# include # include # include # include "asa032.h" /******************************************************************************/ void gamma_inc_values ( int *n_data, double *a, double *x, double *fx ) /******************************************************************************/ /* Purpose: gamma_inc_values() returns some values of the incomplete Gamma function. Discussion: The (normalized) incomplete Gamma function P(A,X) is defined as: PN(A,X) = 1/Gamma(A) * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. With this definition, for all A and X, 0 <= PN(A,X) <= 1 and PN(A,INFINITY) = 1.0 In Mathematica, the function can be evaluated by: 1 - GammaRegularized[A,X] Licensing: This code is distributed under the MIT license. Modified: 20 November 2004 Author: John Burkardt Reference: Milton Abramowitz, Irene Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964, ISBN: 0-486-61272-4, LC: QA47.A34. Stephen Wolfram, The Mathematica Book, Fourth Edition, Cambridge University Press, 1999, ISBN: 0-521-64314-7, LC: QA76.95.W65. Parameters: Input/output, int *N_DATA. The user sets N_DATA to 0 before the first call. On each call, the routine increments N_DATA by 1, and returns the corresponding data; when there is no more data, the output value of N_DATA will be 0 again. Output, double *A, the parameter of the function. Output, double *X, the argument of the function. Output, double *FX, the value of the function. */ { # define N_MAX 20 double a_vec[N_MAX] = { 0.10E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.10E+01, 0.10E+01, 0.10E+01, 0.11E+01, 0.11E+01, 0.11E+01, 0.20E+01, 0.20E+01, 0.20E+01, 0.60E+01, 0.60E+01, 0.11E+02, 0.26E+02, 0.41E+02 }; double fx_vec[N_MAX] = { 0.7382350532339351E+00, 0.9083579897300343E+00, 0.9886559833621947E+00, 0.3014646416966613E+00, 0.7793286380801532E+00, 0.9918490284064973E+00, 0.9516258196404043E-01, 0.6321205588285577E+00, 0.9932620530009145E+00, 0.7205974576054322E-01, 0.5891809618706485E+00, 0.9915368159845525E+00, 0.1018582711118352E-01, 0.4421745996289254E+00, 0.9927049442755639E+00, 0.4202103819530612E-01, 0.9796589705830716E+00, 0.9226039842296429E+00, 0.4470785799755852E+00, 0.7444549220718699E+00 }; double x_vec[N_MAX] = { 0.30E-01, 0.30E+00, 0.15E+01, 0.75E-01, 0.75E+00, 0.35E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.15E+00, 0.15E+01, 0.70E+01, 0.25E+01, 0.12E+02, 0.16E+02, 0.25E+02, 0.45E+02 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX }