#ifndef _CS_H #define _CS_H #ifdef MATLAB_MEX_FILE #include "mex.h" #endif #define CS_VER 1 /* CSparse Version 1.2.0 */ #define CS_SUBVER 2 #define CS_SUBSUB 0 #define CS_DATE "Mar 6, 2006" /* CSparse release date */ #define CS_COPYRIGHT "Copyright (c) Timothy A. Davis, 2006" /* --- primary CSparse routines and data structures ------------------------- */ typedef struct cs_sparse /* matrix in compressed-column or triplet form */ { int nzmax ; /* maximum number of entries */ int m ; /* number of rows */ int n ; /* number of columns */ int *p ; /* column pointers (size n+1) or col indices (size nzmax) */ int *i ; /* row indices, size nzmax */ double *x ; /* numerical values, size nzmax */ int nz ; /* # of entries in triplet matrix, -1 for compressed-col */ } cs ; cs *cs_add (const cs *A, const cs *B, double alpha, double beta) ; int cs_cholsol (const cs *A, double *b, int order) ; int cs_dupl (cs *A) ; int cs_entry (cs *T, int i, int j, double x) ; int cs_lusol (const cs *A, double *b, int order, double tol) ; int cs_gaxpy (const cs *A, const double *x, double *y) ; cs *cs_multiply (const cs *A, const cs *B) ; int cs_qrsol (const cs *A, double *b, int order) ; cs *cs_transpose (const cs *A, int values) ; cs *cs_triplet (const cs *T) ; double cs_norm (const cs *A) ; int cs_print (const cs *A, int brief) ; cs *cs_load (FILE *f) ; /* utilities */ void *cs_calloc (int n, size_t size) ; void *cs_free (void *p) ; void *cs_realloc (void *p, int n, size_t size, int *ok) ; cs *cs_spalloc (int m, int n, int nzmax, int values, int triplet) ; cs *cs_spfree (cs *A) ; int cs_sprealloc (cs *A, int nzmax) ; void *cs_malloc (int n, size_t size) ; /* --- secondary CSparse routines and data structures ----------------------- */ typedef struct cs_symbolic /* symbolic Cholesky, LU, or QR analysis */ { int *Pinv ; /* inverse row perm. for QR, fill red. perm for Chol */ int *Q ; /* fill-reducing column permutation for LU and QR */ int *parent ; /* elimination tree for Cholesky and QR */ int *cp ; /* column pointers for Cholesky, row counts for QR */ int m2 ; /* # of rows for QR, after adding fictitious rows */ int lnz ; /* # entries in L for LU or Cholesky; in V for QR */ int unz ; /* # entries in U for LU; in R for QR */ } css ; typedef struct cs_numeric /* numeric Cholesky, LU, or QR factorization */ { cs *L ; /* L for LU and Cholesky, V for QR */ cs *U ; /* U for LU, R for QR, not used for Cholesky */ int *Pinv ; /* partial pivoting for LU */ double *B ; /* beta [0..n-1] for QR */ } csn ; typedef struct cs_dmperm_results /* cs_dmperm or cs_scc output */ { int *P ; /* size m, row permutation */ int *Q ; /* size n, column permutation */ int *R ; /* size nb+1, block k is rows R[k] to R[k+1]-1 in A(P,Q) */ int *S ; /* size nb+1, block k is cols S[k] to S[k+1]-1 in A(P,Q) */ int nb ; /* # of blocks in fine dmperm decomposition */ int rr [5] ; /* coarse row decomposition */ int cc [5] ; /* coarse column decomposition */ } csd ; int *cs_amd (const cs *A, int order) ; csn *cs_chol (const cs *A, const css *S) ; csd *cs_dmperm (const cs *A) ; int cs_droptol (cs *A, double tol) ; int cs_dropzeros (cs *A) ; int cs_happly (const cs *V, int i, double beta, double *x) ; int cs_ipvec (int n, const int *P, const double *b, double *x) ; int cs_lsolve (const cs *L, double *x) ; int cs_ltsolve (const cs *L, double *x) ; csn *cs_lu (const cs *A, const css *S, double tol) ; cs *cs_permute (const cs *A, const int *P, const int *Q, int values) ; int *cs_pinv (const int *P, int n) ; int cs_pvec (int n, const int *P, const double *b, double *x) ; csn *cs_qr (const cs *A, const css *S) ; css *cs_schol (const cs *A, int order) ; css *cs_sqr (const cs *A, int order, int qr) ; cs *cs_symperm (const cs *A, const int *Pinv, int values) ; int cs_usolve (const cs *U, double *x) ; int cs_utsolve (const cs *U, double *x) ; int cs_updown (cs *L, int sigma, const cs *C, const int *parent) ; /* utilities */ css *cs_sfree (css *S) ; csn *cs_nfree (csn *N) ; csd *cs_dfree (csd *D) ; /* --- tertiary CSparse routines -------------------------------------------- */ int *cs_counts (const cs *A, const int *parent, const int *post, int ata) ; int cs_cumsum (int *p, int *c, int n) ; int cs_dfs (int j, cs *L, int top, int *xi, int *pstack, const int *Pinv) ; int *cs_etree (const cs *A, int ata) ; int cs_fkeep (cs *A, int (*fkeep) (int, int, double, void *), void *other) ; double cs_house (double *x, double *beta, int n) ; int *cs_maxtrans (const cs *A) ; int *cs_post (int n, const int *parent) ; int cs_reach (cs *L, const cs *B, int k, int *xi, const int *Pinv) ; csd *cs_scc (cs *A) ; int cs_scatter (const cs *A, int j, double beta, int *w, double *x, int mark, cs *C, int nz) ; int cs_splsolve (cs *L, const cs *B, int k, int *xi, double *x, const int *Pinv) ; int cs_tdfs (int j, int k, int *head, const int *next, int *post, int *stack) ; /* utilities */ csd *cs_dalloc (int m, int n) ; cs *cs_done (cs *C, void *w, void *x, int ok) ; int *cs_idone (int *p, cs *C, void *w, int ok) ; csn *cs_ndone (csn *N, cs *C, void *w, void *x, int ok) ; csd *cs_ddone (csd *D, cs *C, void *w, int ok) ; #define CS_MAX(a,b) (((a) > (b)) ? (a) : (b)) #define CS_MIN(a,b) (((a) < (b)) ? (a) : (b)) #define CS_FLIP(i) (-(i)-2) #define CS_UNFLIP(i) (((i) < 0) ? CS_FLIP(i) : (i)) #define CS_MARKED(Ap,j) (Ap [j] < 0) #define CS_MARK(Ap,j) { Ap [j] = CS_FLIP (Ap [j]) ; } #define CS_OVERFLOW(n,size) (n > INT_MAX / (int) size) #endif