13 July 2019 11:25:55 AM MACHINE_TEST: C version Test the MACHINE library. D1MACH_TEST D1MACH reports the value of constants associated with real double precision computer arithmetic. Assume that double precision numbers are stored with a mantissa of T digits in base B, with an exponent whose value must lie between EMIN and EMAX. For input arguments of 1 <= I <= 5, D1MACH will return the following values: D1MACH(1) = B^(EMIN-1), the smallest positive magnitude. 4.4501477170144028e-308 D1MACH(2) = B^EMAX*(1-B^(-T)), the largest magnitude. 8.9884656743115785e+307 D1MACH(3) = B^(-T), the smallest relative spacing. 1.1102230246251570e-16 D1MACH(4) = B^(1-T), the largest relative spacing. 2.2204460492503131e-16 D1MACH(5) = log10(B). 3.0102999566398098e-01 I1MACH_TEST I1MACH reports the value of constants associated with integer computer arithmetic. Numbers associated with input/output units: I1MACH(1) = the standard input unit. 5 I1MACH(2) = the standard output unit. 6 I1MACH(3) = the standard punch unit. 7 I1MACH(4) = the standard error message unit. 6 Numbers associated with words: I1MACH(5) = the number of bits per integer. 32 I1MACH(6) = the number of characters per integer. 4 Numbers associated with integer values: Assume integers are represented in the S digit base A form: Sign * (X(S-1)*A^(S-1) + ... + X(1)*A + X(0)) where the digits X satisfy 0 <= X(1:S-1) < A. I1MACH(7) = A, the base. 2 I1MACH(8) = S, the number of base A digits. 31 I1MACH(9) = A^S-1, the largest integer. 2147483647 Numbers associated with floating point values: Assume floating point numbers are represented in the T digit base B form: Sign * (B^E) * ((X(1)/B) + ... + (X(T)/B^T) ) where 0 <= X(1:T) < B, 0 < X(1) (unless the value being represented is 0), EMIN <= E <= EMAX. I1MACH(10) = B, the base. 2 Numbers associated with single precision values: I1MACH(11) = T, the number of base B digits. 24 I1MACH(12) = EMIN, the smallest exponent E. -125 I1MACH(13) = EMAX, the largest exponent E. 128 Numbers associated with double precision values: I1MACH(14) = T, the number of base B digits. 53 I1MACH(15) = EMIN, the smallest exponent E. -1021 I1MACH(16) = EMAX, the largest exponent E. 1024 R1MACH_TEST R1MACH reports the value of constants associated with real single precision computer arithmetic. Assume that single precision numbers are stored with a mantissa of T digits in base B, with an exponent whose value must lie between EMIN and EMAX. For input arguments of 1 <= I <= 5, R1MACH will return the following values: R1MACH(1) = B^(EMIN-1), the smallest positive magnitude. 1.1754943508222875e-38 R1MACH(2) = B^EMAX*(1-B^(-T)), the largest magnitude. 3.4028234663852886e+38 R1MACH(3) = B^(-T), the smallest relative spacing. 5.9604644775390625e-08 R1MACH(4) = B^(1-T), the largest relative spacing. 1.1920928955078125e-07 R1MACH(5) = log10(B). 3.0103000998497009e-01 MACHINE_TEST: Normal end of execution. 13 July 2019 11:25:55 AM