# include # include # include # include # include # include # include int main ( int argc, char *argv[] ); char ch_cap ( char ch ); int ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); int file_column_count ( char *input_filename ); int file_row_count ( char *input_filename ); int i4_power ( int i, int j ); void power_rule_set ( int point_num_1d, double x_1d[], double w_1d[], double r_1d[], int dim_num, int point_num, double x[], double w[], double r[] ); int power_rule_size ( int point_num_1d, int dim_num ); double *r8mat_data_read ( char *input_filename, int m, int n ); void r8mat_header_read ( char *input_filename, int *m, int *n ); void r8mat_write ( char *output_filename, int m, int n, double table[] ); int s_len_trim ( char *s ); int s_to_i4 ( char *s, int *last, int *error ); double s_to_r8 ( char *s, int *lchar, int *error ); int s_to_r8vec ( char *s, int n, double rvec[] ); int s_word_count ( char *s ); void timestamp ( ); void tuple_next ( int m1, int m2, int n, int *rank, int x[] ); /******************************************************************************/ int main ( int argc, char *argv[] ) /******************************************************************************/ /* Purpose: power_rule() constructs a quadrature rule as a power of a given rule. Licensing: This code is distributed under the MIT license. Modified: 05 February 2014 Author: John Burkardt */ { int dim_num; int dim_num_1d; int error; int last; int point_num; int point_num_1d; int point_num_1d2; char quad_1d_filename[80]; char quad_r_1d_filename[80]; char quad_r_filename[] = "power_r.txt"; char quad_w_1d_filename[80]; char quad_w_filename[] = "power_w.txt"; char quad_x_1d_filename[80]; char quad_x_filename[] = "power_x.txt"; double *r; double *r_1d; double *w; double *w_1d; double *x; double *x_1d; timestamp ( ); printf ( "\n" ); printf ( "power_rule():\n" ); printf ( " C version\n" ); printf ( " Create a multidimensional power rule\n" ); printf ( " as a product of identical 1D integration rules.\n" ); /* Get the quadrature file root name: */ if ( 1 < argc ) { strcpy ( quad_1d_filename, argv[1] ); } else { printf ( "\n" ); printf ( "POWER_RULE:\n" ); printf ( " Enter the \"root\" name of the 1D quadrature files.\n" ); scanf ( "%s", quad_1d_filename ); } /* Create the names of: the quadrature X file; the quadrature W file; the quadrature R file; */ strcpy ( quad_r_1d_filename, quad_1d_filename ); strcat ( quad_r_1d_filename, "_r.txt" ); strcpy ( quad_w_1d_filename, quad_1d_filename ); strcat ( quad_w_1d_filename, "_w.txt" ); strcpy ( quad_x_1d_filename, quad_1d_filename ); strcat ( quad_x_1d_filename, "_x.txt" ); /* The second command line argument is the spatial dimension. */ if ( 2 < argc ) { dim_num = s_to_i4 ( argv[2], &last, &error ); } else { printf ( "\n" ); printf ( "POWER_RULE:\n" ); printf ( " Please enter the desired spatial dimension of the rule.\n" ); scanf ( "%d", &dim_num ); } /* Summarize the input. */ printf ( "\n" ); printf ( "POWER_RULE: User input:\n" ); printf ( " Quadrature rule X file = \"%s\"\n", quad_x_1d_filename ); printf ( " Quadrature rule W file = \"%s\"\n", quad_w_1d_filename ); printf ( " Quadrature rule R file = \"%s\"\n", quad_r_1d_filename ); printf ( " Spatial dimension = %d\n", dim_num ); /* Read the X file. */ r8mat_header_read ( quad_x_1d_filename, &dim_num_1d, &point_num_1d ); if ( dim_num_1d != 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_RULE - Fatal error!\n" ); fprintf ( stderr, " The 1D quadrature abscissa file should have exactly\n" ); fprintf ( stderr, " one value on each line.\n" ); exit ( 1 ); } printf ( "\n" ); printf ( " Number of points in 1D rule = %d\n", point_num_1d ); x_1d = r8mat_data_read ( quad_x_1d_filename, dim_num_1d, point_num_1d ); /* Read the W file. */ r8mat_header_read ( quad_w_1d_filename, &dim_num_1d, &point_num_1d2 ); if ( dim_num_1d != 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_RULE - Fatal error!\n" ); fprintf ( stderr, " The 1D quadrature weight file should have exactly\n" ); fprintf ( stderr, " one value on each line.\n" ); exit ( 1 ); } if ( point_num_1d2 != point_num_1d ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_RULE - Fatal error!\n" ); fprintf ( stderr, " The 1D quadrature weight file should have exactly\n" ); fprintf ( stderr, " the same number of lines as the abscissa file.\n" ); exit ( 1 ); } w_1d = r8mat_data_read ( quad_w_1d_filename, dim_num_1d, point_num_1d ); /* Read the R file. */ r8mat_header_read ( quad_r_1d_filename, &dim_num_1d, &point_num_1d2 ); if ( dim_num_1d != 1 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_RULE - Fatal error!\n" ); fprintf ( stderr, " The 1D quadrature region file should have exactly\n" ); fprintf ( stderr, " one value on each line.\n" ); exit ( 1 ); } if ( point_num_1d2 != 2 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "POWER_RULE - Fatal error!\n" ); fprintf ( stderr, " The 1D quadrature region file should have two lines.\n" ); exit ( 1 ); } r_1d = r8mat_data_read ( quad_r_1d_filename, 1, 2 ); /* Determine size of the rule. */ point_num = power_rule_size ( point_num_1d, dim_num ); printf ( "\n" ); printf ( " Number of points in rule = %d\n", point_num ); /* Compute the rule. */ w = ( double * ) malloc ( point_num * sizeof ( double ) ); x = ( double * ) malloc ( dim_num * point_num * sizeof ( double ) ); r = ( double * ) malloc ( dim_num * 2 * sizeof ( double ) ); power_rule_set ( point_num_1d, x_1d, w_1d, r_1d, dim_num, point_num, x, w, r ); /* Write rule to files. */ printf ( "\n" ); printf ( " Creating quadrature rule X file = \"%s\"\n", quad_x_filename ); r8mat_write ( quad_x_filename, dim_num, point_num, x ); printf ( " Creating quadrature rule W file = \"%s\"\n", quad_w_filename ); r8mat_write ( quad_w_filename, 1, point_num, w ); printf ( " Creating quadrature rule R file = \"%s\"\n", quad_r_filename ); r8mat_write ( quad_r_filename, dim_num, 2, r ); /* Free memory. */ free ( w ); free ( w_1d ); free ( x ); free ( x_1d ); free ( r ); free ( r_1d ); /* Terminate. */ printf ( "\n" ); printf ( "power_rule():\n" ); printf ( " Normal end of execution.\n" ); printf ( "\n" ); timestamp ( ); return 0; } /******************************************************************************/ char ch_cap ( char ch ) /******************************************************************************/ /* Purpose: ch_cap() capitalizes a single character. Discussion: This routine should be equivalent to the library "toupper" function. Licensing: This code is distributed under the MIT license. Modified: 19 July 1998 Author: John Burkardt Input: char CH, the character to capitalize. Output: char CH_CAP, the capitalized character. */ { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } /******************************************************************************/ int ch_eqi ( char ch1, char ch2 ) /******************************************************************************/ /* Purpose: ch_eqi() is TRUE (1) if two characters are equal, disregarding case. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Input: char CH1, CH2, the characters to compare. Output: int CH_EQI, is TRUE (1) if the two characters are equal, disregarding case and FALSE (0) otherwise. */ { int value; if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } if ( ch1 == ch2 ) { value = 1; } else { value = 0; } return value; } /******************************************************************************/ int ch_to_digit ( char ch ) /******************************************************************************/ /* Purpose: ch_to_digit() returns the integer value of a base 10 digit. Example: CH DIGIT --- ----- '0' 0 '1' 1 ... ... '9' 9 ' ' 0 'X' -1 Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Input: char CH, the decimal digit, '0' through '9' or blank are legal. Output: int CH_TO_DIGIT, the corresponding integer value. If the character was 'illegal', then DIGIT is -1. */ { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } /******************************************************************************/ int file_column_count ( char *input_filename ) /******************************************************************************/ /* Purpose: file_column_count() counts the number of columns in the first line of a file. Discussion: The file is assumed to be a simple text file. Most lines of the file is presumed to consist of COLUMN_NUM words, separated by spaces. There may also be some blank lines, and some comment lines, which have a "#" in column 1. The routine tries to find the first non-comment non-blank line and counts the number of words in that line. If all lines are blanks or comments, it goes back and tries to analyze a comment line. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Input: char *INPUT_FILENAME, the name of the file. Output: int FILE_COLUMN_COUNT, the number of columns assumed to be in the file. */ { # define LINE_MAX 255 int column_num; char *error; FILE *input; int got_one; char line[LINE_MAX]; /* Open the file. */ input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_COLUMN_COUNT - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } /* Read one line, but skip blank lines and comment lines. */ got_one = 0; for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = 1; break; } if ( got_one == 0 ) { fclose ( input ); input = fopen ( input_filename, "r" ); for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = 1; break; } } fclose ( input ); if ( got_one == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_COLUMN_COUNT - Warning!\n" ); fprintf ( stderr, " The file does not seem to contain any data.\n" ); exit ( 1 ); } column_num = s_word_count ( line ); return column_num; # undef LINE_MAX } /******************************************************************************/ int file_row_count ( char *input_filename ) /******************************************************************************/ /* Purpose: file_row_count() counts the number of row records in a file. Discussion: It does not count lines that are blank, or that begin with a comment symbol '#'. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Input: char *INPUT_FILENAME, the name of the input file. Output: int FILE_ROW_COUNT, the number of rows found. */ { # define LINE_MAX 255 int comment_num; char *error; FILE *input; char line[LINE_MAX]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_ROW_COUNT - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } fclose ( input ); return row_num; # undef LINE_MAX } /******************************************************************************/ int i4_power ( int i, int j ) /******************************************************************************/ /* Purpose: i4_power() returns the value of I^J. Licensing: This code is distributed under the MIT license. Modified: 23 October 2007 Author: John Burkardt Input: int I, J, the base and the power. J should be nonnegative. Output: int I4_POWER, the value of I^J. */ { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { printf ( "\n" ); printf ( "I4_POWER - Fatal error!\n" ); printf ( " I^J requested, with I = 0 and J negative.\n" ); exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { printf ( "\n" ); printf ( "I4_POWER - Fatal error!\n" ); printf ( " I^J requested, with I = 0 and J = 0.\n" ); exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } /******************************************************************************/ void power_rule_set ( int point_num_1d, double x_1d[], double w_1d[], double r_1d[], int dim_num, int point_num, double x[], double w[], double r[] ) /******************************************************************************/ /* Purpose: power_rule_set() sets up a power rule. Licensing: This code is distributed under the MIT license. Modified: 05 February 2014 Author: John Burkardt Input: int POINT_NUM_1D, the order of the 1D rule. double X_1D[POINT_NUM_1D], the points of the 1D rule. double W_1D[POINT_NUM_1D], the weights of the 1D rule. double R_1D[2], the extreme points that define the range of the 1D region. int DIM_NUM, the spatial dimension. int POINT_NUM, the number of points in the rule. Output: double X[DIM_NUM*POINT_NUM], the points of the rule. double W[POINT_NUM], the weights of the rule. double R[DIM_NUM*2], the extreme points that define the range of the product rule region. */ { int dim; int *indx; int k; indx = ( int * ) malloc ( dim_num * sizeof ( int ) ); k = 0; for ( ; ; ) { tuple_next ( 0, point_num_1d-1, dim_num, &k, indx ); if ( k == 0 ) { break; } w[k-1] = 1.0; for ( dim = 0; dim < dim_num; dim++ ) { w[k-1] = w[k-1] * w_1d[indx[dim]]; } for ( dim = 0; dim < dim_num; dim++ ) { x[dim+(k-1)*dim_num] = x_1d[indx[dim]]; } } free ( indx ); for ( dim = 0; dim < dim_num; dim++ ) { r[dim+0*dim_num] = r_1d[0]; r[dim+1*dim_num] = r_1d[1]; } return; } /******************************************************************************/ int power_rule_size ( int point_num_1d, int dim_num ) /******************************************************************************/ /* Purpose: power_rule_size() returns the size of a power rule. Licensing: This code is distributed under the MIT license. Modified: 05 Febraury 2014 Author: John Burkardt Input: int POINT_NUM_1D, the number of points in the 1D rule. int DIM_NUM, the spatial dimension. Output: int POWER_RULE_SIZE, the number of points in the rule. */ { int point_num; point_num = i4_power ( point_num_1d, dim_num ); return point_num; } /******************************************************************************/ double *r8mat_data_read ( char *input_filename, int m, int n ) /******************************************************************************/ /* Purpose: r8mat_data_read() reads the data from an R8MAT file. Discussion: An R8MAT is an array of R8's. The file is assumed to contain one record per line. Records beginning with the '#' character are comments, and are ignored. Blank lines are also ignored. Each line that is not ignored is assumed to contain exactly (or at least) M real numbers, representing the coordinates of a point. There are assumed to be exactly (or at least) N such records. Licensing: This code is distributed under the MIT license. Modified: 27 January 2005 Author: John Burkardt Input: char *INPUT_FILENAME, the name of the input file. int M, the number of spatial dimensions. int N, the number of points. The program will stop reading data once N values have been read. Output: double R8MAT_DATA_READ[M*N], the data. */ { # define LINE_MAX 255 int error; char *got_string; FILE *input; int i; int j; char line[255]; double *table; double *x; input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_DATA_READ - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } table = ( double * ) malloc ( m * n * sizeof ( double ) ); x = ( double * ) malloc ( m * sizeof ( double ) ); j = 0; while ( j < n ) { got_string = fgets ( line, LINE_MAX, input ); if ( !got_string ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error == 1 ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } fclose ( input ); free ( x ); return table; # undef LINE_MAX } /******************************************************************************/ void r8mat_header_read ( char *input_filename, int *m, int *n ) /******************************************************************************/ /* Purpose: r8mat_header_read() reads the header from an R8MAT file. Discussion: An R8MAT is an array of R8's. Licensing: This code is distributed under the MIT license. Modified: 04 June 2004 Author: John Burkardt Input: char *INPUT_FILENAME, the name of the input file. Output: int *M, the number of spatial dimensions. int *N, the number of points. */ { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_COLUMN_COUNT failed.\n" ); exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_ROW_COUNT failed.\n" ); exit ( 1 ); } return; } /******************************************************************************/ void r8mat_write ( char *output_filename, int m, int n, double table[] ) /******************************************************************************/ /* Purpose: r8mat_write() writes an R8MAT file. Discussion: An R8MAT is an array of R8's. Licensing: This code is distributed under the MIT license. Modified: 01 June 2009 Author: John Burkardt Input: char *OUTPUT_FILENAME, the output filename. int M, the spatial dimension. int N, the number of points. double TABLE[M*N], the data. */ { int i; int j; FILE *output; /* Open the file. */ output = fopen ( output_filename, "wt" ); if ( !output ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_WRITE - Fatal error!\n" ); fprintf ( stderr, " Could not open the output file.\n" ); exit ( 1 ); } /* Write the data. */ for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { fprintf ( output, " %24.16g", table[i+j*m] ); } fprintf ( output, "\n" ); } /* Close the file. */ fclose ( output ); return; } /******************************************************************************/ int s_len_trim ( char *s ) /******************************************************************************/ /* Purpose: s_len_trim() returns the length of a string to the last nonblank. Licensing: This code is distributed under the MIT license. Modified: 26 April 2003 Author: John Burkardt Input: char *S, a pointer to a string. Output: int S_LEN_TRIM, the length of the string to the last nonblank. If S_LEN_TRIM is 0, then the string is entirely blank. */ { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } /******************************************************************************/ int s_to_i4 ( char *s, int *last, int *error ) /******************************************************************************/ /* Purpose: s_to_i4() reads an I4 from a string. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Input: char *S, a string to be examined. Output: int *LAST, the last character of S used to make IVAL. int *ERROR is TRUE (1) if an error occurred and FALSE (0) otherwise. int *S_TO_I4, the integer value read from the string. If the string is blank, then IVAL will be returned 0. */ { char c; int i; int isgn; int istate; int ival; *error = 0; istate = 0; isgn = 1; i = 0; ival = 0; while ( *s ) { c = s[i]; i = i + 1; /* Haven't read anything. */ if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = 1; return ival; } } /* Have read the sign, expecting digits. */ else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = 1; return ival; } } /* Have read at least one digit, expecting more. */ else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } /* If we read all the characters in the string, see if we're OK. */ if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = 1; *last = 0; } return ival; } /******************************************************************************/ double s_to_r8 ( char *s, int *lchar, int *error ) /******************************************************************************/ /* Purpose: s_to_r8() reads an R8 value from a string. Discussion: We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. This routine will read as many characters as possible until it reaches the end of the string, or encounters a character which cannot be part of the real number. Legal input is: 1 blanks, 2 '+' or '-' sign, 2.5 spaces 3 integer part, 4 decimal point, 5 fraction part, 6 'E' or 'e' or 'D' or 'd', exponent marker, 7 exponent sign, 8 exponent integer part, 9 exponent decimal point, 10 exponent fraction part, 11 blanks, 12 final comma or semicolon. with most quantities optional. Example: S R '1' 1.0 ' 1 ' 1.0 '1A' 1.0 '12,34,56' 12.0 ' 34 7' 34.0 '-1E2ABCD' -100.0 '-1X2ABCD' -1.0 ' 2E-1' 0.2 '23.45' 23.45 '-4.2E+2' -420.0 '17d2' 1700.0 '-14e-2' -0.14 'e2' 100.0 '-12.73e-9.23' -12.73 * 10.0^(-9.23) Licensing: This code is distributed under the MIT license. Modified: 24 June 2005 Author: John Burkardt Input: char *S, the string containing the data to be read. Reading will begin at position 1 and terminate at the end of the string, or when no more characters can be read to form a legal real. Blanks, commas, or other nonnumeric data will, in particular, cause the conversion to halt. Output: int *LCHAR, the number of characters read from the string to form the number, including any terminating characters such as a trailing comma or blanks. int *ERROR, is TRUE (1) if an error occurred and FALSE (0) otherwise. double S_TO_R8, the value that was read from the string. */ { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = 0; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; /* Blank or TAB character. */ if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } /* Comma. */ else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } /* Minus sign. */ else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } /* Plus sign. */ else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } /* Decimal point. */ else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } /* Exponent marker. */ else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } /* Digit. */ else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } /* Anything else is regarded as a terminator. */ else { iterm = 1; } /* If we haven't seen a terminator, and we haven't examined the entire string, go get the next character. */ if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } /* If we haven't seen a terminator, and we have examined the entire string, then we're done, and LCHAR is equal to NCHAR. */ if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } /* Number seems to have terminated. Have we got a legal number? Not if we terminated in states 1, 2, 6 or 7! */ if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = 1; return r; } /* Number seems OK. Form it. We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. */ if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { if ( jsgn * jtop < -20 ) { rexp = 0.0; } else { rexp = pow ( ( double ) 10.0, ( double ) ( jsgn * jtop ) ); } } else { if ( jsgn * jtop < -20 * jbot ) { rexp = 0.0; } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( ( double ) 10.0, ( double ) rexp ); } } } r = isgn * rexp * rtop / rbot; return r; } /******************************************************************************/ int s_to_r8vec ( char *s, int n, double rvec[] ) /******************************************************************************/ /* Purpose: s_to_r8vec() reads an R8VEC from a string. Licensing: This code is distributed under the MIT license. Modified: 19 February 2001 Author: John Burkardt Input: char *S, the string to be read. int N, the number of values expected. Output: double RVEC[N], the values read from the string. int S_TO_R8VEC, is TRUE (1) if an error occurred and FALSE (0) otherwise. */ { int error; int i; int lchar; error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } /******************************************************************************/ int s_word_count ( char *s ) /******************************************************************************/ /* Purpose: s_word_count() counts the number of "words" in a string. Licensing: This code is distributed under the MIT license. Modified: 16 September 2015 Author: John Burkardt Input: char *S, the string to be examined. Output: int S_WORD_COUNT, the number of "words" in the string. Words are presumed to be separated by one or more blanks. */ { int blank; int word_num; char *t; word_num = 0; blank = 1; t = s; while ( *t ) { if ( *t == ' ' || *t == '\n' ) { blank = 1; } else if ( blank ) { word_num = word_num + 1; blank = 0; } t++; } return word_num; } /******************************************************************************/ void timestamp ( ) /******************************************************************************/ /* Purpose: timestamp() prints the current YMDHMS date as a time stamp. Example: 31 May 2001 09:45:54 AM Licensing: This code is distributed under the MIT license. Modified: 24 September 2003 Author: John Burkardt */ { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); printf ( "%s\n", time_buffer ); return; # undef TIME_SIZE } /******************************************************************************/ void tuple_next ( int m1, int m2, int n, int *rank, int x[] ) /******************************************************************************/ /* Purpose: tuple_next() computes the next element of a tuple space. Discussion: The elements are N vectors. Each entry is constrained to lie between M1 and M2. The elements are produced one at a time. The first element is (M1,M1,...,M1), the second element is (M1,M1,...,M1+1), and the last element is (M2,M2,...,M2) Intermediate elements are produced in lexicographic order. Example: N = 2, M1 = 1, M2 = 3 INPUT OUTPUT ------- ------- Rank X Rank X ---- --- ----- --- 0 * * 1 1 1 1 1 1 2 1 2 2 1 2 3 1 3 3 1 3 4 2 1 4 2 1 5 2 2 5 2 2 6 2 3 6 2 3 7 3 1 7 3 1 8 3 2 8 3 2 9 3 3 9 3 3 0 0 0 Licensing: This code is distributed under the MIT license. Modified: 29 April 2003 Author: John Burkardt Input: int M1, M2, the minimum and maximum entries. int N, the number of components. int *RANK, counts the elements. On first call, set RANK to 0. int X[N]: the current tuple. Output: int *RANK, counts the elements. The output value of RANK will indicate the order of the element returned. When there are no more elements, RANK will be returned as 0. int X[N]: the next tuple. */ { int i; int j; if ( m2 < m1 ) { *rank = 0; return; } if ( *rank <= 0 ) { for ( i = 0; i < n; i++ ) { x[i] = m1; } *rank = 1; } else { *rank = *rank + 1; i = n - 1; for ( ; ; ) { if ( x[i] < m2 ) { x[i] = x[i] + 1; break; } x[i] = m1; if ( i == 0 ) { *rank = 0; for ( j = 0; j < n; j++ ) { x[j] = m1; } break; } i = i - 1; } } return; }