
Chapter 20

Finite difference

schemes for the heat

equation in one

dimension

Prerequisites: Chapters 7, 8

20.1 The basic idea of finite differences

In this chapter we apply a variety of finite difference techniques to approximate the solu-
tions of initial/boundary value problems associated with the heat equation

𝜕𝑢𝜕𝑡 =
𝜕2𝑢𝜕𝑥2 . (20.1)

The unknown 𝑢 = 𝑢(𝑥 , 𝑡) is a function of space 𝑥 and time 𝑡 .
The partial differential equation (20.1) arises in a variety of contexts in mathemati-

cal physics, probability theory, digital image processing, chemistry, and financial mathe-
matics. Perhaps the most accessible instance is as a model of the temperature in a one-
dimensional heat-conducting rod which is thermally insulated all around except for its
ends, where it interacts with the outside world. If we hold a flame to one end, heat will
propagate through the rod and affect the temperature everywhere. The function 𝑢(𝑥 , 𝑡) is
the temperature at the point 𝑥 at time 𝑡 . The partial differential equation (20.1) accounts
for the conservation of thermal energy within the rod.

We obtain a well-posed heat conduction problem if we specify the rod’s temperature at
time zero, that is, 𝑢(𝑥 , 0), and prescribe the temperatures at its ends at all times, that is, in𝑢(𝑎, 𝑡) and 𝑢(𝑏, 𝑡). Here I am assuming that the rod coincides with the interval (𝑎, 𝑏) on the𝑥 axis. This information, along with (20.1), should suffice to determine the temperature𝑢(𝑥 , 𝑡) at all points 𝑥 ∈ (𝑎, 𝑏) and all times 𝑡 > 0. We state this formally as the following
initial/boundary value problem:

Find 𝑢 = 𝑢(𝑥 , 𝑡) so that

𝜕𝑢𝜕𝑡 =
𝜕2𝑢𝜕𝑥2 , 𝑥 ∈ (𝑎, 𝑏), 𝑡 > 0, (20.2a)

𝑢(𝑥 , 0) = 𝑢0(𝑥), 𝑥 ∈ (𝑎, 𝑏), (20.2b)𝑢(𝑎, 𝑡) = 𝛼(𝑡), 𝑢(𝑏, 𝑡) = 𝛽(𝑡), 𝑡 > 0. (20.2c)

The initial condition 𝑢0(𝑥) and the left and right boundary conditions 𝛼(𝑡) and 𝛽(𝑡) are
251

252 Chapter 20. Finite difference schemes for the heat equation in one dimension

𝑥

𝑡

𝑎 𝑏

𝑢(𝑎, 𝑡) = 𝛼(𝑡) 𝑢(𝑏, 𝑡) = 𝛽(𝑡)

𝑢(𝑥 , 0) = 𝑢0(𝑥)

𝑢 = 𝑢(𝑥 , 𝑡)

Figure 20.1: The initial condition 𝑢0(𝑥) and boundary conditions 𝛼(𝑡) and 𝛽(𝑡) determine

the solution of the heat equation in the shaded semi-infinite strip.

prescribed. They serve to define a unique79 solution 𝑢(𝑥 , 𝑡) in the semi-infinite strip 𝑎 ≤𝑥 ≤ 𝑏 and 𝑡 > 0 in the 𝑥-𝑡 plane. See Figure 20.1.
In the finite differences worldview, space and time are discrete. The interval 𝑎 ≤ 𝑥 ≤ 𝑏

is divided into 𝑛 subintervals the dividing 𝑛 + 1 points 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1, 𝑥𝑛 , where𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏.
We call 𝑥0 and 𝑥𝑛 the boundary points and the remaining 𝑛 − 1, that is, 𝑥1, 𝑥2,… , 𝑥𝑛−1,

the internal points. We assume, for simplicity’s sake, that the 𝑛 + 1 dividing points are
evenly spaced, and thus they partition the interval [𝑎, 𝑏] into 𝑛 subintervals of length
Δ𝑥 = (𝑏 − 𝑎)/𝑛 each. Consequently, 𝑥𝑗 = 𝑎 + 𝑗Δ𝑥 , 𝑗 = 0, 1,… , 𝑛.

Similarly, the time is discretized into “time-slices” 𝑡0 < 𝑡1 < 𝑡2⋯, where 𝑡0 = 0. We
assume that the time-slices are evenly spaced at a prescribed Δ𝑡 intervals, and therefore𝑡𝑘 = 𝑘Δ𝑡 , 𝑘 = 0, 1, 2,… .

The discretization of the space and time replaces the shaded strip of Figure 20.1 by a
grid of points (𝑥𝑗 , 𝑡𝑘), as depicted in Figure 20.2. The task of finding the function 𝑢(𝑥 , 𝑡) is
replaced by the task of computing its values 𝑢(𝑥𝑗 , 𝑡𝑘) at the grid points. For convenience

we introduce the notation 𝑢𝑘𝑗 for 𝑢(𝑥𝑗 , 𝑡𝑘) since it is more compact and easier to parse. I
trust that it’s clear that 𝑘 is a superscript here, not an exponent!

The derivative 𝜕𝑢/𝜕𝑡 at (𝑥𝑗 , 𝑡𝑘) may be approximated by either of the following two
ways:

𝜕𝑢𝜕𝑡 |||(𝑥𝑗 ,𝑡𝑘) ≈ 𝑢𝑘+1𝑗 − 𝑢𝑘𝑗
Δ𝑡 or

𝜕𝑢𝜕𝑡 |||(𝑥𝑗 ,𝑡𝑘) ≈ 𝑢𝑘𝑗 − 𝑢𝑘−1𝑗
Δ𝑡 . (20.3)

The first variant is called a forward difference approximation since it looks up the value of𝑢 at a future time. The second variant is called a backward difference approximation since
it looks up the value of 𝑢 at a previous time. Both have their uses, as we shall see.

To approximate the second derivative 𝜕2𝑢/𝜕𝑥2 at (𝑥𝑗 , 𝑡𝑘), let us look at the Taylor ex-
pansion of 𝑢(𝑥 , 𝑡𝑘) about 𝑥 = 𝑥𝑗 :

𝑢(𝑥 , 𝑡𝑘) = 𝑢(𝑥𝑗 , 𝑡𝑘) + 𝜕𝑢𝜕𝑥 |||(𝑥𝑗 ,𝑡𝑘)(𝑥 − 𝑥𝑗) + 1

2

𝜕2𝑢𝜕𝑥2 |||(𝑥𝑗 ,𝑡𝑘)(𝑥 − 𝑥𝑗)2 +⋯ .
79I am hiding some technical details here. The existence and uniqueness of a solution 𝑢 depend on the regu-

larity and integrability of the functions 𝑢0, 𝛼 , 𝛽; see e.g., Friedman [21]. Those details, however, hardly matter
for the purposes of this chapter.

20.1. The basic idea of finite differences 253

𝑥0 𝑥1 ⋅ ⋅ ⋅ ⋅ 𝑥𝑛−1 𝑥𝑛𝑡0
𝑡1
𝑡2
𝑡3

Δ𝑥

Δ𝑡

Figure 20.2: The finite difference grid consists of 𝑛 +1 points 𝑥0, 𝑥1,… , 𝑥𝑛 in the 𝑥 direc-

tion and a sequence of time-slices 𝑡0, 𝑡1, 𝑡2,… in the 𝑡 direction. The initial
condition determines the solution at the squares . The boundary condi-

tions determine the solution at the diamonds . The finite difference al-

gorithm determines the solution at the rest of the grid points marked with

the hollow circles .

Evaluating this at 𝑥 = 𝑥𝑗−1 and 𝑥 = 𝑥𝑗+1 we get
𝑢(𝑥𝑗−1, 𝑡𝑘) = 𝑢(𝑥𝑗 , 𝑡𝑘) + 𝜕𝑢𝜕𝑥 |||(𝑥𝑗 ,𝑡𝑘)(𝑥𝑗−1 − 𝑥𝑗) + 1

2

𝜕2𝑢𝜕𝑥2 |||(𝑥𝑗 ,𝑡𝑘)(𝑥𝑗−1 − 𝑥𝑗)2 +⋯ ,
𝑢(𝑥𝑗+1, 𝑡𝑘) = 𝑢(𝑥𝑗 , 𝑡𝑘) + 𝜕𝑢𝜕𝑥 |||(𝑥𝑗 ,𝑡𝑘)(𝑥𝑗+1 − 𝑥𝑗) + 1

2

𝜕2𝑢𝜕𝑥2 |||(𝑥𝑗 ,𝑡𝑘)(𝑥𝑗+1 + 𝑥𝑗)2 +⋯ .
We then substitute 𝑥𝑗+1 + 𝑥𝑗 = Δ𝑥 and 𝑥𝑗−1 + 𝑥𝑗 = −Δ𝑥 , add up the resulting equations,

switch to the compact notation 𝑢𝑘𝑗 introduced above, and arrive at

𝑢𝑘𝑗−1 + 𝑢𝑘𝑗+1 = 2𝑢𝑘𝑗 +
𝜕2𝑢𝜕𝑥2 |||(𝑥𝑗 ,𝑡𝑘)(Δ𝑥)2 +⋯ ,

whence

𝜕2𝑢𝜕𝑥2 |||(𝑥𝑗 ,𝑡𝑘) ≈ 𝑢𝑘𝑗−1 − 2𝑢𝑘𝑗 + 𝑢𝑘𝑗+1
(Δ𝑥)2 . (20.4)

The approximations in (20.3) and (20.4) are the main tools in the field of finite differ-
ences. They may be applied in a variety of ways to approximate the problem (20.2) with
discrete versions. We will study a few possibilities in the following sections. To learn
more about the subject, you may start with one of [71, 33, 29].

254 Chapter 20. Finite difference schemes for the heat equation in one dimension

20.2 An explicit scheme for the heat equation

In the heat equation (20.2a), replace the right-hand side by the approximation given in (20.4)
and the left-hand side by the forward difference approximation defined in (20.3). We obtain

𝑢𝑘+1𝑗 − 𝑢𝑘𝑗
Δ𝑡 =

𝑢𝑘𝑗−1 − 2𝑢𝑘𝑗 + 𝑢𝑘𝑗+1
(Δ𝑥)2 , 𝑗 = 1, 2,… , 𝑛 − 1.

We see that the space and time increments, Δ𝑥 andΔ𝑡 , enter in the formof the combination
Δ𝑡/(Δ𝑥)2; therefore it makes sense to introduce the notation

𝑟 = Δ𝑡
(Δ𝑥)2 (20.5)

and express the equation in terms of 𝑟 , as in
𝑢𝑘+1𝑗 − 𝑢𝑘𝑗 = 𝑟 (𝑢𝑘𝑗−1 − 2𝑢𝑘𝑗 + 𝑢𝑘𝑗+1), 𝑗 = 1, 2,… , 𝑛 − 1, (20.6)

or the rearranged form

𝑢𝑘+1𝑗 = 𝑟𝑢𝑘𝑗−1 + (1 − 2𝑟)𝑢𝑘𝑗 + 𝑟𝑢𝑘𝑗+1, 𝑗 = 1, 2,… , 𝑛 − 1. (20.7)

The result is very revealing. It says that 𝑢𝑘+1𝑗 , that is, the value of 𝑢 at the time-
slice 𝑘 + 1, may be computed from the values of 𝑢 at the time-slice 𝑘. Since the values
of 𝑢𝑘𝑗 at the time-slice 𝑡 = 0 are known—that’s what the initial condition is for—we may
apply (20.7) recursively, one time-slice at a time, to march forward through the time-slices
and determine 𝑢𝑘𝑗 at all times. If you mark the formula’s entries on the finite difference
grid, as is done in two instances in Figure 20.3, they arrange themselves in a ⊥-shaped
pattern. That pattern, which is a characteristic of the finite difference scheme (20.7), is
called the scheme’s stencil. If the stencil contacts the left or right boundary, as it has in
one of the instances shown, it picks up the user-supplied boundary condition there. That’s
where equations (20.2c) come in.

The recursion formula (20.7) is called an explicit scheme since it provides the value
of 𝑢𝑘+1𝑗 explicitly, with no fuss, in terms of given or previously computed data. In that
sense it is quite trivial to implement it in a program—just put the formula in a for-loop
and compute away. We will do exactly that in our implementation. For the conceptual
understanding and analysis, however, the matrix form of that formula provides a deeper
insight. To obtain the matrix form, it helps to write out several instances of the formula
explicitly,

𝑗 = 1 ∶ 𝑢𝑘+11 = 𝑟𝑢𝑘0 + (1 − 2𝑟)𝑢𝑘1 + 𝑟𝑢𝑘2 ,𝑗 = 2 ∶ 𝑢𝑘+12 = 𝑟𝑢𝑘1 + (1 − 2𝑟)𝑢𝑘2 + 𝑟𝑢𝑘3 ,⋯ ⋯
𝑗 = 𝑛 − 1 ∶ 𝑢𝑘+1𝑛−1 = 𝑟𝑢𝑘𝑛−2 + (1 − 2𝑟)𝑢𝑘𝑛−1 + 𝑟𝑢𝑘𝑛 ,

and then, after letting 𝑠 = 1 − 2𝑟 , pack the equations into a matrix-vector form:⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑘+11𝑢𝑘+12⋮𝑢𝑘+1𝑛−2𝑢𝑘+1𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑠 𝑟𝑟 𝑠 𝑟⋱ ⋱ ⋱𝑟 𝑠 𝑟𝑟 𝑠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑘1𝑢𝑘2⋮𝑢𝑘𝑛−2𝑢𝑘𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝑢𝑘0
0⋮
0𝑟𝑢𝑘𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (20.8)

20.2. An explicit scheme for the heat equation 255

𝑥0 𝑥1 ⋅ ⋅ ⋅ ⋅ 𝑥𝑛−1 𝑥𝑛𝑡0
𝑡1
𝑡2
𝑡3

Δ𝑥

Δ𝑡 𝑢𝑘𝑗−1 𝑢𝑘𝑗 𝑢𝑘𝑗+1

𝑢𝑘+1𝑗

Figure 20.3: The explicit finite difference scheme acts on a ⊥-shaped stencil. It deter-

mines the values of 𝑢𝑘+1
𝑗 at the time-slice 𝑘 + 1 in terms of the three values

of 𝑢 from the previous time-slice. When the stencil hits the left or right

boundary, its picks up the prescribed boundary value from there.

Thematrix is tridiagonal, having 𝑠 = 1−2𝑟 on its main diagonal and 𝑟 on its first upper and
lower subdiagonals. All other entries are zeros. We note that the matrix acts on the grid’s
internal nodes at the time-slice 𝑘. The additive vector in the equation’s extreme right
imports the prescribed data from the boundary nodes 𝑥0 and 𝑥𝑛 . In effect, the equation
defines a transition operator that maps the solution from the time-slice 𝑘 to the time-slice𝑘 + 1.

The recursion scheme (20.7), or its matrix equivalent (20.8), provides an extremely
quick and simple method for solving the heat equation and its relatives (general parabolic
equations). Of course it is natural to ask the following: Does it produce a good approxi-
mation? Does the approximation improve as Δ𝑥 and Δ𝑡 go to zero? It turns out that the
answers to both questions are a qualified “yes”. The catch is that you cannot take Δ𝑥 and
Δ𝑡 entirely independently of each other. Themethod is guaranteed to work only if 𝑟 ≤ 1/2,
where 𝑟 is defined in (20.5).

To get a feel for the source of the trouble, consider the special case where the boundary
conditions 𝛼(𝑡) and 𝛽(𝑡) in (20.2c) are zero. Then we expect the rod’s temperature to go
to zero in the long run, regardless of the initial condition, since its ends are being kept at
zero temperature. The finite difference scheme should confirm that. But does it?

When the boundary conditions are zero, the iteration scheme in (20.8) takes the form
u𝑘+1 = 𝐴u𝑘 , where 𝐴 is the tridiagonal matrix in that equation, and u𝑘 is the vector that
it multiplies. We see that u1 = 𝐴u0, u2 = 𝐴u1, etc., and consequently u𝑘 = 𝐴𝑘u0. It can
be shown (see [33], for instance) that the eigenvalues of 𝐴 are

𝜆𝑗 = 1 − 2𝑟(1 − cos
𝑗𝜋𝑛), 𝑗 = 1, 2,… , 𝑛 − 1. (20.9)

Therefore, if 𝑟 ≤ 1/2, then all eigenvalues are strictly less than 1, and consequently𝐴𝑘 → 0

as 𝑘 → ∞, confirming our expectation. If 𝑟 > 1/2, however, and 𝑛 is sufficiently large,
then it is possible for some of the eigenvalues to be greater than 1; therefore 𝐴𝑘u0 will

256 Chapter 20. Finite difference schemes for the heat equation in one dimension

grow unbounded as 𝑘 → ∞, at least for some choices of u0. That is a totally unreasonable
way for heat to behave; the iteration is producing junk!

An iteration scheme is said to be stable if small perturbations in the problem’s data
result only in small perturbations in the solution. Otherwise it is said to be unstable. The
explicit finite difference schemedefined by (20.7)—or the equivalent (20.8)—is conditionally
stable: it is stable when 𝑟 ≤ 1/2.

Why should conditional stability concern us? Even with the most generous choice of𝑟 = 1/2, (20.5) tells us that Δ𝑡 = 1
2 (Δ𝑥)2. This implies that if Δ𝑥 is small, then Δ𝑡 will be

uncomfortably small. For instance, if Δ𝑥 = 1/10, then Δ𝑡 = 1/200. Thus, to compute the
solution up to time 𝑡 = 1, we will have to march through 200 time-slices. If we change
Δ𝑥 to 1/100 to achieve a higher accuracy, then Δ𝑡 changes to 1/20, 000, forcing us to plod
through 20,000(!) time-slices to traverse the time interval 0 to 1. That’s an inordinate
amount of work.

The implicit finite difference scheme, introduced in the next section, removes that
restriction on 𝑟 .

20.3 An implicit scheme for the heat equation

In the heat equation (20.2a), replace the right-hand side by the approximation given in (20.4)
and the left-hand side by the backward difference approximation defined in (20.3). We ob-
tain 𝑢𝑘𝑗 − 𝑢𝑘−1𝑗

Δ𝑡 =
𝑢𝑘𝑗−1 − 2𝑢𝑘𝑗 + 𝑢𝑘𝑗+1

(Δ𝑥)2 , 𝑗 = 1, 2,… , 𝑛 − 1.
For notational consistency with the previous section, shift the superscript 𝑘 up by one,
and also set 𝑟 = Δ𝑡/(Δ𝑥)2, as before, to get

𝑢𝑘+1𝑗 − 𝑢𝑘𝑗 = 𝑟 (𝑢𝑘+1𝑗−1 − 2𝑢𝑘+1𝑗 + 𝑢𝑘+1𝑗+1). 𝑗 = 1, 2,… , 𝑛 − 1, (20.10)

Then rearrange/group terms to arrive at

−𝑟𝑢𝑘+1𝑗−1 + (1 + 2𝑟)𝑢𝑘+1𝑗 − 𝑟𝑢𝑗+1𝑘+1 = 𝑢𝑘𝑗 , 𝑗 = 1, 2,… , 𝑛 − 1. (20.11)

The formula’s entries form a ⊤-shaped stencil on the finite difference grid. Two instances
of the stencil are shown in Figure 20.4. If the stencil contacts the left or right boundary,
as it has in one of the instances shown, it picks up the user-supplied boundary condition
there.

On the surface, this looks very similar to the previous section’s (20.7). There is, how-
ever, something fundamentally different here. Equation (20.7) expresses 𝑢 at the time-slice
𝑘+1 explicitly in terms of the values of 𝑢 at the previous time-slice. Equation (20.11), how-
ever, does not do that. It expresses a certain combination of the values of 𝑢 at the time-slice
𝑘 +1 in terms of 𝑢 at the previous time-slice. It is called an implicit scheme for that reason.

To grasp fully what the implicit scheme (20.11) represents, let us write it out in detail:

𝑗 = 1 ∶ −𝑟𝑢𝑘+10 +(1 + 2𝑟)𝑢𝑘+11 − 𝑟𝑢𝑘+12 = 𝑢𝑘1 ,
𝑗 = 2 ∶ −𝑟𝑢𝑘+11 +(1 + 2𝑟)𝑢𝑘+12 − 𝑟𝑢𝑘+13 = 𝑢𝑘2 ,⋯ ⋯
𝑗 = 𝑛 − 1 ∶ −𝑟𝑢𝑘+1𝑛−2+(1 + 2𝑟)𝑢𝑘+1𝑛−1 − 𝑟𝑢𝑘+1𝑛 = 𝑢𝑘𝑛−1.

20.3. An implicit scheme for the heat equation 257

𝑥0 𝑥1 ⋅ ⋅ ⋅ ⋅ 𝑥𝑛−1 𝑥𝑛
𝑡0

𝑡1

𝑡2

𝑡3

Δ𝑥

Δ𝑡

𝑢𝑘+1𝑗−1 𝑢𝑘+1𝑗 𝑢𝑘+1𝑗+1

𝑢𝑘𝑗

Figure 20.4: The implicit finite difference scheme acts on a ⊤-shaped stencil. It relates a

linear combination of three values of 𝑢𝑘+1
𝑗 at the time-slice 𝑘 + 1 to a value

of 𝑢 from the previous time-slice. When the stencil hits the left or right

boundary, its picks up the prescribed boundary value from there.

Then, after letting80 𝑠 = 1 + 2𝑟 , pack it into a matrix-vector form:⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑠 −𝑟

−𝑟 𝑠 −𝑟⋱ ⋱ ⋱
−𝑟 𝑠 −𝑟

−𝑟 𝑠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑘+11

𝑢𝑘+12⋮
𝑢𝑘+1𝑛−2
𝑢𝑘+1𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑘1
𝑢𝑘2⋮
𝑢𝑘𝑛−2
𝑢𝑘𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝑢𝑘+10

0⋮
0

𝑟𝑢𝑘+1𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (20.12)

The matrix is tridiagonal, having 𝑠 = 1 + 2𝑟 on its main diagonal and −𝑟 on its first upper
and lower subdiagonals. All other entries are zeros. As a whole, the equation relates the
state of the solution at the grid’s internal nodes at the time-slice 𝑘 + 1 to those at the
time-slice 𝑘. The additive vector in the equation’s extreme right imports the prescribed
data from the boundary nodes 𝑥0 and 𝑥𝑛 .

Computing the solution at the time-slice 𝑘 + 1 calls for solving the system of linear
equations (20.12). The task is quite simple on account of the coefficient matrix being
tridiagonal. We will study the solution algorithm in subsection 20.9.1. For now, let us
look at the scheme’s stability.

As in the previous section, consider the special case where the boundary conditions
𝛼(𝑡) and 𝛽(𝑡) in (20.2c) are zero. Then the iteration scheme in (20.12) takes the form𝐵u𝑘+1 = u𝑘 , where 𝐵 is the tridiagonal matrix. We see that 𝐵u1 = u0, 𝐵u2 = u1, etc., and
consequently 𝐵𝑘u𝑘 = u0, and therefore u𝑘 = 𝐵−𝑘u0.

Considering that 𝑠 = 1 + 2𝑟 in this section while 𝑠 = 1 − 2𝑟 in the previous section,
it should be evident that the matrix 𝐵 here is related to the previous section’s matrix𝐴 through the change of variables 𝑟 → −𝑟 . Therefore 𝐵’s eigenvalues are obtained by

80Beware that 𝑠 = 1 + 2𝑟 is different from the previous definitions of 𝑠.

258 Chapter 20. Finite difference schemes for the heat equation in one dimension

changing 𝑟 to −𝑟 in (20.9). Thus, 𝐵−1’s eigenvalues are
𝜆𝑗 = 1

1 + 2𝑟(1 − cos 𝑗𝜋𝑛) , 𝑗 = 1, 2,… , 𝑛 − 1.
We see that these are all strictly less than 1 regardless of the value of 𝑟 (we are taking
it for granted that 𝑟 > 0). It follows that 𝐵−𝑘 → 0 as 𝑘 → ∞; therefore the iteration
scheme (20.12) is stable for all 𝑟 . One expresses this by saying that the scheme is uncon-
ditionally stable.

Unconditional stability is a good thing since it removes the worry about the right
choice of 𝑟 . But lest you jump to unwarranted conclusions, let me point out that things
are not quite as rosy as you might expect.

Toward the end of the previous section, when discussing the stability of the explicit
scheme, I noted that the requirement 𝑟 ≤ 1/2 is quite inconvenient since Δ𝑡 = 𝑟 (Δ𝑥)2
forces exceedingly small time-steps when Δ𝑥 is somewhat small. The implicit scheme,
however, imposes no restriction on 𝑟 , so one may be tempted to take arbitrarily large
time-steps Δ𝑡 , uncoupled from the size of Δ𝑥 . This, however, does not work as well as
we may wish. It can be shown (see [33] for instance) that the discretization error in the
implicit scheme is of the order of magnitude of Δ𝑡 + (Δ𝑥)2. For best results we want to
keep Δ𝑡 and (Δ𝑥)2 in more or less comparable sizes; otherwise the larger of the two will
dominate the error. This, in effect, limits Δ𝑡 to something of the order of magnitude of
(Δ𝑥)2 even though there is no restriction on 𝑟 . The implicit scheme, therefore, has not
released us from the bind of small time-steps.

TheCrank–Nicolson scheme, introduced in the next section, gets around this dilemma.

20.4 The Crank–Nicolson scheme for the heat equation

TheCrank–Nicolson scheme is obtained by summing the explicit and implicit differencing
formulas (20.6) and (20.10),

2(𝑢𝑘+1𝑗 − 𝑢𝑘𝑗) = 𝑟(𝑢𝑘𝑗−1 − 2𝑢𝑘𝑗 + 𝑢𝑘𝑗+1 + 𝑢𝑘+1𝑗−1 − 2𝑢𝑘+1𝑗 + 𝑢𝑘+1𝑗+1),
and regrouping:

−𝑟𝑢𝑘+1𝑗−1 + 2(1 + 𝑟)𝑢𝑘+1𝑗 − 𝑟𝑢𝑘+1𝑗+1 = 𝑟𝑢𝑘𝑗−1 + 2(1 − 𝑟)𝑢𝑘𝑗 + 𝑟𝑢𝑘𝑗+1. 𝑗 = 1, 2,… , 𝑛 − 1. (20.13)

The formula’s entries form a -shaped stencil on the finite difference grid. Two instances
of the stencil are shown in Figure 20.5. If the stencil contacts the left or right boundary,
as it has in one of the instances shown, it picks up the user-supplied boundary conditions
there.

To fully grasp what the Crank–Nicolson scheme (20.13) represents, let us write it out
in detail:

𝑗 = 1 ∶ − 𝑟𝑢𝑘+10 + 2(1 + 𝑟)𝑢𝑘+11 − 𝑟𝑢𝑘+12 = 𝑟𝑢𝑘0 + 2(1 − 𝑟)𝑢𝑘1 + 𝑟𝑢𝑘2 ,𝑗 = 2 ∶ − 𝑟𝑢𝑘+11 + 2(1 + 𝑟)𝑢𝑘+12 − 𝑟𝑢𝑘+13 = 𝑟𝑢𝑘1 + 2(1 − 𝑟)𝑢𝑘2 + 𝑟𝑢𝑘3 ,⋯ ⋯
𝑗 = 𝑛 − 1 ∶ − 𝑟𝑢𝑘+1𝑛−2 + 2(1 + 𝑟)𝑢𝑘+1𝑛−1 − 𝑟𝑢𝑘+1𝑛 = 𝑟𝑢𝑘𝑛−2 + 2(1 − 𝑟)𝑢𝑘𝑛−1 + 𝑟𝑢𝑘𝑛 .

After setting81 𝑠 = 2(1 + 𝑟) and 𝑠′ = 2(1 − 𝑟), it takes the form:

81Beware that 𝑠 = 2(1 + 𝑟) is different from the previous definitions of 𝑠.

20.4. The Crank–Nicolson scheme for the heat equation 259

𝑥0 𝑥1 ⋅ ⋅ ⋅ ⋅ 𝑥𝑛−1 𝑥𝑛𝑡0
𝑡1
𝑡2
𝑡3

Δ𝑥

Δ𝑡 𝑢𝑘𝑗−1 𝑢𝑘𝑗 𝑢𝑘𝑗+1

𝑢𝑘+1𝑗−1 𝑢𝑘+1𝑗 𝑢𝑘+1𝑗+1

Figure 20.5: The Crank–Nicolson finite difference scheme acts on an -shaped stencil.

It relates a linear combination of three values of 𝑢𝑘+1
𝑗 at the time-slice 𝑘 + 1

to three values of 𝑢 from the previous time-slice. When the stencil hits the

left or right boundary, its picks up the prescribed boundary values from

there.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑠 −𝑟
−𝑟 𝑠 −𝑟⋱ ⋱ ⋱

−𝑟 𝑠 −𝑟
−𝑟 𝑠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑘+11𝑢𝑘+12⋮𝑢𝑘+1𝑛−2𝑢𝑘+1𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑠′ 𝑟𝑟 𝑠′ 𝑟⋱ ⋱ ⋱𝑟 𝑠′ 𝑟𝑟 𝑠′

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑘1𝑢𝑘2⋮𝑢𝑘𝑛−2𝑢𝑘𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝑢𝑘0 + 𝑟𝑢𝑘+10

0⋮
0𝑟𝑢𝑘𝑛 + 𝑟𝑢𝑘+1𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (20.14)

It can be shown that the Crank–Nicolson scheme is unconditionally stable for all 𝑟 > 0.
That’s good news. Even better news is that the discretization error of this scheme is of
the order (Δ𝑡)2 + (Δ𝑥)2. Unlike the previous section’s implicit scheme, here Δ𝑡 and Δ𝑥
occur in equal powers. This allows taking time-steps of the same order of magnitude as
the space discretization. For this reason, Crank–Nicolson should be your default finite
difference scheme unless other considerations prevail.

Computing the solution at the time-slice 𝑘 + 1 calls for solving the system of linear
equations (20.14), which, as in the case of the previous section’s implicit method, is tridi-
agonal and can be handled with the algorithm suggested in subsection 20.9.1.

260 Chapter 20. Finite difference schemes for the heat equation in one dimension

20.5 The Seidman sweep scheme for the heat equation

In this section I introduce a lesser known difference scheme developed by Seidman [58]
which has the dual advantages of being both explicit and unconditionally stable. As in the
previous sections, I will explain the scheme in the context of the heat equation (20.2). The
scheme’s unique strength, however, is in the ease with which it may be implemented to
solve nonlinear problems, as we shall see in Chapter 21.

I must add that the theory and analysis in [58] is developed in the context of general
second order parabolic equations in 𝑛 dimensions on irregular grids. What I present here
is a very special case.

The Seidman sweep, as I shall call it, is very similar to the explicit schemeof Section 20.2
in that it approximates the time derivative by a forward difference. However, it calculates𝑢𝑘+1𝑗 in a sweeping motion, from left to right (forward sweep) or from right to left (reverse
sweep), that is, in increasing or decreasing sequences of 𝑗. In the forward sweep, when
processing node 𝑗, it takes advantage of the availability of 𝑢𝑘+1𝑗−1 and uses it instead of𝑢𝑘𝑗−1. In the reverse sweep it takes advantage of the availability of 𝑢𝑘+1𝑗+1 and uses it instead

of 𝑢𝑘𝑗−1. The idea is reminiscent of the Gauss–Seidel iterative scheme for solving linear
systems of equations.

The algorithm splits the time-step Δ𝑡 into two halves. A forward sweep advances time
by (Δ𝑡)/2 and calculates 𝑢𝑘+1/2𝑗 from 𝑢𝑘𝑗 , 𝑗 = 1, 2,… , 𝑛 − 1. That is followed by a reverse

sweep, which advances time by (Δ𝑡)/2 and calculates 𝑢𝑘+1𝑗 from 𝑢𝑘+1/2𝑗 , 𝑗 = 𝑛 − 1,… , 2, 1. If
we consider, for the moment, applying the explicit scheme of Section 20.2 to the forward
and reverse sweeps, (20.6) will take the form:

𝑢𝑘+1/2𝑗 − 𝑢𝑘𝑗 = 𝑟 ′(𝑢𝑘𝑗−1 − 2𝑢𝑘𝑗 + 𝑢𝑘𝑗+1), 𝑗 = 1, 2,… , 𝑛 − 1,
𝑢𝑘+1𝑗 − 𝑢𝑘+1/2𝑗 = 𝑟 ′(𝑢𝑘+1/2𝑗−1 − 2𝑢𝑘+1/2𝑗 + 𝑢𝑘+1/2𝑗+1), 𝑗 = 𝑛 − 1,… , 2, 1,

where

𝑟 ′ = 𝑟
2
=

Δ𝑡
2(Δ𝑥)2 , (20.15)

since we are taking half steps in time now.
I could present the rest of this section using the 𝑘 + 1/2 superscript notation, but the

formulas become cumbersome and obscure the algorithm’s simplicity. It works much
better with a temporary convention where 𝑢𝑗 , 𝑣𝑗 , and 𝑤𝑗 stand for the 𝑢𝑘𝑗 , 𝑢𝑘+1/2𝑗 , and𝑢𝑘+1𝑗 , respectively. With this notation, the pair of formulas shown above takes the form

𝑣𝑗 − 𝑢𝑗 = 𝑟 ′(𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1), 𝑗 = 1, 2,… , 𝑛 − 1,𝑤𝑗 − 𝑣𝑗 = 𝑟 ′(𝑣𝑗−1 − 2𝑣𝑗 + 𝑣𝑗+1), 𝑗 = 𝑛 − 1,… , 2, 1,
or equivalently,

𝑣𝑗 − 𝑢𝑗 = −𝑟 ′(𝑢𝑗 − 𝑢𝑗−1) − 𝑟 ′(𝑢𝑗 − 𝑢𝑗+1), 𝑗 = 1, 2,… , 𝑛 − 1,𝑤𝑗 − 𝑣𝑗 = −𝑟 ′(𝑣𝑗 − 𝑣𝑗−1) − 𝑟 ′(𝑣𝑗 − 𝑣𝑗+1), 𝑗 = 𝑛 − 1,… , 2, 1.
This is just the explicit scheme up to now. To change it over to the Seidman sweep, we

note that in a forward sweep the value of 𝑣𝑗−1 has been calculated prior to arriving at the
node 𝑗. We take advantage of that and replace (𝑢𝑗 − 𝑢𝑗−1) in the first of the two formulas
above by (𝑣𝑗 − 𝑣𝑗−1). Similarly, in a reverse sweep the value of 𝑤𝑗+1 has been calculated

20.5. The Seidman sweep scheme for the heat equation 261

𝑡𝑘
𝑡𝑘+1/2
𝑡𝑘+1

Δ𝑥

Δ𝑡 𝑣𝑗−1 𝑣𝑗

𝑢𝑗 𝑢𝑗+1
forward

𝑣𝑗−1 𝑣𝑗

𝑤𝑗 𝑤𝑗+1
reverse

Figure 20.6: The Seidman sweep finite difference scheme advances from the time-slice

𝑘 to the time-slice 𝑘 + 1 via an intermediate time-slice 𝑘 + 1/2. The forward

sweep advances by half a time-step from 𝑘 to 𝑘 + 1/2. The reverse sweep

advances by half a time-step from 𝑘 + 1/2 to 𝑘 + 1. At any point it uses the

most up-to-date data available. The boundary values at the points marked

by the filled diamonds affect the solution in the interior points. The

boundary values at the points marked by the hollow diamonds don’t.

prior to arriving at the node 𝑗. Therefore, we replace (𝑣𝑗 − 𝑣𝑗+1) in the second of the two
formulas above by (𝑤𝑗 − 𝑤𝑗+1). These result in

𝑣𝑗 − 𝑢𝑗 = −𝑟 ′(𝑣𝑗 − 𝑣𝑗−1) − 𝑟 ′(𝑢𝑗 − 𝑢𝑗+1), 𝑗 = 1, 2,… , 𝑛 − 1, (20.16a)𝑤𝑗 − 𝑣𝑗 = −𝑟 ′(𝑣𝑗 − 𝑣𝑗−1) − 𝑟 ′(𝑤𝑗 − 𝑤𝑗+1), 𝑗 = 𝑛 − 1,… , 2, 1, (20.16b)

which we rearrange into

(1 + 𝑟 ′)𝑣𝑗 = 𝑟 ′𝑣𝑗−1 + (1 − 𝑟 ′)𝑢𝑗 + 𝑟 ′𝑢𝑗+1, 𝑗 = 1, 2,… , 𝑛 − 1, (20.17a)

(1 + 𝑟 ′)𝑤𝑗 = 𝑟 ′𝑣𝑗−1 + (1 − 𝑟 ′)𝑣𝑗 + 𝑟 ′𝑤𝑗+1, 𝑗 = 𝑛 − 1,… , 2, 1. (20.17b)

The pair of formulas (20.17a) and (20.17b) constitutes the Seidman sweep scheme. It
is an explicit scheme since all values on the right-hand sides are available at the time
when the left-hand sides are evaluated. Figure 20.6 shows the stencils for the forward and
reverse sweeps.

To express the Seidman sweep as a matrix-vector equation, it is best to use the (20.16)

262 Chapter 20. Finite difference schemes for the heat equation in one dimension

form of the scheme. Upon inspection of (20.16a) we see that

⎛⎜⎜⎜⎜⎜⎝
𝑣1𝑣2⋮𝑣𝑛−2𝑣𝑛−1

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝
𝑢1𝑢2⋮𝑢𝑛−2𝑢𝑛−1

⎞⎟⎟⎟⎟⎟⎠
= −𝑟 ′

⎛⎜⎜⎜⎜⎜⎝
1 0

−1 1 0⋱ ⋱ ⋱
−1 1 0

−1 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝑣1𝑣2⋮𝑣𝑛−2𝑣𝑛−1

⎞⎟⎟⎟⎟⎟⎠
− 𝑟 ′

⎛⎜⎜⎜⎜⎜⎝
1 −1

0 1 −1⋱ ⋱ ⋱
0 1 −1

0 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝑢1𝑢2⋮𝑢𝑛−2𝑢𝑛−1

⎞⎟⎟⎟⎟⎟⎠
+ 𝑟 ′

⎛⎜⎜⎜⎜⎜⎝
𝑣0
0⋮
0𝑢𝑛

⎞⎟⎟⎟⎟⎟⎠
.

Writing u, v, and w for the column vectors with the components 𝑢𝑗 , 𝑣𝑗 , 𝑤𝑗 and letting

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
1 0

−1 1 0⋱ ⋱ ⋱
−1 1 0

−1 1

⎞⎟⎟⎟⎟⎟⎠
, a =

⎛⎜⎜⎜⎜⎜⎝
𝑣0
0⋮
0𝑢𝑛

⎞⎟⎟⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎜⎜⎝
𝑣0
0⋮
0𝑤𝑛

⎞⎟⎟⎟⎟⎟⎠
,

this takes on the compact form v − u = −𝑟 ′𝐴v − 𝑟 ′𝐴𝑇u + 𝑟 ′a, or equivalently,
(𝐼 + 𝑟 ′𝐴)v = (𝐼 − 𝑟 ′𝐴𝑇)u + 𝑟 ′a, (20.18a)

where 𝐼 is the identity matrix and 𝐴𝑇 is the transpose of 𝐴. Similar considerations regard-
ing the reverse sweep in the formula (20.16b) lead to

(𝐼 + 𝑟 ′𝐴𝑇)w = (𝐼 − 𝑟 ′𝐴)v + 𝑟 ′b. (20.18b)

The analysis in [58] shows that the iteration scheme expressed in the pair of equa-
tions (20.18a) and (20.18b) is unconditionally stable for all 𝑟 ′ > 0. I am not aware of a
study of the scheme’s rate of convergence; and I have not analyzed it myself. Numerical
experiments—see the error graphs in Figure 20.7—point to a rate of convergence of the

order (Δ𝑥)2 + (Δ𝑡)2 + (Δ𝑡)2
(Δ𝑥)2 , like that of the Du Fort–Frankel scheme (see [71]), but that’s

a mere conjecture on my part.

In favor of the Seidman sweep, one may note the following:

1. The Seidman sweep, being an explicit method, is easy to program, as we shall see
later in this chapter.

2. The Seidman sweep handles discontinuities in the initial and boundary conditions
more gracefully than Crank–Nicolson.

3. The Seidman sweep has a definite advantage over implicit schemes in solving non-
linear problems. An implicit scheme, such as Crank–Nicolson, requires solving an𝑛 × 𝑛 nonlinear tridiagonal system at every step. The Seidman sweep, being an ex-
plicit scheme, needs to solve 2𝑛 single (uncoupled) nonlinear equations in every
forward/reverse sweep pair. Chapter 21 applies the Seidman sweep to solve the
highly nonlinear porous medium equation.

20.6. Test problems 263

10
−5

10
−4

10
−3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Δt

e
r
r
o

r

10
−2

10
−1

10
−5

10
−4

10
−3

Δx

e
r
r
o

r

Figure 20.7: Experiments with the Seidman sweep and problem heat1 (Section 20.6)

lend support to the conjecture that the scheme’s convergence rate may be

𝑂((Δ𝑥)2 + (Δ𝑡)2 + (Δ𝑡)2
(Δ𝑥)2). On the left we have the graph of the errors versus

Δ𝑡 while Δ𝑥 = 0.004 is kept fixed. On the right we have the graph of the

errors versus Δ𝑥 while Δ𝑡 = 5 × 10−5 is kept fixed. The dashed lines have

slopes of 2. The upturned tail in the latter graph is characteristic of the

presence of a Δ𝑡
Δ𝑥

term.

20.6 Test problems

Here I introduce four simple initial/boundary value problems for the purpose of testing
and demonstrating the various finite difference discretization schemes that were intro-
duced in the previous sections. The programs which we are going to develop are general
and certainly not limited to these four. You may easily modify those problems or add
new ones of your own. The partial differential equation in all four problems is the heat
equation (20.1) on the interval −1 < 𝑥 < 1. Only the initial and boundary conditions are
different.

The interval −1 < 𝑥 < 1 is not hard-coded anywhere. The programs are set up to solve
a finite difference problem on an interval 𝑎 < 𝑥 < 𝑏, where 𝑎 and 𝑏 are defined alongside
the rest of the problem’s data. Don’t hesitate to experiment with defining and solving
problems on intervals other than −1 < 𝑥 < 1.

Problems heat1 and heat2 come with exact solutions. Our programs compare these
against the finite difference solutions and print out the discretization errors. These two
problems are constructed according to the following simple “reverse engineering” idea.

Pick any function, let’s say 𝑢ex(𝑥 , 𝑡), that satisfies the partial differential equation (20.1)
for all −∞ < 𝑥 < ∞ and 𝑡 > 0. Pose the following initial/boundary value problem whose
data is defined in terms of 𝑢ex(𝑥 , 𝑡):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑢𝜕𝑡 =
𝜕2𝑢𝜕𝑥2 , 𝑥 ∈ (𝑎, 𝑏), 𝑡 > 0,

𝑢(𝑥 , 0) = 𝑢ex(𝑥 , 0), 𝑥 ∈ (𝑎, 𝑏),𝑢(𝑎, 𝑡) = 𝑢ex(𝑎, 𝑡), 𝑡 > 0,𝑢(𝑏, 𝑡) = 𝑢ex(𝑏, 𝑡), 𝑡 > 0.
(20.19)

Clearly 𝑢(𝑥 , 𝑡) = 𝑢ex(𝑥 , 𝑡) is a solution of the problem. (Actually, it’s the solution since
such problems have unique solutions.) To test the accuracy of our solvers, we have them
solve (20.19) and then compare the results with 𝑢ex(𝑥 , 𝑡).

264 Chapter 20. Finite difference schemes for the heat equation in one dimension

Problem heat1: You should have no difficulty in verifying that the function

𝑢ex(𝑥 , 𝑡) = 𝑒− 12𝜋2𝑡 cos 1
2
𝜋𝑥 (20.20)

is a solution of the heat equation (20.1). Check that for yourself! We define the problem
heat1 by plugging (20.20) into the general template (20.19) with 𝑎 = −1, 𝑏 = 1.

Problem heat2: The error function, erf, despite its infelicitous appellation, occurs quite
frequently in the study of differential equations, probability, and statistics. It is defined as

erf(𝑥) = 2√𝜋 ∫ 𝑥
0

𝑒−𝑡2 𝑑𝑡 .
The domain of erf is the entire real line. It increases monotonically from −1 at 𝑥 = −∞ to

+1 at 𝑥 = +∞. Figure 20.8 depicts its graph. Since the derivative of erf(𝑥) is 2√𝜋 𝑒−𝑥2 , you
should be able to verify without much trouble that the function

𝑢ex(𝑥 , 𝑡) = erf (𝑥
2
√𝑡) (20.21)

is an exact solution of the heat equation (20.1). We wish to use this finding to “reverse-
engineer” an initial/boundary value problem according to the template (20.19), but we hit
a snag: The second of the equations in (20.1) calls for the value of 𝑢ex(𝑥 , 0). Plugging 𝑡 = 0

in (20.21) won’t do since that would entail a division by zero on account of the
√𝑡 in the

denominator. We get around this by observing that although the expression 𝑢ex(𝑥 , 𝑡) is
undefined at 𝑡 = 0, its limit as 𝑡 approaches zero from above does exist:

lim𝑡→0+ 𝑢ex(𝑥 , 𝑡) =
{
−1 if 𝑥 < 0,
+1 if 𝑥 > 0.

This still leaves out the 𝑥 = 0 case. There is no way around that since 𝑢ex(𝑥 , 𝑡) is ir-
reparably discontinuous there. That’s not a significant obstacle, however, since the heat
equation is good at smearing out discontinuities. Any value assigned to 𝑢ex(0, 0)will fade
away quite fast. In our program we let 𝑢ex(0, 0) = 0. That’s as good a choice as any. Thus,
our 𝑢ex really looks like this:

𝑢ex(𝑥 , 𝑡) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
erf (𝑥

2
√𝑡) if 𝑡 > 0,

−1 if 𝑡 = 0 and 𝑥 < 0,
+1 if 𝑡 = 0 and 𝑥 > 0,
0 if 𝑡 = 0 and 𝑥 = 0.

(20.22)

With the continuity issue out of the way, we define the problem heat2 by plugging (20.22)
into the general template (20.19) with 𝑎 = −1, 𝑏 = 1.

Problem heat3: Take the “rectangular bump” function

𝑢0(𝑥) =
{
1, |𝑥 | < 0.4,
0 otherwise

for the initial condition, and define the problem heat3 as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕𝑢𝜕𝑡 =

𝜕2𝑢𝜕𝑥2 , 𝑥 ∈ (−1, 1), 𝑡 > 0,
𝑢(𝑥 , 0) = 𝑢0(𝑥), 𝑥 ∈ (−1, 1),𝑢(−1, 𝑡) = 𝑢(1, 𝑡) = 0, 𝑡 > 0.

20.7. The program 265

−4 −2 2 4

−1

−0.5

0.5
1

𝑥

erf(𝑥)

Figure 20.8: The graph of the error function erf(𝑥).

Problem heat4: This problem is defined as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜕𝑢𝜕𝑡 =

𝜕2𝑢𝜕𝑥2 , 𝑥 ∈ (−1, 1), 𝑡 > 0,
𝑢(𝑥 , 0) = 0, 𝑥 ∈ (−1, 1),𝑢(−1, 𝑡) = 0, 𝑡 > 0,𝑢(1, 𝑡) = 1, 𝑡 > 0.

What does this say about the value of the solution at 𝑥 = 1, 𝑡 = 0?. The initial condition
says 𝑢(1, 0) is 0. The boundary condition says 𝑢(1, 0) is 1. Therefore we expect the solution𝑢(𝑥 , 𝑡) to be discontinuous at 𝑥 = 1, 𝑡 = 0. The purpose of this problem is to examine how
well the various finite difference schemes handle that discontinuity.

20.7 The program

The rest of this chapter is devoted to the details of the implementations of the four finite
difference schemes introduced earlier. The file heat-solve.c will contain the implementa-
tions of the four schemes. Section 20.6’s test problems will be encoded in the files demo1.c,
demo2.c, demo3.c, and demo4.c. Each of the test problems can be solved with any of the
four finite difference schemes; therefore we are going to produce a total of 16 solutions
altogether. A solution is a represented as a two-dimensional array of the computed 𝑢𝑘𝑗
values at the grid points. Our implementation supplies two built-in functions for post-
processing the solutions:

1. If an exact solution is supplied, the program computes the largest difference (in
absolute value) at the grid points between the computed and exact solutions. This
is in effect the sup norm of the discretization error.

2. The program canwrite script files for plotting graphs of solutions as three-dimensional
surfaces in Geomview,Maple, or Matlab, if requested.

The user, of course, may do whatever else is desired with the solution array.
In our implementation we rely on xmalloc.[ch] from Chapter 7 to allocate memory and

the file array.h from Chapter 8 to construct vectors and matrices.

266 Chapter 20. Finite difference schemes for the heat equation in one dimension

Thus, following the suggestions in Chapters 2 and 6, the contents of the project’s
directory will look like this:

$ cd fd1

$ ls -F

Makefile demo1.c demo3.c heat-solve.c plot3d.c xmalloc.c@

array.h@ demo2.c demo4.c heat-solve.h plot3d.h xmalloc.h@

I have namedmydirectoryfd1 since the programs here dealwith finite difference schemes
in a one-dimensional space.

The files heat-solve.[ch] provide this project’s implementation of the four finite differ-
ence schemes described earlier. The demo files demo[1–4].c provide illustrative examples.
The plot3d.[ch] files, whose contents I am not going to describe, are available for down-
loading from the book’s website. These provide functions which receive the problem’s
solution and generate scripts for plotting the results as 3D surfaces in Geomview,Maple,
and Matlab.

Here is a transcript of a sample session with the demo1 program which solves Sec-
tion 20.6 problem heat1:

$./demo1

Usage: ./demo1 T n m

T : solve over 0 ≤ t ≤ T

n : number of subintervals in the x direction

m : number of subintervals in the t direction

$. /demo1 1 10 50

--- Explicit finite difference scheme ---

r = 0.5

Maple script written to prob1_explicit.mpl

Matlab script written to prob1_explicit.m

Geomview script written to prob1_explicit.gv

absolute error = 0.0061635

--- Implicit finite difference scheme ---

r = 0.5

Maple script written to prob1_implicit.mpl

Matlab script written to prob1_implicit.m

Geomview script written to prob1_implicit.gv

absolute error = 0.0118496

--- Crank-Nicolson finite difference scheme ---

r = 0.5

Maple script written to prob1_crank_nicolson.mpl

Matlab script written to prob1_crank_nicolson.m

Geomview script written to prob1_crank_nicolson.gv

absolute error = 0.00295428

--- Seidman Sweep finite difference scheme ---

r = 0.25

Maple script written to prob1_seidman_sweep.mpl

Matlab script written to prob1_seidman_sweep.m

Geomview script written to prob1_seidman_sweep.gv

absolute error = 0.0048706

20.8. The file heat-solve.h 267

The meanings of the program’s arguments should be clear from the “Usage” message that
appears above. The programs demo2, demo3, and demo4 may be invoked in the same way.
Figures 20.9 and 20.10 shows the results of running the four programs, each solving the
four problems heat1, heat2, heat3, and heat4. The figures’ captions give the command-line
arguments with which the programs were invoked.

In the transcript of the interactive session given above, note that demo1 was involved
with the command-line arguments 1 10 50. In words, the problem is solved over the range
0 ≤ 𝑡 ≤ 1 through 50 time-steps; therefore Δ𝑡 = 1/50 = 0.02. The 𝑥 domain, which is the
interval (−1, 1) in this case, is divided into 10 subintervals, and therefore Δ𝑥 = 2/10 = 0.2.
We see that 𝑟 = (Δ𝑡)/(Δ𝑥)2 = 0.5, that is, the explicit scheme is within the threshold of
stability; see Section 20.2. In contrast, if we run demo1with the arguments 0.352 20 20, we
will have 𝑟 = 1.9 > 0.5; therefore the explicit scheme will be unstable. Figure 20.11 shows
the resulting calamity.

20.8 The file heat-solve.h

The file heat-solve.h, shown in it entirety in Listing 20.1, is the interface to our finite
difference schemes for solving the initial boundary value problem (20.2) on page 251. Let
us examines its contents.

Line 4. The user specifies the desired finite difference scheme through the symbolsFD_explicit,
etc. The symbol FD_undefined is intended be used as a default when the user
fails to supply a scheme, in which case the program halts with an error message.

Line 7. The structure declared here holds all the necessary data for the problem’s speci-
fication.

The members a and b hold the values of the coordinates of the endpoints of the
problem’s spatial domain, (𝑎, 𝑏).

The member T specifies the time interval of interest, (0, 𝑇)
The members n and m are the number of subintervals of (𝑎, 𝑏) and (0, 𝑇), respec-

tively, for the finite difference discretization.

The members ic, bcL, bcR are pointers to functions that specify the problem’s
initial, left, and right boundary conditions.

The member method specifies the desired finite element scheme. It takes one
of the values from the enum declaration on line 4.

Thememberu is a pointer to an (𝑚+1)×(𝑛+1) arraywhichwill hold the computed𝑢𝑘𝑗 values of the solution at the grid points.

The member exact_sol is a pointer to a function which returns the problem’s
exact solution. If such a function is supplied, the program calculates the largest
difference (in absolute value) at the grid points between the computed and
exact solutions and places that value in the errormember. Set exact_sol
to NULL if no exact solution is available.

Themembersmaple_out, matlab_out,geomview_outpoint tofile names
to which the program will write scripts for plotting the solution in Maple,
Matlab, or Geomview. To suppress any of these outputs, set the pointer to
NULL.

268 Chapter 20. Finite difference schemes for the heat equation in one dimension

heat1 heat2

explicit

implicit

Crank–

Nicolson

Seidman

sweep

Figure 20.9: Graphs of the solutions to the problems heat1 and

heat2 produced by the four schemes invoked as

heat-explicit 0.5 10 32, heat-implicit 0.5 10 20,

heat-crank-nicolson 0.5 20 20,

heat-seidman-sweep 0.5 20 20.

20.8. The file heat-solve.h 269

heat3 heat4

explicit

implicit

Crank–

Nicolson

Seidman

sweep

Figure 20.10: Graphs of the solutions to the problems heat3 and

heat4 produced by the four schemes invoked as

heat-explicit 0.5 10 32, heat-implicit 0.5 10 20,

heat-crank-nicolson 0.5 20 20,

heat-seidman-sweep 0.5 20 20.

270 Chapter 20. Finite difference schemes for the heat equation in one dimension

𝑥 𝑡

𝑢(𝑥 , 𝑡)

Figure 20.11: Running demo1 with the command-line arguments 0.38 20 20 yields

an unstable explicit scheme since 𝑟 = (Δ𝑡)/(Δ𝑥)2 = 1.9 > 0.5. Here we

see the solution of the problem heat1 begin to fall apart as we approach

𝑡 = 0.38. Beyond this the oscillations grow very large so quickly that

drawing a graph is impractical.

Line 25. The function show_usage_and_exit() prints a brief help message to the
stdout and exits the program. See the transcript of the interactive session on
page 266 for a sample output.

Line 26. The functionheat_solve() is implements this project’s four finite difference
schemes. We turn to its implementation next.

20.9 The file heat-solve.c

The file heat-solve.c contains the implementation of this project’s four finite difference
schemes and a few auxiliary functions. Listing 20.2 shows an outline of this file. I will
describe the details in the following subsections.

20.9.1 The function trisolve()

The function trisolve() that appears on line 2 of Listing 20.2 is a generic solver of𝑛 × 𝑛 tridiagonal linear systems of equations82 of the form⎛⎜⎜⎜⎜⎜⎜⎝
𝑑0 𝑐0𝑎0 𝑑1 𝑐1𝑎1 𝑑2 𝑐2⋱ ⋱ ⋱𝑎𝑛−3 𝑑𝑛−2 𝑐𝑛−2𝑎𝑛−2 𝑑𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
𝑥0𝑥1𝑥2⋮𝑥𝑛−2𝑥𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
𝑏0𝑏1𝑏2⋮𝑏𝑛−2𝑏𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎠
. (20.23)

There is no point in storing the full 𝑛 × 𝑛 coefficient matrix. We store only the diagonal⟨𝑑0,… , 𝑑𝑛−1⟩, the subdiagonal ⟨𝑎0,… , 𝑎𝑛−2⟩, and the superdiagonal ⟨𝑐0,… , 𝑐𝑛−2⟩ as one-
dimensional arrays.

82The 𝑛 in this function should not be confused with the 𝑛 that appears in the formulation of our finite
difference schemes. In fact, those schemes call trisolve() with the argument n set to 𝑛 − 1.

20.9. The file heat-solve.c 271

Listing 20.1: The contents of the file heat-solve.h.

1 #ifndef H_HEAT_SOLVE_H

2 #define H_HEAT_SOLVE_H

3

4 enum method { FD_undefined, FD_explicit, FD_implicit,

5 FD_crank_nicolson, FD_seidman_sweep };

6

7 struct heat_solve {

8 double a; / / left end at x = a

9 double b; / / right end at x = b

10 double T; / / solve for 0 < t < T

11 int n; / / number of x subintervals

12 int m; / / number of t subintervals

13 double (*ic)(double x); / / initial condition

14 double (*bcL)(double t); / / left boundary condition

15 double (*bcR)(double t); / / right boundary condition

16 enum method method; / / solution method

17 double **u; / / solution array

18 double (*exact_sol)(double x, double t); / / exact solution, if any

19 double error; / / error vs exact solution

20 char *maple_out; / / output file for maple graphics

21 char *matlab_out; / / output file for matlab graphics

22 char *geomview_out; / / output file for geomview graph-

ics

23 };

24

25 void show_usage_and_exit(char *progname);

26 void heat_solve(struct heat_solve *prob);

27

28 #endif /�* H_HEAT_SOLVE_H */

Listing 20.2: An outline of the file heat-solve.c.

1 ▶ #include ...

2 ▶ static void trisolve(int n, const double *a, double *d,

3 const double *c, double *b, double *x) ...

4 ▶ static double error_vs_exact(struct heat_solve *prob) ...

5 ▶ static void write_plotting_script(struct heat_solve *prob)

6 ▶ void show_usage_and_exit(char *progname) ...

7 ▶ static void heat_solve_explicit(struct heat_solve *prob) ...

8 ▶ static void heat_solve_implicit(struct heat_solve *prob) ...

9 ▶ static void heat_solve_crank_nicolson(struct heat_solve *prob) ...

10 ▶ static void heat_solve_seidman_sweep(struct heat_solve *prob) ...

11 ▶ void heat_solve(struct heat_solve *prob) ...

We assume that the coefficient matrix is nonsingular. Our code does not check for
that. It can be shown that matrices that arise through finite difference schemes applied to
parabolic problems are nonsingular.

We solve the system through a simple Gaussian elimination without pivoting. To
eliminate 𝑎0, we introduce the multiplier 𝑚 = 𝑎0/𝑑0 and then subtract 𝑚 times the first
equation from the second equation. This (i) reduces the entry in the 𝑎0 position to zero;

272 Chapter 20. Finite difference schemes for the heat equation in one dimension

Listing 20.3: The function trisolve() in the file heat-solve.c.

1 static void trisolve(int n, const double *a, double *d,

2 const double *c, double *b, double *x)

3 {

4 for (int i = 1; i < n; i++) {

5 double m = a[i-1]/d[i-1];

6 d[i] -= m*c[i-1];

7 b[i] -= m*b[i-1];

8 }

9 x[n-1] = b[n-1]/d[n-1];

10 for (int i = n-2; i ≥ 0; i--)

11 x[i] = (b[i] - c[i]*x[i+1]) / d[i];

12 }

(ii) changes the entry in the 𝑑1 position to 𝑑1 −𝑚𝑐0; and (iii) changes the entry in the 𝑏1
position to 𝑏1 −𝑚𝑏0. The entry in the 𝑐1 position does not change.

We repeat the procedure to eliminate the rest of the subdiagonal, in sequence, from
top to bottom. When operating on row 𝑖 (𝑖 = 1, 2,… , 𝑛 − 1) we set 𝑚 = 𝑎𝑖−1/𝑑𝑖−1 and then
subtract 𝑚 times row 𝑖 − 1 from row 𝑖. This (i) eliminates the 𝑎𝑖−1 entry; (ii) changes the𝑑𝑖 entry to 𝑑𝑖 −𝑚𝑐𝑖−1; and (iii) changes the 𝑏𝑖 entry to 𝑏𝑖 −𝑚𝑏𝑖−1.

Listing 20.3 shows my implementation of trisolve(). In lines 4–8 you will find
the literal encoding of the statements made above.

Remark 20.1. We don’t bother to zero the 𝑎𝑖 entries in our code since we have no use
for the 𝑎𝑖’s beyond this point. Consequently, the elimination’s overall effect is to change
the 𝑑𝑖 and 𝑏𝑖 arrays, but the 𝑎𝑖 and 𝑐𝑖 arrays remain unchanged! We take advantage of
this when calling trisolve(), as we will see shortly. The const qualifiers on lines 1
and 2 in Listing 20.3 assure the compiler that the entries 𝑎𝑖 and 𝑐𝑖 will not change.

After eliminating the subdiagonal, the system takes the form⎛⎜⎜⎜⎜⎜⎜⎝
𝑑0 𝑐0𝑑1 𝑐1𝑑2 𝑐2⋱ ⋱𝑑𝑛−2 𝑐𝑛−2𝑑𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝
𝑥0𝑥1𝑥2⋮𝑥𝑛−2𝑥𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
𝑏0𝑏1𝑏2⋮𝑏𝑛−2𝑏𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎠
.

The 𝑑𝑖’s and 𝑏𝑖’s are different from what they were before, but the 𝑐𝑖’s are the same. The
system’s last equation, that is, 𝑑𝑛−1𝑥𝑛−1 = 𝑏𝑛−1, yields 𝑥𝑛−1 = 𝑏𝑛−1/𝑑𝑛−1. We compute
the rest of the 𝑥𝑖’s through back substitution. To wit, the equation before the last, that is,𝑑𝑛−2𝑥𝑛−2+𝑐𝑛−2𝑥𝑛−1 = 𝑏𝑛−2, yields the value of 𝑥𝑛−2 since 𝑥𝑛−1 is already known. In general,
the equation in row 𝑖 (𝑖 = 𝑛 − 2,… , 0), that is, 𝑑𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖+1 = 𝑏𝑖 , yields 𝑥𝑖 = (𝑏𝑖 − 𝑐𝑖𝑥𝑖+1)/𝑑𝑖
in terms of the previously calculated 𝑥𝑖+1. Lines 9–11 in Listing 20.3 reflect this finding.

20.9.2 The function error_vs_exact()

The function error_vs_exact() that appears on line 4 of Listing 20.2 is called only
when an exact solution, 𝑢ex(𝑥 , 𝑡), is supplied. It scans that two-dimensional arrayprob→u,

20.9. The file heat-solve.c 273

compares its values with those of the exact solution at the corresponding points, deter-
mines the maximum of the absolute values of the differences, and returns that maximum
value. The implementation is rather quite straightforward, so I leave that to you.

20.9.3 The functions write_plotting_script() plot3d()

The files plot3d.[ch], available on the book’s website, provide a facility for plotting the
graphs of the solutions produced by our finite difference solver as surfaces in 3D. The
file plot3d.h declares a structure struct plot3d, which is capable of holding the nec-
essary plotting data. The file plot3d.c defines a function plot3d() which receives a
struct plot3d and writes plotting scripts for Geomview, Maple, or Matlab. The
user specifies the name of the script file in in struct heat_solve (see Listing 20.1).
Setting a file name to NULL suppresses the production the corresponding plotting script.

The function write_plotting_script() that appears on line 5 of Listing 20.2
receives the solution produced by our finite difference solver and passes it to plot3d().
Here is the function write_plotting_script() in its entirety:

Listing 20.4: The function write_plotting_script() in the file heat-solve.c.

1 static void write_plotting_script(struct heat_solve *prob)

2 {

3 struct plot3d data;

4 data.a = prob→a;

5 data.b = prob→b;

6 data.T = prob→T;

7 data.n = prob→n;

8 data.m = prob→m;

9 data.u = prob→u;

10 data.maple_out = prob→maple_out;

11 data.matlab_out = prob→matlab_out;

12 data.geomview_out = prob→geomview_out;

13 plot3d(&data);

14 }

20.9.4 The function show_usage_and_exit()

The function show_usage_and_exit() that appears on line 6 of Listing 20.2 is called
when the user executes a demo program without the proper command-line arguments. It
prints a brief help message to the stdout and exits the program. See the transcript of
the interactive session on page 266 for a sample output. I will leave it to you to implement
this function.

20.9.5 The function heat_solve_implicit()

The functions heat_solve_explicit(), heat_solve_implicit(),
heat_solve_crank_nicolson(), and heat_solve_seidman_sweep()

implement the four finite difference schemes introduced in this chapter. In all four
solvers, we represent the solution by an (𝑚 + 1) × (𝑛 + 1) array u, whose u[k][j] entry
holds the value of the finite difference solution 𝑢𝑘𝑗 , 0 ≤ 𝑘 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑛. The values of
u[k][0] and u[k][n], k=0,1,...,m are known from the boundary conditions,
and the values of u[0][j], j=0,0,...,n are known from the initial condition. The
solver’s task is to determine the values of u[k][j] at the grid’s interior.

274 Chapter 20. Finite difference schemes for the heat equation in one dimension

Here I will go through the complete contents of the function
heat_solve_implicit(), shown in Listing 20.5. It implements the implicit
finite difference scheme described in Section 20.3. I will leave the writing of the
remaining three functions as projects for you.

The main task of the implicit scheme is to solve the tridiagonal system (𝑛 − 1) × (𝑛 − 1)
tridiagonal system (20.12) on page 257. When solving for row 𝑖 of the array u, the the first
and last entries of that row’s 𝑛 + 1 entries are known through the prescribed boundary
conditions. The system (20.12) is concerned with the 𝑛 − 1 interior unknowns, that is, our
vector of unknowns begins at the second element of row 𝑖 of u and extends to one element
before the last.

Our arrayu declared asdouble **u and constructed throughmake_matrix() of
our Project Vector and Matrix. Therefore u[i] points to row 𝑖, and u[i]+1 points to the
second element in that row. Since tridiagonal solver trisolve() expects to receive a
pointer to the vector of unknowns as is last argument, we passu[i]+1 for that argument.

Lines 1 through 12 of Listing 20.5 are self-explanatory. Let us look at the rest of the
code.

Lines 14–16. Here we allocate memory for the arrays that make up the tridiagonal sys-
tem 20.12, or the equivalent general form (20.23) on page 270. We see that the
system is defined through the diagonal array 𝑑 , the sub- and super-diagonals 𝑎 and𝑐, and the right-hand side array 𝑏. In lines 14–16 we allocate memory for these
arrays. We note, however, that in the system of interest, that is (20.12), the sub- and
super-diagonals are identical. Therefore we use the same array, 𝑐, for both. Two
observations made in Remark 20.1 on page 272 are critical here: (a) trisolve()
leaves the super-diagonal unchanged; and (b) although conceptually the process
changes the sub-diagonal to all-zeros, trisolve() does not actually change the
sub-diagonal at all—it just takes zero for any value that would have been read from
the sub-diagonal.

Since the system is (𝑛 − 1) × (𝑛 − 1), the length of the main diagonal, 𝑑 , the subdi-
agonals, 𝑐, are 𝑛 − 1 and 𝑛 − 2, respectively, as seen in lines 14 and 15. Naturally,
the length of the system’s right-hand side array, 𝑏, should be 𝑛 − 1, but in line 16
we allocate space for an array of length 𝑛 + 1. That makes the array b of the same
length as the array of unknowns, u[i] and enables us to refer to the corresponding
elements through the same index, as in b[j] and u[i][j]. Otherwise the indices
of b and u[i] will be have to be out of sync. The slots b[0] and b[n] are not
used, but that’s small price to pay for clean code.

Line 18. As noted earlier, the array c is going the represent both the sub- and super-
diagonals of the coefficient matrix in (20.12). The entries of these diagonals are all
−𝑟 , and do not change by the application of trisolve(). Here we initialize the
array c.

Line 21. We initialize the first row of the array u by applying the initial condition.

Lines 26–41. This is the main iterative loop where we march forward in time. The first
row, u[0], of the array u has been fixed. We calculate rows 𝑖 = 1 through 𝑖 = 𝑚
by applying (20.12). In row i, we begin by setting the values of u[i][0] and
u[i][n] by applying the boundary conditions. Then we construct the right-hand
side vector b of (20.12) in the obvious way, On line 37 we set the entries of the diag-
onal array of the tridiagonal system to all 1 + 2𝑟 ’s, and then we call trisolve()

20.10. The file demo1.c 275

to calculate u[i] in the interior nodes of row i. Note the b+1 and u[i]+1 in
the that call—as it was pointed out earlier, the call to trisolve() solves for the
interior nodes of the gird, that’s why we offset the pointers by one.

Finally, let us note that the array c is initialized outside the for-loop (line 18) since
c does not change during the iteration, but the array d is initialized inside the for-
loop (line 37) since the application of trisolve() changes d and therefore it
needs to be reset in each iteration.

20.9.6 The function heat_solve()

The function heat_solve() that appears on line 11 of Listing 20.2 on page 270 is the
front-end to our finite difference solvers. The functions heat_solve_explicit(),
heat_solve_implicit(), etc., are declared static in the file heat-solve.c and are
not user-accessible. They are accessed through heat_solve(). Listing 20.6 shows its
implementation.

The bulk of the function consists of a switch statement which passes the control
to one of the four finite difference scheme, based on the user’s requested method. Af-
terward, it calls write_plotting_script() (see section 20.9.3) to produce plotting
scripts if the user has requested any. Finally, if an exact solution is provided, it calls
error_vs_exact() (see section 20.9.2) to calculate the absolute error, and stores the
result in the error field of the struct heat_solve.

20.10 The file demo1.c

The file demo1.c sets up the initial boundary value problem described in Section 20.6.
The code is straightforward but somewhat long. I have broken it into three parts on
listings 20.7, 20.8, and 20.9.

276 Chapter 20. Finite difference schemes for the heat equation in one dimension

Listing 20.5: The function heat_solve_implicit() in the file heat-solve.c.

1 static void heat_solve_implicit(struct heat_solve *prob)

2 {

3 int m = prob→m;

4 int n = prob→n;

5 double **u = prob→u;

6 double dx = (prob→b - prob→a) / n; / / space-step

7 double dt = prob→T / m; / / time-step

8 double r = dt/(dx*dx);

9 double *b, *d, *c;

10

11 printf("--- Implicit finite difference scheme ---\n");

12 printf("r = %g\n", r);

13

14 make_vector(d, n-1);

15 make_vector(c, n-2);

16 make_vector(b, n+1);

17

18 for (int j = 0; j < n-2; j++)

19 c[j] = -r;

20

21 for (int j = 0; j ≤ n; j++) {

22 double x = prob→a + j*dx;

23 u[0][j] = prob→ic(x);

24 }

25

26 for (int i = 1; i ≤ m; i++) {

27 double t = i*dt;

28 u[i][0] = prob→bcL(t);

29 u[i][n] = prob→bcR(t);

30

31 for (int j = 1; j ≤ n-1; j++)

32 b[j] = u[i-1][j];

33

34 b[1] += r*u[i][0];

35 b[n-1] += r*u[i][n];

36

37 for (int k = 0; k < n-1; k++)

38 d[k] = 1 + 2*r;

39

40 trisolve(n-1, c, d, c, b+1, u[i]+1);

41 }

42

43 free_vector(b);

44 free_vector(c);

45 free_vector(d);

46 }

20.10. The file demo1.c 277

Listing 20.6: The function heat_solve() in the file heat-solve.c.

1 void heat_solve(struct heat_solve *prob)

2 {

3 switch (prob→method) {

4 case FD_explicit:

5 heat_solve_explicit(prob);

6 break;

7 case FD_implicit:

8 heat_solve_implicit(prob);

9 break;

10 case FD_crank_nicolson:

11 heat_solve_crank_nicolson(prob);

12 break;

13 case FD_seidman_sweep:

14 heat_solve_seidman_sweep(prob);

15 break;

16 default:

17 fprintf(stderr, "*** Missing ‘method’ specification "

18 "in struct heat_solve\n");

19 exit(EXIT_FAILURE);

20 }

21

22 write_plotting_script(prob);

23

24 if (prob→exact_sol ≠ NULL)

25 prob→error = error_vs_exact(prob);

26 }

278 Chapter 20. Finite difference schemes for the heat equation in one dimension

Listing 20.7: The file demo1.c – part 1 or 3.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4 #include "array.h"

5 #include "heat-solve.h"

6

7 #define PI 4.0*atan(1.0)

8

9 /� A s imp l e IBVP f o r t h e h ea t e qua t i on , wi th e x a c t s o l u t i o n

10 � u_t = u_xx −1 < x < 1 , t > 0

11 � e x a c t _ s o l = e ^(− p i ^2� t) � c o s (p i / 2� x)

12 � /

13

14 static double exact_sol(double x, double t)

15 {

16 return exp(-PI*PI/4*t) * cos(PI/2*x);

17 }

18

19 /� c a l u l a t e i n i t i a l and boundary c o n d i t i o n s from t h e e x a c t s o l u t i o n � /

20 static double ic(double x)

21 {

22 return exact_sol(x, 0);

23 }

24

25 static double bc_L(double t)

26 {

27 return exact_sol(-1, t);

28 }

29

30 static double bc_R(double t)

31 {

32 return exact_sol(1, t);

33 }

20.10. The file demo1.c 279

Listing 20.8: The file demo1.c – part 2 or 3.

34 int main(int argc, char **argv)

35 {

36 char *endptr;

37

38 if (argc ≠ 4)

39 show_usage_and_exit(argv[0]);

40

41 double T = strtod(argv[1], &endptr);

42 if (*endptr ≠ ’\0’ || T ≤ 0.0)

43 show_usage_and_exit(argv[0]);

44

45 int n = strtol(argv[2], &endptr, 10);

46 if (*endptr ≠ ’\0’ || n < 1)

47 show_usage_and_exit(argv[0]);

48

49 int m = strtol(argv[3], &endptr, 10);

50 if (*endptr ≠ ’\0’ || m < 1)

51 show_usage_and_exit(argv[0]);

52

53 struct heat_solve prob = {

54 .a = -1,

55 .b = 1,

56 .T = T,

57 .n = n,

58 .m = m,

59 .ic = ic,

60 .bcL = bc_L,

61 .bcR = bc_R,

62 .method = FD_undefined, / / will be specified later

63 .exact_sol = exact_sol,

64 .maple_out = NULL,

65 .matlab_out = NULL,

66 .geomview_out = NULL,

67 };

68

69 make_matrix(prob.u, m+1, n+1);

280 Chapter 20. Finite difference schemes for the heat equation in one dimension

Listing 20.9: The file demo1.c – part 3 or 3.

70 /� S o l v e t h e p rob l em th r ough f ou r d i f f e r e n t a l g o r i t hm s .

71 � Note : Mat lab d o e s n o t a l l ow a hyphen i n f i l e name ,

72 � s o we u s e u n d e r s c o r e s f o r a l l ou r ou t p u t f i l e names .

73 � /

74

75 putchar(’\n’);

76

77 prob.method = FD_explicit;

78 prob.maple_out = "prob1_explicit.mpl";

79 prob.matlab_out = "prob1_explicit.m";

80 prob.geomview_out = "prob1_explicit.gv";

81 heat_solve(&prob);

82 if (prob.exact_sol ≠ NULL)

83 printf("absolute error = %g\n", prob.error);

84 putchar(’\n’);

85

86 prob.method = FD_implicit;

87 prob.maple_out = "prob1_implicit.mpl";

88 prob.matlab_out = "prob1_implicit.m";

89 prob.geomview_out = "prob1_implicit.gv";

90 heat_solve(&prob);

91 if (prob.exact_sol ≠ NULL)

92 printf("absolute error = %g\n", prob.error);

93 putchar(’\n’);

94

95 prob.method = FD_crank_nicolson;

96 prob.maple_out = "prob1_crank_nicolson.mpl";

97 prob.matlab_out = "prob1_crank_nicolson.m";

98 prob.geomview_out = "prob1_crank_nicolson.gv";

99 heat_solve(&prob);

100 if (prob.exact_sol ≠ NULL)

101 printf("absolute error = %g\n", prob.error);

102 putchar(’\n’);

103

104 prob.method = FD_seidman_sweep;

105 prob.maple_out = "prob1_seidman_sweep.mpl";

106 prob.matlab_out = "prob1_seidman_sweep.m";

107 prob.geomview_out = "prob1_seidman_sweep.gv";

108 heat_solve(&prob);

109 if (prob.exact_sol ≠ NULL)

110 printf("absolute error = %g\n", prob.error);

111 putchar(’\n’);

112

113 free_matrix(prob.u);

114

115 return EXIT_SUCCESS;

116 }

117 /� �D : demo1� � /

