖𝑝𝜎 (|𝜆|)(𝑧𝑖) +
𝑞∑𝑖=1 𝑣𝑖𝑃𝜆,𝑖𝜎 (|𝜆|+1)(𝑧𝑖)𝛿𝑖𝑝𝑥𝑞 .

= 𝑣𝑝𝜆𝑞 𝑃𝜆,𝑝𝑤𝑝𝑞 𝜎 (|𝜆|)(𝑧𝑝) + 𝑣𝑝𝑃𝜆,𝑝𝜎 (|𝜆|+1)(𝑧𝑝)𝑥𝑞 .
For cosmetic reasons, we replace the 𝑝𝑞 indices with 𝑖𝑗:𝜕𝜕𝑤𝑖𝑗 ∇𝜆𝑁 (x) = 𝑣𝑖𝑃𝜆,𝑖𝜎 (|𝜆|+1)(𝑧𝑖)𝑥𝑗 + 𝑣𝑖𝜆𝑗 𝑃𝜆,𝑖𝑤𝑖𝑗 𝜎 (|𝜆|)(𝑧𝑖). (27.5c)

Note that
𝑃𝜆,𝑖𝑤𝑖𝑗

that appears on the right-hand side is not actually a fraction since 𝑃𝜆,𝑖 has
a factor of 𝑤𝜆𝑗𝑖𝑗 which cancels the denominator.

Equations (27.5a), (27.5b), (27.5c), along with (27.3), supply all the derivatives that are
needed in applying a gradient-based optimization algorithm to solve ODEs.

27.3 Solving ODEs through neural networks

Consider the boundary value problem for 2nd order ODE

𝐹(𝑥 , 𝑢(𝑥), 𝑢′(𝑥), 𝑢′′(𝑥)) = 0, 𝑎 < 𝑥 < 𝑏, (27.6a)

𝑢(𝑎) = 𝑢(𝑏) = 0. (27.6b)

27.3. Solving ODEs through neural networks 379

We seek a solution of the form 𝑢(𝑥) = 𝜙(𝑥)𝑁 (𝑥), where 𝑁 (𝑥) is the transfer function of a
suitably tuned neural network, and 𝜙(𝑥) is a function which we pick, a priori, to enforce
the boundary conditions. The function 𝜙(𝑥) = (𝑏 − 𝑥)(𝑥 − 𝑎) is an obvious choice since
it is positive in the interval (𝑎, 𝑏) and vanishes at the boundary points. Our main task is
to design a neural network whose transfer function 𝑁 (𝑥) is so that 𝑢(𝑥) = 𝜙(𝑥)𝑁 (𝑥) is a
good approximation to the solution of the boundary value problem (27.6).

Our neural network will have only a single input, 𝑥 and a single output, 𝑁 (𝑥). There
is quite a bit of flexibility in designing the hidden layers. In this introductory exposition,
we choose to have only one hidden layer consisting of 𝑞 units, and we will experiment by
varying 𝑞. A schematic of the 𝑞 = 3 case is shown in Figure 27.4.

𝑥 𝑤1

𝑤2

𝑤3

𝑣1𝑣2
𝑣3

output 𝑁 (𝑥)

Figure 27.4: A neural network of one hidden layer consisting of 𝑞 = 3 units, for solving

the boundary value problem (27.6).

Ideally, the function 𝑢(𝑥) = 𝜙(𝑥)𝑁 (𝑥) will satisfy the boundary value problem (27.6)
exactly, that is, the residual at 𝑥

𝑅(𝑥) = 𝐹(𝑥 , 𝜙(𝑥)𝑁 (𝑥), (𝜙(𝑥)𝑁 (𝑥))′, (𝜙(𝑥)𝑁 (𝑥))′′) (27.7)

will be zero for all 𝑥 . Our neural network produces only an approximation to the solution,
and therefore 𝑅(𝑥) will be small but not necessarily zero.

We will shortly need the expanded form of (27.7), so we might as well do it now:

𝑅(𝑥) = 𝐹(𝑥 , 𝜙(𝑥)𝑁 (𝑥), 𝜙′(𝑥)𝑁 (𝑥) + 𝜙(𝑥)𝑁 ′(𝑥),
𝜙′′(𝑥)𝑁 (𝑥) + 2𝜙′(𝑥)𝑁 ′(𝑥) + 𝜙(𝑥)𝑁 ′′(𝑥)). (27.8)

For the purpose of “training” the network, we pick 𝜈 equally spaced points with coor-
dinates 𝑥𝑘 = 𝑎 + 𝑏−𝑎𝜈+1 𝑘, 𝑘 = 1, 2,… , 𝜈 , in the interval (𝑎, 𝑏). We evaluate the residual (27.8)
at those points and calculate the sum of the squares:

𝐸 =
𝜈∑𝑖=1 𝑅(𝑥𝑖)2

=
𝜈∑𝑖=1[𝐹(𝑥𝑖 , 𝜙(𝑥𝑖)𝑁 (𝑥𝑖), 𝜙′(𝑥𝑖)𝑁 (𝑥𝑖) + 𝜙(𝑥𝑖)𝑁 ′(𝑥𝑖),

𝜙′′(𝑥𝑖)𝑁 (𝑥𝑖) + 2𝜙′(𝑥𝑖)𝑁 ′(𝑥𝑖) + 𝜙(𝑥𝑖)𝑁 ′′(𝑥𝑖))]2. (27.9)

The residual error 𝐸 is immediately computable since 𝜙 is given, and we have explicit
expressions for 𝑁 and its derivatives in (27.2) and (27.3). These, of course, depend on the
neural network’s parameters 𝑢, 𝑣, and 𝑤 . We obtain the best choice of the parameters by
minimizing 𝐸 with respect to those parameters. A gradient-based minimization algorithm

380 Chapter 27. Neural networks for solving ODEs

requires the derivatives of 𝐸 with respect to those parameters. These may be calculated
with the aid of the equations (27.5a)–(27.5c). In our implementation we apply the Nelder–
Mead minimization algorithm which is gradient-free, and therefore we have no use for
equations (27.5a)–(27.5c), but we still need the differentiation formula (27.3) since (27.9)
involves derivatives of 𝑁 with respect to 𝑥 .

Finally, let us note that the ideas outlined above generalize to higher order ODEs. We
limit our implementation to second order ODEs for the sake of the exposition’s trans-
parency.

27.4 An overview of the program

Our implementation of the neural networks for solving ODEs is in the file neural-net-ode.c.
The header file neural-net-ode.h provides the application’s interface.

Additionally, the program relies on the xmalloc module of Chapter 7) to allocate mem-
ory, the Nelder Mead module of Chapter 18 to minimize the objective function, and the
array.h header file of Chapter 8 to construct vectors and matrices. Therefore, following
the recommendations of Chapters 2 and 6, the program’s directory will look like this:

$ cd neural-nets

$ ls -F

Makefile nelder-mead.c@ neural-nets-ode.h xmalloc.c@

array.h@ nelder-mead.h@ plot-with-maple.c xmalloc.h@

demo-ode1.c neural-nets-ode.c plot-with-matlab.c

The primary task in neural-net-ode.c is to provide the infrastructure to encode the
residual error function 𝐸 (equation (27.9)) for the generic second order boundary value
problem (27.6). The file demo-ode1.c defines a concrete instance of (27.6)—see Section 27.7
for the details—and then calls the Nelder Mead module to minimize 𝐸 by tuning the neural
network’s parameters. With the network thus trained, the solution 𝑢(𝑥) of the boundary
value problem may be evaluated at any desired point 𝑥 .

Thefiles plot-with-maple.c defines a functionwhich applies the trained neural network
to produce a sequence of pairs (𝑥𝑖 , 𝑢(𝑥𝑖)), 𝑖 = 0, 1,… , 𝑛, and writes the result in the form
of aMaple script, which when loaded into Maple, produces a graph of the solution. The
files plot-with-matlab.c does the same, but writes a script suitable for loading intoMatlab.
Download these files from the book’s website.

Here is the transcript of a session on executing the compiled demo-ode1:

27.5. The interface 381

Figure 27.5: The graph of the solution 𝑢(𝑥) of the boundary value problem (27.10), as

rendered inMaple.

$./demo-ode1

Usage:

./demo-ode1 q nu

q : number of units in the hidden layer (q ≥1)
nu : number of training points (nu ≥1)

We see that when demo-ode1 is invoked without additional arguments, it prints a help
message and exits. The message indicates the need to specify two arguments. The first
argument is the number 𝑞 of units in the hidden layer. The second argument is the number𝜈 of training points. These are distributed uniformly as 𝑥𝑘 = 𝑎+ 𝑏−𝑎𝜈+1 𝑘, 𝑘 = 1, 2,… , 𝜈 in the
interval (𝑎, 𝑏).

When demo-ode1 is supplied with the requisite arguments, here is what we see:

$./demo-ode1 5 4

weights before training:

0.340 -0.106 0.283 0.298 0.412 -0.302 -0.165 0.268

-0.222 0.054 -0.023 0.129 -0.135 0.013 0.452

Nelder-Mead: Converged after 1097 function evaluations

Nelder-Mead: Neural network’s residual error = 3.56089e-13

weights after training:

0.280 -0.369 2.554 0.786 0.422 -0.682 -0.856 2.103

0.022 -0.256 0.409 -1.578 -1.636 0.308 -0.288

Error versus the ODE’s exact solution = 0.0842691

Herewe see the results of solving the boundary value problemwith five units in the hidden
layer, and four training points. The Nelder–Mead algorithm minimizes the residual error𝐸 after 1097 function evaluation. The minimum value of 𝐸 is of the order 10−13, which is
quite good. The discrepancy between the calculated and exact solutions is small, and can
be made smaller by increasing the number of training points.

Not visible in that transcript are the two script files, generated silently, for plotting the
solution inMaple andMatlab. The scripts are written to files whose names are specified
by the user in demo-ode1.c. Figure 27.5 shows one such graph, plotted in Maple.

27.5 The interface

The contents of the header file neural-nets-ode.h is shown in Listing 27.1. It declares
a structure struct Neural_Net_ODE that holds the necessary data for defining a
boundary value problem for an ODE and a neural network to solve it. Let us begin by
examining the structure’s details. Line numbers refer to those in Listing 27.1.

Line 5: The member ODE of the struct Neural_Net_ODE points to a user-defined

382 Chapter 27. Neural networks for solving ODEs

Listing 27.1: The header file neural-nets-ode.h.

1 #ifndef H_NEURAL_NET_ODE_H

2 #define H_NEURAL_NET_ODE_H

3

4 struct Neural_Net_ODE {

5 double (*ODE)(double x, double u, double u_x, double u_xx);

6 double a; / / left endpoint of the interval

7 double b; / / right endpoint of the interval

8 int q; / / number of units in the hidden layer

9 int nu; / / the number of training points

10 double *training_points; / / the array of training points

11 double (*exact_sol)(double x); / / NULL if no exact solution available

12

13 / / no user modifiable parts beyond this point

14 int nweights; / / 3 × 𝑞
15 double *weights; / / the array of 𝑢, 𝑣, 𝑤
16 double sigma[3]; / / array to hold 𝜎 , 𝜎 ′, 𝜎 ′′

17 double phi[3]; / / array to hold 𝜙, 𝜙′, 𝜙′′

18 double N[3]; / / array to hold 𝑁 , 𝑁 ′, 𝑁 ′′

19 };

20

21 void Neural_Net_init(struct Neural_Net_ODE *nn);

22 void Neural_Net_end(struct Neural_Net_ODE *nn);

23 void Neural_Net_eval(struct Neural_Net_ODE *nn, double x);

24 void Neural_Net_phi(struct Neural_Net_ODE *nn, double x);

25 void Neural_Net_plot_with_maple(struct Neural_Net_ODE *nn, int n,

26 char *outfile);

27 void Neural_Net_plot_with_matlab(struct Neural_Net_ODE *nn, int n,

28 char *outfile);

29 double Neural_Net_residual(double *weights, int nweights,

30 void *params);

31 double Neural_Net_error_vs_exact(struct Neural_Net_ODE *nn, int n);

32

33 #endif /�* H_NEURAL_NET_ODE_H */

function that defines the differential equation to be solved, which is, in effect, the
function 𝐹 in (27.6a). See the description of the file demo-ode1.c for an example.

Lines 6 and 7: These define the interval (𝑎, 𝑏) of over which we solve the ODE.

Line 8: 𝑞 is the number of units in the hidden layer.

Line 9: 𝜈 is the number of training points.

Line 10: Pointer to an array of the 𝑥 coordinates of the training points.

Line 11: Pointer to a function that returns the exact solution to the problem. This is used
to test the program’s correctness. When no exact solution is available, we set this
pointer to NULL.

Line 14: As seen in Section 27.3, our neural network is characterized by 3𝑞 parameters
(weights) 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 , 𝑖 = 1,… , 𝑞, where 𝑞 is the number units in the hidden layer.

27.6. The implementation 383

The value of weights is set to 3𝑞 in the function Neural_Net_init(). It is
not intended to be set by the user.

Line 15: weights points to an array of length 3𝑞 which holds the 3𝑞 parameters 𝑢, 𝑣
and 𝑤 , in that order. Thus, for 𝑖 = 0, 1,… , 𝑞 − 1, we have 𝑢𝑖 = weights[i], 𝑣𝑖 =
weights[q+i], 𝑤𝑖 = weights[2*q+i].

Lines 16–18: The array sigma will hold the values of 𝜎(𝑥), 𝜎 ′(𝑥), 𝜎 ′′(𝑥) at varying
values of 𝑥 . Similarly, phi, and N will hold the values of 𝜙(𝑥) and 𝑁 (𝑥), and their
first and second derivatives.

Lines 21 to end: The function declared here are the public functions exported by our
module. The are described in the next section.

27.6 The implementation

Listing 27.2 presents an outline of the implementation file neural-nets-ode.c. It contains a
few private functions (markedstatic) and several public functionwhich appear in neural-
nets-ode.h in Listing 27.1. I will describe the purposes of the various functions in the fol-
lowing subsections.

27.6.1 The function sigmoid()

The function sigmoid() receives a value 𝑥 and evaluates the sigmoidal function 𝜎 (𝑥)
of (27.1) and its derivatives 𝜎 ′(𝑥) and 𝜎 ′′(𝑥), and stores them in sigma[0], sigma[1],
sigma[2], respectively.

27.6.2 The function Neural_Net_phi()

The function Neural_Net_phi() receives a value 𝑥 and evaluates 𝜙(𝑥) = (𝑏 − 𝑥)(𝑥 −𝑎) and its derivatives 𝜙′(𝑥) and 𝜙′′(𝑥), and stores them in phi[0], phi[1], phi[2],
respectively. The values of 𝑎 and 𝑏 are available in 𝑛𝑛− > 𝑎 and 𝑛𝑛− > 𝑏.

27.6.3 The function Neural_Net_init()

This function called to initialize the module prior to calling any the other functions.
Specifically, this sets value of the nweights field to 3𝑞, where 𝑞 is the number of units in
the hidden layer, and then calls make_vector to allocate an array of length nweights
which will hold the neural networks 3𝑞 parameters 𝑢, 𝑣, and 𝑤 .

Each of the 3𝑞 parameters are assigned random values in the range −0.5 to 0.5. The
“training” of the neural network amounts to adjusting those values to minimize the resid-
ual error defined in (27.9).97 For the details of the Standard Library function rand(), see
Chapter 10.

27.6.4 The function Neural_Net_end()

This function is called at the conclusion of the use of the module to clean up any odds and
ends. In the current implementation, this performs only one task—it frees the memory
that was allocated on line 13 in 27.2.

97Admittedly, the range −0.5 to 0.5 is selected rather arbitrarily. It may be worthwhile to investigate the effect
of changing that range on the solver’s performance.

384 Chapter 27. Neural networks for solving ODEs

Listing 27.2: An outline of the file neural-nets-ode.c. Flesh out the parts marked with ▶ .
1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include "neural-nets-ode.h"

5 #include "nelder-mead.h"

6 #include "array.h"

7

8 ▶ static void sigmoid(double x, double *sigma) ...

9 ▶ void Neural_Net_phi(struct Neural_Net_ODE *nn, double x) ...

10 void Neural_Net_init(struct Neural_Net_ODE *nn)

11 {

12 nn→nweights = 3*nn→q;

13 make_vector(nn→weights, nn→nweights);

14 for (int i = 0; i < nn→nweights; i++)

15 nn→weights[i] = (double)rand()/RAND_MAX - 0.5;

16 }

17 ▶ void Neural_Net_end(struct Neural_Net_ODE *nn) ...

18 void Neural_Net_eval(struct Neural_Net_ODE *nn, double x)

19 {

20 int q = nn→q;

21 double *u = nn→weights;

22 double *v = nn→weights + q;

23 double *w = nn→weights + 2*q;

24

25 for (int j = 0; j ≤ 2; j++)

26 nn→N[j] = 0.0;

27

28 for (int i = 0; i < q; i++) {

29 double z = u[i] + w[i]*x;

30 sigmoid(z, nn→sigma);

31 for (int j = 0; j ≤ 2; j++)

32 nn→N[j] += v[i]*pow(w[i],j) * nn→sigma[j];

33 }

34 }

35 ▶ static double residual_at_x(struct Neural_Net_ODE *nn, double x) ...

36 double Neural_Net_residual(double *weights, int nweights, void *params)

37 {

38 struct Neural_Net_ODE *nn = params;

39 int nu = nn→nu; / / the number of training points

40 double sum = 0.0;

41

42 for (int i = 0; i < nn→nweights; i++)

43 nn→weights[i] = weights[i];

44

45 for (int i = 0; i < nu; i++) {

46 double x = nn→training_points[i];

47 double r = residual_at_x(nn, x);

48 sum += r*r;

49 }

50

51 return sum;

52 }

53 ▶ double Neural_Net_error_vs_exact(struct Neural_Net_ODE *nn, int n)

27.7. The file demo-ode1.c 385

27.6.5 The function Neural_Net_eval()

This function evaluate the output 𝑁 (𝑥) of the neural network corresponding to the input𝑥 , and the derivatives 𝑁 ′(𝑥) and 𝑁 ′′(𝑥), according to the formula (27.3). These are stored
in N[0], N[1], and N[2] slots in the array N attached to the structure nn.

27.6.6 The function residual_at_x()

This function calculates and returns the residual 𝑅(𝑥) at a given 𝑥 , according to (27.8). The
values of 𝜙 and its derivatives may be obtained by calling Neural_Net_phi(). The
values of 𝑁 and its derivatives may be obtained by calling Neural_Net_eval(). The
function 𝐹 is available as nn→ODE.

27.6.7 The function Neural_Net_residual()

The implementation of this function, shown in full in Listing 27.2, evaluates the residual
error 𝐸 according to (27.9). The function’s prototype is set to match exactly that which
is required of objective functions in the Nelder Mead module. Specifically, since we wish
to minimize 𝐸 as a function of the 3𝑞 parameters 𝑢, 𝑣, and 𝑤 which define the neural
network, the first argument of Neural_Net_residual() is an array of length 3𝑞
that holds the values of 𝑢, 𝑣, and 𝑤 . The second argument, nweights, is set to 3𝑞,
indicating that the minimization takes places over a 3𝑞-dimensional space. From Nelder
Mead’s point of view, the argument weights represents the coordinates of a vertex of
the 3𝑞-dimensional simplex.

As the Nelder–Mead algorithms performs its downhill march, it repeatedly revises
the coordinates in weights, and calls Neural_Net_residual() to re-evaluate the
objective function. In line 43 in Listing 27.2 we copy the trial weights produced by Nelder
Mead into nn→weights in order to keep the weights in struct Neural_Net_ODE

in sync with those requested by Nelder Mead. This is absolutely necessary, since in line 47
we are calling residual_at_x()which in turns calls Neural_Net_eval()which
needs the current values of the weights in order to correctly calculate the output 𝑁 (𝑥).

27.6.8 The function Neural_Net_error_vs_exact()

The purpose of this function is to evaluate the now trained neural network at 𝑛+1 equally
spaced points 𝑥0 = 𝑎, 𝑥1, 𝑥2,… , 𝑥𝑛 = 𝑏 over the interval [𝑎, 𝑏] and calculate and return the
largest discrepancy

max
0≤𝑖≤𝑛 |||𝜙(𝑥𝑖)𝑁 (𝑥𝑖) − 𝑢exact(𝑥𝑖)|||

between the solution produced by our neural network and an exact or target solution𝑢exact supplied by the user. This is useful in testing the accuracy and performance of the
implementation, and naturally it is applicable onlywhen such a target solution is available.

27.7 The file demo-ode1.c

The file demo-ode1.c provides a demonstration of this module. It solves the boundary
value problem 𝑢′′ + 11 + 𝑢2 = 𝑓 , 𝑢(0) = 𝑢(𝜋) = 0 (27.10a)

386 Chapter 27. Neural networks for solving ODEs

Listing 27.3: A sketch of the file demo-ode1.c. Flesh out the parts marked with ▶ .
1 ▶ the necessary headers here

2 #define PI 4.0*atan(1.0)

3 ▶ static double exact_sol(double x) ...

4 ▶ static double my_ode(double x, double u, double u_x, double u_xx) ...

5 ▶ static void show_usage(char *progname) ...

6 ▶ int main(int argc, char **argv) ...

for the unknown 𝑢(𝑥) on the interval 0 < 𝑥 < 𝜋 , where 𝑓 (𝑥) is selected as
𝑓 (𝑥) = − sin 𝑥 − 4 sin 2𝑥 + 11 + (sin 𝑥 + sin 2𝑥)2 . (27.10b)

so that the exact solution of the problem is 𝑢(𝑥) = sin 𝑥 + sin 2𝑥 . Note that the boundary
value problem in (27.10) is a special case of (27.6) with

𝐹(𝑥 , 𝑢, 𝑢′, 𝑢′′) = 𝑢′′ + 11 + 𝑢2 − 𝑓 (𝑥), (27.11)

and 𝑎 = 0, 𝑏 = 𝜋 .
Listing 27.3 provides an outline of the file demo-ode1.c. Here are a few comments on

that listing.

Line 2: We set the preprocessor symbol PI to take on the value of the mathematical 𝜋
which we need since the boundary value problem 27.10 is defined on the interval(0, 𝜋).98

Line 3: The function exact_sol() evaluates to the exact solution of the boundary
value problem, which is 𝑢exact(𝑥) = sin 𝑥 + sin 2𝑥 in this case. The name of the
function is immaterial; it may be named anything. If you don’t have access to an
exact solution, then you don’t need to define this function at all.

Line 4: The function my_ode() implements the function 𝐹 of equation (27.6a) for the
ODE at hand. The 𝐹 of interest in the current code is that in (27.11). Here is one
way of doing it:

static double my_ode(double x, double u, double u_x, double u_xx)

{

double t = sin(x) + sin(2*x);

double f = -sin(x) - 4*sin(2*x) + 1 / (1 + t*t);

return u_xx + 1 / (1 + u*u) - f;

}

Line 5: The function show_usage() is responsible for the usage message in the tran-
script of the interactive session shown on page 381. It receives the name of the
executable file (available in argv[0] in main()) and prints the message shown.

Line 6: The function main() is somewhat long and deserves a listing of its own. Its
details are presented in the following subsection.

98In modern compilers, such as Gnu C, that macro is evaluated at the preprocessing stage and all occurrences
of PI are replaced with its numerical value before the compilation begins. Therefore the use of that macro
incurs no cost at execution time.

27.7. The file demo-ode1.c 387

Listing 27.4: The function main() in the file demo-ode1.c – part 1.

1 int main(int argc, char **argv)

2 {

3 double a = 0; / / left end of the interval

4 double b = PI; / / right end of the interval

5 double *training_points;

6 char *endptr;

7

8 if (argc ≠ 3) {

9 show_usage(argv[0]);

10 return EXIT_FAILURE;

11 }

12

13 / / number of units in the hidden layer

14 int q = strtol(argv[1], &endptr, 10);

15 if (*endptr ≠ ’\0’ || q < 1) {

16 show_usage(argv[0]);

17 return EXIT_FAILURE;

18 }

19

20 / / number of training points

21 int nu = strtol(argv[2], &endptr, 10);

22 if (*endptr ≠ ’\0’ || nu < 1) {

23 show_usage(argv[0]);

24 return EXIT_FAILURE;

25 }

26

27 / / nu equally spaced points inside (a,b)

28 make_vector(training_points, nu);

29 for (int i = 0; i < nu; i++)

30 training_points[i] = a + (b - a) / (nu + 1) * (i + 1);

31

32 struct Neural_Net_ODE nn = {

33 .a = a,

34 .b = b,

35 .q = q,

36 .nu = nu,

37 .training_points = training_points,

38 .ODE = my_ode,

39 .exact_sol = exact_sol,

40 };

27.7.1 The details of the function main()

Listing 27.4 (continued into Listing 27.5) presents an expanded view of the functionmain()
thatwas noted in the Listing 27.3. I won’t comments on the statements in Listing 27.4 since
they are quite self-explanatory other than noting that the Standard Library’sstrtol()function
is the subject of Chapter 5. What follows are some comments on Listing 27.5.

Line 41: Here we initialize the neural network through calling the function
Neural_Net_init() which is shown in its entirety in Listing 27.2. Among
other things, this initializes the neural network’s weights to a set of random values.

388 Chapter 27. Neural networks for solving ODEs

Lines 43–52: We set up a structure to pass to the Nelder Mead module in order to train
our neural network, that is, to determine the parameters 𝑢, 𝑣, and 𝑤 that minimize
the network’s residual error. The values of h, tol, and maxevals are hard-coded
here. In a fancier version of the program we may arrange to read those values from
the command-line.

Lines 54 and 70: We print the neural network’s weights before and after training for the
curiosity’s sake.

Lines 57–68: We call Nelder Mead to train the network, and then print the results to the
stdout.

Line 73: If an exact solution is provided, we print the maximum discrepancy between
the calculated and exact solutions. The argument 50 requests the comparisons to
be performed on 51 equally spaced points in the ODE’s domain. Adjust as desired.

Lines 76 to end: We produceMaple and Matlab script files for subsequent plotting of
the graphs of the solution. The argument 50 requests a graph corresponding to 51
equally spaced points on the ODE’s domain. Adjust as needed. Here the file names
are specified through their full paths. If you omit the full path specification, the files
will be placed in the current directory.

Thefilename extension .m is required inMatlab. Maple does not require a specific
filename extension99 but the extension .mpl is recommended.

27.8 Project Neural networks: ODEs

Part 27.1.

Solve the nonlinear boundary value problem for the unknown 𝑢(𝑥) on the interval(0, 1): 𝑢′′(𝑥) + 𝑢(𝑥)3 = 𝑓 (𝑥), 𝑢(0) = 0, 𝑢(1) = 0, (27.12)

where 𝑓 (𝑥) = 352
9 − 256

3 𝑥 + (169 𝑥(1 − 𝑥)(8𝑥 − 3))3. The odd-looking expression for 𝑓 (𝑥)
is reverse-engineered so that the equation has the simple exact solution 𝑢(𝑥) = 16

9 𝑥(1 −𝑥)(8𝑥 − 3) shown in Figure 27.6. The solution achieves its maximum value of 1 at 𝑥 = 3/4.

0 𝑥

𝑢(𝑥)

1
1

3
4

Figure 27.6: The graph of 𝑢(𝑥) = 16/9 𝑥(1 − 𝑥)(8𝑥 − 3).

Part 27.2. [optional] The requirement of zero boundary conditions in (27.6b) is too re-
strictive. Generalizing it to 𝑢(𝑎) = 𝛼 , 𝑢(𝑏) = 𝛽

99But don’t use a filename extension .m since that has a special meaning toMaple.

27.8. Project Neural networks: ODEs 389

requires only minor changes to our program. Instead of looking for solutions of the form𝑢(𝑥) = 𝜙(𝑥)𝑁 (𝑥) as we did in Section 27.3, we look for solutions of the form

𝑢(𝑥) = 𝛽𝑏 − 𝑎 (𝑥 − 𝑎) + 𝛼𝑏 − 𝑎 (𝑏 − 𝑥) + 𝜙(𝑥)𝑁 (𝑥),
where 𝜙(𝑥) = (𝑏 − 𝑥)(𝑥 − 𝑎) is as before.
Part 27.3. [optional] Extend Part 27.2 to allow for derivatives in the boundary conditions,
as in: 𝑢(𝑎) = 𝛼 , 𝑢′(𝑏) = 𝛽 .
Part 27.4. [optional] Extend this chapter’s module to allow for any number of hidden
layers, where the 𝑖th hidden layer consists of 𝑞𝑖 units.

390 Chapter 27. Neural networks for solving ODEs

Listing 27.5: The function main() in the file demo-ode1.c – part 2.

41 Neural_Net_init(&nn); / / initialize the neural network

42

43 struct nelder_mead NM = {

44 .f = Neural_Net_residual,

45 .n = nn.nweights,

46 .s = NULL,

47 .x = nn.weights,

48 .h = 0.1,

49 .tol = 1e-5,

50 .maxevals = 100000,

51 .params = &nn,

52 };

53

54 printf("weights before training:\n");

55 print_vector("%7.3f ", nn.weights, nn.nweights);

56

57 int evalcount = nelder_mead(&NM); / / training: minimize the residual

58

59 if (evalcount > NM.maxevals) {

60 printf("Nelder-Mead: No convergence after %d "

61 "function evaluation\n", evalcount);

62 return EXIT_FAILURE;

63 } else {

64 printf("Nelder-Mead: Converged after %d "

65 "function evaluations\n", evalcount);

66 printf("Nelder-Mead: Neural network’s residual error = %g\n",

67 NM.minval);

68 }

69

70 printf("weights after training:\n");

71 print_vector("%7.3f ", nn.weights, nn.nweights);

72

73 if (nn.exact_sol ≠ NULL)

74 printf("Error versus the ODE’s exact solution = %g\n",

75 Neural_Net_error_vs_exact(&nn, 50));

76

77 Neural_Net_plot_with_maple(&nn, 50, "/tmp/zz.mpl");

78 Neural_Net_plot_with_matlab(&nn, 50, "/tmp/zz.m");

79

80 Neural_Net_end(&nn); / / end neural network

81

82 free_vector(training_points);

83

84 return EXIT_SUCCESS;

85 }

