# include # include # include # include "asa066.h" /******************************************************************************/ void normal_01_cdf_values ( int *n_data, double *x, double *fx ) /******************************************************************************/ /* Purpose: normal_01_cdf_values() returns some values of the Normal 01 CDF. Discussion: In Mathematica, the function can be evaluated by: Needs["Statistics`ContinuousDistributions`"] dist = NormalDistribution [ 0, 1 ] CDF [ dist, x ] Licensing: This code is distributed under the MIT license. Modified: 28 August 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 17 static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.5398278372770290E+00, 0.5792597094391030E+00, 0.6179114221889526E+00, 0.6554217416103242E+00, 0.6914624612740131E+00, 0.7257468822499270E+00, 0.7580363477769270E+00, 0.7881446014166033E+00, 0.8159398746532405E+00, 0.8413447460685429E+00, 0.9331927987311419E+00, 0.9772498680518208E+00, 0.9937903346742239E+00, 0.9986501019683699E+00, 0.9997673709209645E+00, 0.9999683287581669E+00 }; static double x_vec[N_MAX] = { 0.0000000000000000E+00, 0.1000000000000000E+00, 0.2000000000000000E+00, 0.3000000000000000E+00, 0.4000000000000000E+00, 0.5000000000000000E+00, 0.6000000000000000E+00, 0.7000000000000000E+00, 0.8000000000000000E+00, 0.9000000000000000E+00, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.2000000000000000E+01, 0.2500000000000000E+01, 0.3000000000000000E+01, 0.3500000000000000E+01, 0.4000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX }