# include # include # include # include # include "latin_random.h" /******************************************************************************/ int i4_uniform_ab ( int a, int b, int *seed ) /******************************************************************************/ /* Purpose: i4_uniform_ab() returns a scaled pseudorandom I4 between A and B. Discussion: The pseudorandom number should be uniformly distributed between A and B. Licensing: This code is distributed under the MIT license. Modified: 24 May 2012 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Second Edition, Springer, 1987, ISBN: 0387964673, LC: QA76.9.C65.B73. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, December 1986, pages 362-376. Pierre L'Ecuyer, Random Number Generation, in Handbook of Simulation, edited by Jerry Banks, Wiley, 1998, ISBN: 0471134031, LC: T57.62.H37. Peter Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, Number 2, 1969, pages 136-143. Input: int A, B, the limits of the interval. int *SEED, the "seed" value. Output: int *SEED: an updated seed. int I4_UNIFORM_AB, a number between A and B. */ { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( *seed == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4_UNIFORM_AB - Fatal error!\n" ); fprintf ( stderr, " Input value of SEED = 0.\n" ); exit ( 1 ); } /* Guaranteee A <= B. */ if ( b < a ) { c = a; a = b; b = c; } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r = ( float ) ( *seed ) * 4.656612875E-10; /* Scale R to lie between A-0.5 and B+0.5. */ r = ( 1.0 - r ) * ( ( float ) ( a ) - 0.5 ) + r * ( ( float ) ( b ) + 0.5 ); /* Round R to the nearest integer. */ value = round ( r ); /* Guarantee that A <= VALUE <= B. */ if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } /******************************************************************************/ void i4vec_print ( int n, int a[], char *title ) /******************************************************************************/ /* Purpose: i4vec_print() prints an I4VEC. Discussion: An I4VEC is a vector of I4's. Licensing: This code is distributed under the MIT license. Modified: 14 November 2003 Author: John Burkardt Input: int N, the number of components of the vector. int A[N], the vector to be printed. char *TITLE, a title. */ { int i; fprintf ( stdout, "\n" ); fprintf ( stdout, "%s\n", title ); fprintf ( stdout, "\n" ); for ( i = 0; i < n; i++ ) { fprintf ( stdout, " %6d: %8d\n", i, a[i] ); } return; } /******************************************************************************/ double *latin_random_new ( int dim_num, int point_num, int *seed ) /******************************************************************************/ /* Purpose: latin_random_new() returns points in a Latin Random square. Discussion: In each spatial dimension, there will be exactly one point whose coordinate value lies between consecutive values in the list: ( 0, 1, 2, ..., point_num ) / point_num Licensing: This code is distributed under the MIT license. Modified: 08 April 2003 Author: John Burkardt Input: int DIM_NUM, the spatial dimension. int POINT_NUM, the number of points. int *SEED, a seed for UNIFORM. Output: int *SEED: an updated seed. double LATIN_RANDOM_NEW[DIM_NUM,POINT_NUM], the points. */ { int i; int j; int *perm; double *x; x = r8mat_uniform_01_new ( dim_num, point_num, seed ); /* For spatial dimension I, pick a random permutation of 1 to POINT_NUM, force the corresponding I-th components of X to lie in the interval ( PERM[J]-1, PERM[J] ) / POINT_NUM. */ for ( i = 0; i < dim_num; i++ ) { perm = perm_uniform_new ( point_num, seed ); for ( j = 0; j < point_num; j++ ) { x[i+j*dim_num] = ( ( ( double ) perm[j] ) + x[i+j*dim_num] ) / ( ( double ) point_num ); } free ( perm ); } return x; } /******************************************************************************/ int *perm_uniform_new ( int n, int *seed ) /******************************************************************************/ /* Purpose: perm_uniform_new() selects a random permutation of N objects. Licensing: This code is distributed under the MIT license. Modified: 25 February 2014 Author: John Burkardt Reference: Albert Nijenhuis, Herbert Wilf, Combinatorial Algorithms, Academic Press, 1978, second edition, ISBN 0-12-519260-6. Input: int N, the number of objects to be permuted. int *SEED, a seed for the random number generator. Output: int *SEED: an updated seed. int PERM_UNIFORM_NEW[N], a permutation of (BASE, BASE+1, ..., BASE+N-1). */ { int i; int j; int k; int *p; p = ( int * ) malloc ( n * sizeof ( int ) ); for ( i = 0; i < n; i++ ) { p[i] = i; } for ( i = 0; i < n - 1; i++ ) { j = i4_uniform_ab ( i, n - 1, seed ); k = p[i]; p[i] = p[j]; p[j] = k; } return p; } /******************************************************************************/ void r8mat_transpose_print ( int m, int n, double a[], char *title ) /******************************************************************************/ /* Purpose: r8mat_transpose_print() prints an R8MAT, transposed. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 28 May 2008 Author: John Burkardt Input: int M, N, the number of rows and columns. double A[M*N], an M by N matrix to be printed. char *TITLE, a title. */ { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } /******************************************************************************/ void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) /******************************************************************************/ /* Purpose: r8mat_transpose_print_some() prints some of an R8MAT, transposed. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the MIT license. Modified: 10 September 2013 Author: John Burkardt Input: int M, N, the number of rows and columns. double A[M*N], an M by N matrix to be printed. int ILO, JLO, the first row and column to print. int IHI, JHI, the last row and column to print. char *TITLE, a title. */ { # define INCX 5 int i; int i2; int i2hi; int i2lo; int i2lo_hi; int i2lo_lo; int inc; int j; int j2hi; int j2lo; fprintf ( stdout, "\n" ); fprintf ( stdout, "%s\n", title ); if ( m <= 0 || n <= 0 ) { fprintf ( stdout, "\n" ); fprintf ( stdout, " (None)\n" ); return; } if ( ilo < 1 ) { i2lo_lo = 1; } else { i2lo_lo = ilo; } if ( ihi < m ) { i2lo_hi = m; } else { i2lo_hi = ihi; } for ( i2lo = i2lo_lo; i2lo <= i2lo_hi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; if ( m < i2hi ) { i2hi = m; } if ( ihi < i2hi ) { i2hi = ihi; } inc = i2hi + 1 - i2lo; fprintf ( stdout, "\n" ); fprintf ( stdout, " Row:" ); for ( i = i2lo; i <= i2hi; i++ ) { fprintf ( stdout, " %7d ", i - 1 ); } fprintf ( stdout, "\n" ); fprintf ( stdout, " Col\n" ); fprintf ( stdout, "\n" ); if ( jlo < 1 ) { j2lo = 1; } else { j2lo = jlo; } if ( n < jhi ) { j2hi = n; } else { j2hi = jhi; } for ( j = j2lo; j <= j2hi; j++ ) { fprintf ( stdout, "%5d:", j - 1 ); for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; fprintf ( stdout, " %14g", a[(i-1)+(j-1)*m] ); } fprintf ( stdout, "\n" ); } } return; # undef INCX } /******************************************************************************/ double *r8mat_uniform_01_new ( int m, int n, int *seed ) /******************************************************************************/ /* Purpose: r8mat_uniform_01_new() fills an R8MAT with pseudorandom values scaled to [0,1]. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. This routine implements the recursion seed = 16807 * seed mod ( 2^31 - 1 ) unif = seed / ( 2^31 - 1 ) The integer arithmetic never requires more than 32 bits, including a sign bit. Licensing: This code is distributed under the MIT license. Modified: 30 June 2009 Author: John Burkardt Reference: Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, Springer Verlag, pages 201-202, 1983. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators, ACM Transactions on Mathematical Software, Volume 12, Number 4, pages 362-376, 1986. Philip Lewis, Allen Goodman, James Miller, A Pseudo-Random Number Generator for the System/360, IBM Systems Journal, Volume 8, pages 136-143, 1969. Input: int M, N, the number of rows and columns. int *SEED, the "seed" value. Output: int *SEED: an updated seed. double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values. */ { int i; const int i4_huge = 2147483647; int j; int k; double *r; r = ( double * ) malloc ( m * n * sizeof ( double ) ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i+j*m] = ( double ) ( *seed ) * 4.656612875E-10; } } return r; } /******************************************************************************/ void r8mat_write ( char *output_filename, int m, int n, double table[] ) /******************************************************************************/ /* Purpose: r8mat_write() writes an R8MAT file. Discussion: An R8MAT is an array of R8's. Licensing: This code is distributed under the MIT license. Modified: 01 June 2009 Author: John Burkardt Input: char *OUTPUT_FILENAME, the output filename. int M, the spatial dimension. int N, the number of points. double TABLE[M*N], the data. */ { int i; int j; FILE *output; /* Open the file. */ output = fopen ( output_filename, "wt" ); if ( ! output ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_WRITE - Fatal error!\n" ); fprintf ( stderr, " Could not open the file '%s'.\n", output_filename ); exit ( 1 ); } /* Write the data. */ for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { fprintf ( output, " %g", table[i+j*m] ); /* fprintf ( output, " %24.16g", table[i+j*m] ); */ } fprintf ( output, "\n" ); } /* Close the file. */ fclose ( output ); return; }