# include # include # include # include # include int main ( int argc, char *argv[] ); char ch_cap ( char ch ); int ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); double *fem1d_evaluate ( int node_num, double node_x[], int element_order, int element_num, int value_dim, double value[], int sample_node_num, double sample_node_x[] ); int file_column_count ( char *input_filename ); int file_row_count ( char *input_filename ); int *i4mat_data_read ( char *input_filename, int m, int n ); void i4mat_header_read ( char *input_filename, int *m, int *n ); double *r8mat_data_read ( char *input_filename, int m, int n ); void r8mat_header_read ( char *input_filename, int *m, int *n ); void r8mat_write ( char *output_filename, int m, int n, double table[] ); void r8vec_bracket4 ( int nt, double t[], int ns, double s[], int left[] ); int s_len_trim ( char *s ); int s_to_i4 ( char *s, int *last, int *error ); int s_to_i4vec ( char *s, int n, int ivec[] ); double s_to_r8 ( char *s, int *lchar, int *error ); int s_to_r8vec ( char *s, int n, double rvec[] ); int s_word_count ( char *s ); void timestamp ( ); /******************************************************************************/ int main ( int argc, char *argv[] ) /******************************************************************************/ /* Purpose: MAIN is the main program for FEM1D_SAMPLE. Discussion: FEM1D_SAMPLE reads files defining a 2D FEM representation of data, and a set of sample points, and writes out a file containing the value of the finite element function at the sample points. Usage: fem1d_sample fem_prefix sample_prefix where 'fem_prefix' is the common prefix for the FEM files: * fem_prefix_nodes.txt, the node coordinates. * fem_prefix_elements.txt, the nodes that make up each element; * fem_prefix_values.txt, the values defined at each node. and 'sample_prefix' is the common prefix for the SAMPLE files. (the node file is input, and the values file is created by the program.) * sample_prefix_nodes.txt, the node coordinates where samples are desired. * sample_prefix_values.txt, the values computed at each sample node. Licensing: This code is distributed under the MIT license. Modified: 04 July 2013 Author: John Burkardt */ { char fem_element_filename[255]; int *fem_element_node; int fem_element_num; int fem_element_order; int fem_node_dim; char fem_node_filename[255]; int fem_node_num; double *fem_node_x; char fem_prefix[255]; double *fem_value; int fem_value_dim; char fem_value_filename[255]; int fem_value_num; char sample_prefix[255]; int sample_node_dim; char sample_node_filename[255]; int sample_node_num; double *sample_node_x; int sample_value_dim; int sample_value_num; double *sample_value; char sample_value_filename[255]; timestamp ( ); printf ( "\n" ); printf ( "FEM1D_SAMPLE\n" ); printf ( " C version.\n" ); printf ( "\n" ); printf ( " Read files defining an FEM function of 1 argument.\n" ); printf ( " Read a file of sample arguments.\n" ); printf ( " Write a file of function values at the arguments.\n" ); /* Get the number of command line arguments. */ if ( 1 < argc ) { strcpy ( fem_prefix, argv[1] ); } else { printf ( "\n" ); printf ( "Enter the FEM file prefix:\n" ); scanf ( "%s", fem_prefix ); } if ( 2 < argc ) { strcpy ( sample_prefix, argv[2] ); } else { printf ( "\n" ); printf ( "Enter the sample file prefix:\n" ); scanf ( "%s", sample_prefix ); } /* Create the filenames. */ strcpy ( fem_node_filename, fem_prefix ); strcat ( fem_node_filename, "_nodes.txt" ); strcpy ( fem_element_filename, fem_prefix ); strcat ( fem_element_filename, "_elements.txt" ); strcpy ( fem_value_filename, fem_prefix ); strcat ( fem_value_filename, "_values.txt" ); strcpy ( sample_node_filename, sample_prefix ); strcat ( sample_node_filename, "_nodes.txt" ); strcpy ( sample_value_filename, sample_prefix ); strcat ( sample_value_filename, "_values.txt" ); /* Read the FEM data. */ r8mat_header_read ( fem_node_filename, &fem_node_dim, &fem_node_num ); fem_node_x = r8mat_data_read ( fem_node_filename, fem_node_dim, fem_node_num ); printf ( "\n" ); printf ( " The FEM node dimension is %d\n", fem_node_dim ); printf ( " The FEM node number is %d\n", fem_node_num ); if ( fem_node_dim != 1 ) { printf ( "\n" ); printf ( "FEM1D_SAMPLE - Fatal error!\n" ); printf ( " Spatial dimension of the nodes is not 1.\n" ); exit ( 1 ); } i4mat_header_read ( fem_element_filename, &fem_element_order, &fem_element_num ); fem_element_node = i4mat_data_read ( fem_element_filename, fem_element_order, fem_element_num ); printf ( " The FEM element order is %d\n", fem_element_order ); printf ( " The FEM element number is %d\n", fem_element_num ); r8mat_header_read ( fem_value_filename, &fem_value_dim, &fem_value_num ); printf ( " The FEM value order is %d\n", fem_value_dim ); printf ( " the FEM value number is %d\n", fem_value_num ); if ( fem_value_num != fem_node_num ) { printf ( "\n" ); printf ( "FEM1D_SAMPLE - Fatal error!\n" ); printf ( " Number of FEM values and FEM nodes differ.\n" ); exit ( 1 ); } fem_value = r8mat_data_read ( fem_value_filename, fem_value_dim, fem_value_num ); /* Read the SAMPLE node data. */ r8mat_header_read ( sample_node_filename, &sample_node_dim, &sample_node_num ); sample_node_x = r8mat_data_read ( sample_node_filename, sample_node_dim, sample_node_num ); printf ( "\n" ); printf ( " Sample node spatial dimension is %d\n", sample_node_dim ); printf ( " Sample node number is %d\n", sample_node_num ); if ( sample_node_dim != 1 ) { printf ( "\n" ); printf ( "FEM1D_SAMPLE - Fatal error!\n" ); printf ( " Spatial dimension of the sample nodes is not 1.\n" ); exit ( 1 ); } /* Compute the SAMPLE values. */ sample_value_dim = fem_value_dim; sample_value_num = sample_node_num; sample_value = fem1d_evaluate ( fem_node_num, fem_node_x, fem_element_order, fem_element_num, fem_value_dim, fem_value, sample_node_num, sample_node_x ); /* Write the sample values. */ r8mat_write ( sample_value_filename, sample_value_dim, sample_value_num, sample_value ); printf ( "\n" ); printf ( " Interpolated FEM data written to \"%s\"\n", sample_value_filename ); /* Free memory. */ free ( fem_element_node ); free ( fem_node_x ); free ( fem_value ); free ( sample_node_x ); free ( sample_value ); /* Terminate. */ printf ( "\n" ); printf ( "FEM1D_SAMPLE\n" ); printf ( " Normal end of execution.\n" ); printf ( "\n" ); timestamp ( ); return 0; } /******************************************************************************/ char ch_cap ( char ch ) /******************************************************************************/ /* Purpose: CH_CAP capitalizes a single character. Discussion: This routine should be equivalent to the library "toupper" function. Licensing: This code is distributed under the MIT license. Modified: 19 July 1998 Author: John Burkardt Parameters: Input, char CH, the character to capitalize. Output, char CH_CAP, the capitalized character. */ { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } /******************************************************************************/ int ch_eqi ( char ch1, char ch2 ) /******************************************************************************/ /* Purpose: CH_EQI is TRUE (1) if two characters are equal, disregarding case. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char CH1, CH2, the characters to compare. Output, int CH_EQI, is TRUE (1) if the two characters are equal, disregarding case and FALSE (0) otherwise. */ { int value; if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } if ( ch1 == ch2 ) { value = 1; } else { value = 0; } return value; } /******************************************************************************/ int ch_to_digit ( char ch ) /******************************************************************************/ /* Purpose: CH_TO_DIGIT returns the integer value of a base 10 digit. Example: CH DIGIT --- ----- '0' 0 '1' 1 ... ... '9' 9 ' ' 0 'X' -1 Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char CH, the decimal digit, '0' through '9' or blank are legal. Output, int CH_TO_DIGIT, the corresponding integer value. If the character was 'illegal', then DIGIT is -1. */ { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } /******************************************************************************/ double *fem1d_evaluate ( int node_num, double node_x[], int element_order, int element_num, int value_dim, double value[], int sample_node_num, double sample_node_x[] ) /******************************************************************************/ /* Purpose: FEM1D_EVALUATE evaluates a 1D FEM function at sample points. Licensing: This code is distributed under the MIT license. Modified: 30 April 2009 Author: John Burkardt Parameters: Input, int NODE_NUM, the number of FEM nodes. Input, double NODE_X[NODE_NUM], the nodes. Input, int ELEMENT_ORDER, the element order. Input, int ELEMENT_NUM, the number of elements. Input, int VALUE_DIM, the value dimension. Input, double VALUE[VALUE_DIM*NODE_NUM], the FEM values. Input, int SAMPLE_NODE_NUM, the number of sample points. Input, double SAMPLE_NODE_X[SAMPLE_NODE_NUM], the sample nodes. Output, double FEM1D_EVALUATE[VALUE_DIM*SAMPLE_NODE_NUM], the interpolated FEM values at sample nodes. */ { int i; int l; int r;; int sample; int *sample_left; double *sample_value; /* For each sample point, find NODE_LEFT and NODE_RIGHT that bracket it. */ sample_left = ( int * ) malloc ( sample_node_num * sizeof ( int ) ); r8vec_bracket4 ( node_num, node_x, sample_node_num, sample_node_x, sample_left ); sample_value = ( double * ) malloc ( value_dim * sample_node_num * sizeof ( double ) ); if ( element_order == 1 ) { for ( sample = 0; sample < sample_node_num; sample++ ) { for ( i = 0; i < value_dim; i++ ) { sample_value[i+sample*value_dim] = value[i+sample_left[sample]*value_dim]; } } } else if ( element_order == 2 ) { for ( sample = 0; sample < sample_node_num; sample++ ) { l = sample_left[sample]; r = sample_left[sample]+1; for ( i = 0; i < value_dim; i++ ) { sample_value[i+sample*value_dim] = ( value[i+l*value_dim] * ( node_x[r] - sample_node_x[sample] ) + value[i+r*value_dim] * ( sample_node_x[sample] - node_x[l] ) ) / ( node_x[r] - node_x[l] ); } } } else { fprintf ( stderr, "\n" ); fprintf ( stderr, "FEM_EVALUATE - Fatal error!\n" ); fprintf ( stderr, " Cannot handle elements of this order.\n" ); exit ( 1 ); } free ( sample_left ); return sample_value; } /******************************************************************************/ int file_column_count ( char *input_filename ) /******************************************************************************/ /* Purpose: FILE_COLUMN_COUNT counts the number of columns in the first line of a file. Discussion: The file is assumed to be a simple text file. Most lines of the file is presumed to consist of COLUMN_NUM words, separated by spaces. There may also be some blank lines, and some comment lines, which have a "#" in column 1. The routine tries to find the first non-comment non-blank line and counts the number of words in that line. If all lines are blanks or comments, it goes back and tries to analyze a comment line. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the file. Output, int FILE_COLUMN_COUNT, the number of columns assumed to be in the file. */ { # define LINE_MAX 255 int column_num; char *error; FILE *input; int got_one; char line[LINE_MAX]; /* Open the file. */ input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_COLUMN_COUNT - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } /* Read one line, but skip blank lines and comment lines. */ got_one = 0; for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = 1; break; } if ( got_one == 0 ) { fclose ( input ); input = fopen ( input_filename, "r" ); for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = 1; break; } } fclose ( input ); if ( got_one == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_COLUMN_COUNT - Warning!\n" ); fprintf ( stderr, " The file does not seem to contain any data.\n" ); exit ( 1 ); } column_num = s_word_count ( line ); return column_num; # undef LINE_MAX } /******************************************************************************/ int file_row_count ( char *input_filename ) /******************************************************************************/ /* Purpose: FILE_ROW_COUNT counts the number of row records in a file. Discussion: It does not count lines that are blank, or that begin with a comment symbol '#'. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int FILE_ROW_COUNT, the number of rows found. */ { # define LINE_MAX 255 int comment_num; char *error; FILE *input; char line[LINE_MAX]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_ROW_COUNT - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } fclose ( input ); return row_num; # undef LINE_MAX } /******************************************************************************/ int *i4mat_data_read ( char *input_filename, int m, int n ) /******************************************************************************/ /* Purpose: I4MAT_DATA_READ reads the data from an I4MAT file. Discussion: An I4MAT is an array of I4's. The file is assumed to contain one record per line. Records beginning with the '#' character are comments, and are ignored. Blank lines are also ignored. Each line that is not ignored is assumed to contain exactly (or at least) M real numbers, representing the coordinates of a point. There are assumed to be exactly (or at least) N such records. Licensing: This code is distributed under the MIT license. Modified: 28 May 2008 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Input, int M, the number of spatial dimensions. Input, int N, the number of points. The program will stop reading data once N values have been read. Output, int I4MAT_DATA_READ[M*N], the data. */ { # define LINE_MAX 255 int error; char *got_string; FILE *input; int i; int j; char line[255]; int *table; int *x; input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4MAT_DATA_READ - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } table = ( int * ) malloc ( m * n * sizeof ( int ) ); x = ( int * ) malloc ( m * sizeof ( int ) ); j = 0; while ( j < n ) { got_string = fgets ( line, LINE_MAX, input ); if ( !got_string ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error == 1 ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } fclose ( input ); free ( x ); return table; # undef LINE_MAX } /******************************************************************************/ void i4mat_header_read ( char *input_filename, int *m, int *n ) /******************************************************************************/ /* Purpose: I4MAT_HEADER_READ reads the header from an I4MAT file. Discussion: An I4MAT is an array of I4's. Licensing: This code is distributed under the MIT license. Modified: 28 May 2008 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int *M, the number of spatial dimensions. Output, int *N, the number of points. */ { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_COLUMN_COUNT failed.\n" ); exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_ROW_COUNT failed.\n" ); exit ( 1 ); } return; } /******************************************************************************/ double *r8mat_data_read ( char *input_filename, int m, int n ) /******************************************************************************/ /* Purpose: R8MAT_DATA_READ reads the data from an R8MAT file. Discussion: An R8MAT is an array of R8's. The file is assumed to contain one record per line. Records beginning with the '#' character are comments, and are ignored. Blank lines are also ignored. Each line that is not ignored is assumed to contain exactly (or at least) M real numbers, representing the coordinates of a point. There are assumed to be exactly (or at least) N such records. Licensing: This code is distributed under the MIT license. Modified: 27 January 2005 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Input, int M, the number of spatial dimensions. Input, int N, the number of points. The program will stop reading data once N values have been read. Output, double R8MAT_DATA_READ[M*N], the data. */ { # define LINE_MAX 255 int error; char *got_string; FILE *input; int i; int j; char line[255]; double *table; double *x; input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_DATA_READ - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } table = ( double * ) malloc ( m * n * sizeof ( double ) ); x = ( double * ) malloc ( m * sizeof ( double ) ); j = 0; while ( j < n ) { got_string = fgets ( line, LINE_MAX, input ); if ( !got_string ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error == 1 ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } fclose ( input ); free ( x ); return table; # undef LINE_MAX } /******************************************************************************/ void r8mat_header_read ( char *input_filename, int *m, int *n ) /******************************************************************************/ /* Purpose: R8MAT_HEADER_READ reads the header from an R8MAT file. Discussion: An R8MAT is an array of R8's. Licensing: This code is distributed under the MIT license. Modified: 04 June 2004 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int *M, the number of spatial dimensions. Output, int *N, the number of points. */ { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_COLUMN_COUNT failed.\n" ); exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_ROW_COUNT failed.\n" ); exit ( 1 ); } return; } /******************************************************************************/ void r8mat_write ( char *output_filename, int m, int n, double table[] ) /******************************************************************************/ /* Purpose: R8MAT_WRITE writes an R8MAT file. Discussion: An R8MAT is an array of R8's. Licensing: This code is distributed under the MIT license. Modified: 01 June 2009 Author: John Burkardt Parameters: Input, char *OUTPUT_FILENAME, the output filename. Input, int M, the spatial dimension. Input, int N, the number of points. Input, double TABLE[M*N], the data. */ { int i; int j; FILE *output; /* Open the file. */ output = fopen ( output_filename, "wt" ); if ( !output ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_WRITE - Fatal error!\n" ); fprintf ( stderr, " Could not open the output file.\n" ); exit ( 1 ); } /* Write the data. */ for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { fprintf ( output, " %24.16g", table[i+j*m] ); } fprintf ( output, "\n" ); } /* Close the file. */ fclose ( output ); return; } /******************************************************************************/ void r8vec_bracket4 ( int nt, double t[], int ns, double s[], int left[] ) /******************************************************************************/ /* Purpose: R8VEC_BRACKET4 finds the interval containing or nearest a given value. Discussion: An R8VEC is a vector of R8's. The routine always returns the index LEFT of the sorted array T with the property that either * T is contained in the interval [ T[LEFT], T[LEFT+1] ], or * T < T[LEFT] = T[0], or * T > T[LEFT+1] = T[NT-1]. The routine is useful for interpolation problems, where the abscissa must be located within an interval of data abscissas for interpolation, or the "nearest" interval to the (extreme) abscissa must be found so that extrapolation can be carried out. This version of the function has been revised so that the value of LEFT that is returned uses the 0-based indexing natural to C++. Licensing: This code is distributed under the MIT license. Modified: 30 April 2009 Author: John Burkardt Parameters: Input, int NT, length of the input array. Input, double T[NT], an array that has been sorted into ascending order. Input, int NS, the number of points to be bracketed. Input, double S[NS], values to be bracketed by entries of T. Output, int LEFT[NS]. LEFT[I] is set so that the interval [ T[LEFT[I]], T[LEFT[I]+1] ] is the closest to S[I]; it either contains S[I], or else S[I] lies outside the interval [ T[0], T[NT-1] ]. */ { int high; int i; int low; int mid; /* Check the input data. */ if ( nt < 2 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8VEC_BRACKET4 - Fatal error!\n" ); fprintf ( stderr, " NT must be at least 2.\n" ); exit ( 1 ); } for ( i = 0; i < ns; i++ ) { left[i] = ( nt - 1 ) / 2; /* CASE 1: S[I] < T[LEFT]: Search for S[I] in (T[I],T[I+1]), for I = 0 to LEFT-1. */ if ( s[i] < t[left[i]] ) { if ( left[i] == 0 ) { continue; } else if ( left[i] == 1 ) { left[i] = 0; continue; } else if ( t[left[i]-1] <= s[i] ) { left[i] = left[i] - 1; continue; } else if ( s[i] <= t[1] ) { left[i] = 0; continue; } /* ...Binary search for S[I] in (T[I],T[I+1]), for I = 1 to *LEFT-2. */ low = 1; high = left[i] - 2; for ( ; ; ) { if ( low == high ) { left[i] = low; break; } mid = ( low + high + 1 ) / 2; if ( t[mid] <= s[i] ) { low = mid; } else { high = mid - 1; } } } /* CASE 2: T[LEFT+1] < S[I]: Search for S[I] in (T[I],T[I+1]) for intervals I = LEFT+1 to NT-2. */ else if ( t[left[i]+1] < s[i] ) { if ( left[i] == nt - 2 ) { continue; } else if ( left[i] == nt - 3 ) { left[i] = left[i] + 1; continue; } else if ( s[i] <= t[left[i]+2] ) { left[i] = left[i] + 1; continue; } else if ( t[nt-2] <= s[i] ) { left[i] = nt - 2; continue; } /* ...Binary search for S[I] in (T[I],T[I+1]) for intervals I = LEFT+2 to NT-3. */ low = left[i] + 2; high = nt - 3; for ( ; ; ) { if ( low == high ) { left[i] = low; break; } mid = ( low + high + 1 ) / 2; if ( t[mid] <= s[i] ) { low = mid; } else { high = mid - 1; } } } /* CASE 3: T[LEFT] <= S[I] <= T[LEFT+1]: */ else { } } return; } /******************************************************************************/ int s_len_trim ( char *s ) /******************************************************************************/ /* Purpose: S_LEN_TRIM returns the length of a string to the last nonblank. Licensing: This code is distributed under the MIT license. Modified: 26 April 2003 Author: John Burkardt Parameters: Input, char *S, a pointer to a string. Output, int S_LEN_TRIM, the length of the string to the last nonblank. If S_LEN_TRIM is 0, then the string is entirely blank. */ { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } /******************************************************************************/ int s_to_i4 ( char *s, int *last, int *error ) /******************************************************************************/ /* Purpose: S_TO_I4 reads an I4 from a string. Licensing: This code is distributed under the MIT license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *S, a string to be examined. Output, int *LAST, the last character of S used to make IVAL. Output, int *ERROR is TRUE (1) if an error occurred and FALSE (0) otherwise. Output, int *S_TO_I4, the integer value read from the string. If the string is blank, then IVAL will be returned 0. */ { char c; int i; int isgn; int istate; int ival; *error = 0; istate = 0; isgn = 1; i = 0; ival = 0; while ( *s ) { c = s[i]; i = i + 1; /* Haven't read anything. */ if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = 1; return ival; } } /* Have read the sign, expecting digits. */ else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = 1; return ival; } } /* Have read at least one digit, expecting more. */ else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } /* If we read all the characters in the string, see if we're OK. */ if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = 1; *last = 0; } return ival; } /******************************************************************************/ int s_to_i4vec ( char *s, int n, int ivec[] ) /******************************************************************************/ /* Purpose: S_TO_I4VEC reads an I4VEC from a string. Licensing: This code is distributed under the MIT license. Modified: 19 February 2001 Author: John Burkardt Parameters: Input, char *S, the string to be read. Input, int N, the number of values expected. Output, int IVEC[N], the values read from the string. Output, int S_TO_I4VEC, is TRUE (1) if an error occurred and FALSE (0) otherwise. */ { int error; int i; int lchar; error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } /******************************************************************************/ double s_to_r8 ( char *s, int *lchar, int *error ) /******************************************************************************/ /* Purpose: S_TO_R8 reads an R8 value from a string. Discussion: We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. This routine will read as many characters as possible until it reaches the end of the string, or encounters a character which cannot be part of the real number. Legal input is: 1 blanks, 2 '+' or '-' sign, 2.5 spaces 3 integer part, 4 decimal point, 5 fraction part, 6 'E' or 'e' or 'D' or 'd', exponent marker, 7 exponent sign, 8 exponent integer part, 9 exponent decimal point, 10 exponent fraction part, 11 blanks, 12 final comma or semicolon. with most quantities optional. Example: S R '1' 1.0 ' 1 ' 1.0 '1A' 1.0 '12,34,56' 12.0 ' 34 7' 34.0 '-1E2ABCD' -100.0 '-1X2ABCD' -1.0 ' 2E-1' 0.2 '23.45' 23.45 '-4.2E+2' -420.0 '17d2' 1700.0 '-14e-2' -0.14 'e2' 100.0 '-12.73e-9.23' -12.73 * 10.0^(-9.23) Licensing: This code is distributed under the MIT license. Modified: 24 June 2005 Author: John Burkardt Parameters: Input, char *S, the string containing the data to be read. Reading will begin at position 1 and terminate at the end of the string, or when no more characters can be read to form a legal real. Blanks, commas, or other nonnumeric data will, in particular, cause the conversion to halt. Output, int *LCHAR, the number of characters read from the string to form the number, including any terminating characters such as a trailing comma or blanks. Output, int *ERROR, is TRUE (1) if an error occurred and FALSE (0) otherwise. Output, double S_TO_R8, the value that was read from the string. */ { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = 0; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; /* Blank or TAB character. */ if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } /* Comma. */ else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } /* Minus sign. */ else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } /* Plus sign. */ else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } /* Decimal point. */ else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } /* Exponent marker. */ else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } /* Digit. */ else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } /* Anything else is regarded as a terminator. */ else { iterm = 1; } /* If we haven't seen a terminator, and we haven't examined the entire string, go get the next character. */ if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } /* If we haven't seen a terminator, and we have examined the entire string, then we're done, and LCHAR is equal to NCHAR. */ if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } /* Number seems to have terminated. Have we got a legal number? Not if we terminated in states 1, 2, 6 or 7! */ if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = 1; return r; } /* Number seems OK. Form it. We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. */ if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { if ( jsgn * jtop < -20 ) { rexp = 0.0; } else { rexp = pow ( ( double ) 10.0, ( double ) ( jsgn * jtop ) ); } } else { if ( jsgn * jtop < -20 * jbot ) { rexp = 0.0; } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( ( double ) 10.0, ( double ) rexp ); } } } r = isgn * rexp * rtop / rbot; return r; } /******************************************************************************/ int s_to_r8vec ( char *s, int n, double rvec[] ) /******************************************************************************/ /* Purpose: S_TO_R8VEC reads an R8VEC from a string. Licensing: This code is distributed under the MIT license. Modified: 19 February 2001 Author: John Burkardt Parameters: Input, char *S, the string to be read. Input, int N, the number of values expected. Output, double RVEC[N], the values read from the string. Output, int S_TO_R8VEC, is TRUE (1) if an error occurred and FALSE (0) otherwise. */ { int error; int i; int lchar; error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } /******************************************************************************/ int s_word_count ( char *s ) /******************************************************************************/ /* Purpose: S_WORD_COUNT counts the number of "words" in a string. Licensing: This code is distributed under the MIT license. Modified: 16 September 2015 Author: John Burkardt Parameters: Input, char *S, the string to be examined. Output, int S_WORD_COUNT, the number of "words" in the string. Words are presumed to be separated by one or more blanks. */ { int blank; int word_num; char *t; word_num = 0; blank = 1; t = s; while ( *t ) { if ( *t == ' ' || *t == '\n' ) { blank = 1; } else if ( blank ) { word_num = word_num + 1; blank = 0; } t++; } return word_num; } /******************************************************************************/ void timestamp ( ) /******************************************************************************/ /* Purpose: TIMESTAMP prints the current YMDHMS date as a time stamp. Example: 31 May 2001 09:45:54 AM Licensing: This code is distributed under the MIT license. Modified: 24 September 2003 Author: John Burkardt Parameters: None */ { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); printf ( "%s\n", time_buffer ); return; # undef TIME_SIZE }