
Quadrature:
The Trapezoid rule

MATH2070: Numerical Methods in Scientific Computing I

Location: http://people.sc.fsu.edu/∼jburkardt/classes/math2070 2019/quadrature trapezoid/quadrature trapezoid.pdf

Trapezoids are not just for approximate integration! (Pittsburgh’s PNC Tower)

Trapezoidal quadrature

Given a continuous function f(x), and a domain a ≤ x ≤ b, estimate I(f, a, b) ≡
∫ b

a
f(x) dx using

one or more trapezoids.

1 An estimate using one trapezoid

Suppose we want to estimate the integral I(f, a, b) of a function f(x) over the interval [a, b], using a limited
number of sample values. The trapezoid rule suggests the following approximation T (f, a, b):

I(f, a, b) ≈ T (f, a, b) = (b− a) ∗ (f(a) + f(b))/2

It is not hard to see that this approximation is exact if the function f(x) happens to be a constant or linear
function. Otherwise, we know from our polynomial approximation result that we can compare f(x) to the
linear interpolant p2(x)

f(x)− p2(x) =
f”(ξ)

3!
(x− a)(x− b) for some ξ ∈ [a, b]

and this implies, after integration, that

I(f, a, b)− T (f, a, b) =
f”(ξ)

12
(b− a)3

This suggests that, for a fixed function f(x), the quadrature error decreases cubically as (b− a) decreases.

1



2 Example: Does the error drop cubically with interval size?

To verify the error behavior, we compare the exact and estimated integrals of
∫ x2

x1
exp(x) dx as we repeatedly

halve the size of the interval. In this case, we expect that at each step, the error will decrease by a factor
r = 1

8 = 0.125.

1 k x1 x2 i n t quad error r a t e
2
3 0 −1.000000 1.000000 2 .3504 3.08616 7 .3 e−01
4 1 −0.500000 0.500000 1.04219 1.12763 8 .0 e−02 0 .1161
5 2 −0.250000 0.250000 0.505225 0.515707 1 .0 e−02 0 .1227
6 3 −0.125000 0.125000 0.250652 0.251956 1 .3 e−03 0 .1244
7 4 −0.062500 0.062500 0.125081 0.125244 1 .6 e−04 0 .1249
8 5 −0.031250 0.031250 0.0625102 0.0625305 2 .0 e−05 0 .1250
9 6 −0.015625 0.015625 0.0312513 0.0312538 2 .5 e−06 0 .1250

10 7 −0.007812 0.007812 0.0156252 0.0156255 3 .1 e−07 0 .1250
11 8 −0.003906 0.003906 0.00781252 0.00781256 3 .9 e−08 0 .1250
12 9 −0.001953 0.001953 0.00390625 0.00390626 4 .9 e−09 0 .1250
13 10 −0.000977 0.000977 0.00195313 0.00195313 6 .2 e−10 0 .1250

Listing 1: Output from decrease h.m

3 Estimate the error using two trapezoids

Let the notation T2(f, a, b) indicate that we are approximating the integral of f(x) over [a, b] using two
trapezoids. Define x0 = a, x1 = a+b

2 , x2 = b, and write

T2(f, a, b) = T1(f, x0, x1) + T1(f, x1, x2)

=
(x1 − x0)

2
∗ (f(x0) + f(x1)) +

(x2 − x1)

2
∗ (f(x1) + f(x2))

= (x2 − x0) ∗ (
1

2
f(x0) + f(x1) +

1

2
f(x2))/2

We could estimate quadrature error as the difference

E(f, a, b, T1) =

∫ b

a

f(x) dx− T1(f, a, b) ≈ T2(f, a, b)− T1(f, a, b)

but, as explained in Professor Layton’s notes, more accurate estimates are:

E1(f, a, b, T1) =

∫ b

a

f(x) dx− T1(f, a, b) ≈ e1 =
4

3
∗ (T2(f, a, b)− T1(f, a, b))

E2(f, a, b, T2) =

∫ b

a

f(x) dx− T2(f, a, b) ≈ e2 =
1

3
∗ (T2(f, a, b)− T1(f, a, b))

which reflects the expectation that using two trapezoids of half the width (T2) produces an estimate whose
error is reduced by a factor of 1

4 from the T1 estimate.

4 Example: Estimating the error

Consider again the problem of estimating the quadrature error when we are approximating
∫ b

a
exp(x) dx

using T1(f, a, b). Let E1, E2 represent the exact errors in T1(f,a,b) and T2(f,a,b), and let e1, e2 stand
for the corresponding error estimates. For a variety of values of [a, b], we compute and compare the true and
estimated errors:

2



1 a b E1 e1 E2 e2
2
3 0 .00 0 .20 −0.000738 −0.000737 −0.000184 −0.000184
4 0 .10 0 .40 −0.002896 −0.002894 −0.000725 −0.000724
5 0 .20 0 .60 −0.007988 −0.007983 −0.002001 −0.001996
6 0 .30 0 .80 −0.018168 −0.018149 −0.004556 −0.004537
7 0 .40 1 .00 −0.036575 −0.036520 −0.009185 −0.009130
8 0 .50 1 .20 −0.067698 −0.067560 −0.017027 −0.016890
9 0 .60 1 .40 −0.117846 −0.117535 −0.029695 −0.029384

10 0 .70 1 .60 −0.195774 −0.195120 −0.049434 −0.048780
11 0 .80 1 .80 −0.313488 −0.312198 −0.079339 −0.078050
12 0 .90 2 .00 −0.487310 −0.484891 −0.123641 −0.121223

Listing 2: Output from t2 minus t1.m

5 Using n trapezoids

It should be clear that the two trapezoid integral estimate is likely to be more accurate than when only one
trapezoid is used, since the error estimate drops by a factor of 4. This suggests that we might be able to get
further error reductions by repeatedly doubling the number of trapezoids. When a quadrature rule is used
to estimate an integral by dividing it into subintervals and summing the integral estimates, this is known as
a composite rule. For the trapezoid rule that uses n+ 1 equally spaced points x0, x1, ..., xn, (and hence n
trapezoids), the rule Tn(f,a,b) can be written simply as:

I(f, a, b) ≈ Tn(f, a, b) = (b− a) · (0.5 ∗ f(x0) + f(x1) + ...+ f(xn−1) + 0.5 ∗ f(xn)) / n

The first factor represents the width of the interval. The second represents an estimated average value for
f(x) over that interval. This means that the coefficients of the sample values of f(x) should add up to 1.

6 Exercise: A Composite trapezoid rule

Use a trapezoid rule T8 to estimate the integral of the hump() function over the interval [0, 2]. Use the
following pseudocode as a guide.

1 a = 0 .0
2 b = 2 .0
3 n = 8
4 x = n+1 equa l l y spaced va lues between a and b
5
6 q = 0 .5 ∗ fhumpx (1) )
7 loop2 i = 2 to n
8 q = q + hump ( x ( i ) )
9 end loop2

10 q = q + 0 .5 ∗ hump(x (n+1) )
11
12 q = ( b − a ) ∗ q / n
13
14 e = hump int ( a , b ) − q

Listing 3: Pseudocode for T8 quadrature of hump().

7 Exercise: A Sequence of composite trapezoid rules

Use a sequence of trapezoid rules T1, T2, T4, ..., T1024 to estimate the integral of the hump() function
over the interval [0, 2]. Use the following pseudocode as a guide.

3



1 a = 0
2 b = 2
3 q = 0
4 loop1 nlog = 0 to 10
5 n = 2ˆ nlog
6 qold = q
7 x = n + 1 equa l l y spaced va lues between a and b
8 q = 0 .5 ∗ f ( x (1 ) )
9 loop2 i = 2 to n

10 q = q + f ( x ( i ) )
11 end loop2
12 q = q + 0 .5 ∗ f ( x (n+1) )
13 q = ( b − a ) ∗ q / n
14 e = hump int ( a , b ) − q
15 print n , q , e
16 end loop1

Listing 4: Pseudocode for sequence of trapezoid quadratures of hump().

Here’s how your output should start:

1 n Tn(hump, a , b) Error
2
3 1 0.3212981744421901 29
4 2 16.16064908722109 13 .17
5 4 16.17515212981744 13 .15
6 . . . . . . . . .
7 1024 ? ?

Listing 5: First three results for hump trap.m.

8 An algorithm for adaptive integral estimation

By comparing T1(f,a,b) and T2(f,a,b), we can estimate the quadrature error that we make. Suppose that
we wish to estimate the integral of f over an interval [a, b] with an error of no more than tol. We can
do so adaptively, by breaking the interval up into a sequence of subintervals. But rather than being equal
subintervals, we start at the left endpoint, and consider a “small” interval of width h, setting x0 = a, x1 =
a+h/2, x2 = x0 +h. If the error estimate for T2(f, x0, x2) is more than tol∗h

b−a , we cut h in half and retry the

step. If it is less than tol∗h
b−a , we add this to our running estimate for the integral and prepare for the next

step. If the error estimate is less than 8∗tol∗h
b−a , we are actually justified in trying a stepsize of 2 ∗ h on the

next step, otherwise we use h again.

A version of such an adaptive quadrature scheme was discussed in class.

9 Pseudocode for adaptive trapezoid quadrature

1 pseudocode for adapt ive quadrature
2
3 % Set a smal l i n i t i a l h
4
5 h = ( b − a ) / 100 .0
6
7 n = 0
8 q = 0 .0
9 x0 = a

10

4



11 Loop1 to es t imate i n t e g r a l from x0 to x0 + h
12
13 i f b <= x0 ex i t with su c c e s s
14
15 % Estimate the i n t e g r a l and the error .
16 % I f the error i s smal l enough , accept the est imate , and advance x0 .
17 % Otherwise , decrease h and t ry again .
18 %
19 Loop2 to reduce h i f nece s sa ry
20
21 i f n max <= n ) e x i t with error
22
23 % Don’ t go pas t b !
24
25 i f ( b < x0 + h )
26 h = ( b − x0 )
27 x1 = x0 + h / 2 .0
28 x2 = b
29 else
30 x1 = x0 + h / 2 .0
31 x2 = x0 + h
32
33 % Compute i n t e g r a l and error e s t imate s us ing 1 and 2 t r ape zo i d s .
34
35 q1 = h ∗ ( f ( x0 ) + f ( x2 ) ) / 2 .0
36 q2 = h ∗ ( 0 . 5 ∗ f ( x0 ) + f ( x1 ) + 0 .5 ∗ f ( x2 ) ) / 2 .0
37 e1 = abs ( 4 . 0 ∗ ( q2 − q1 ) / 3 .0 )
38 e2 = abs ( ( q2 − q1 ) / 3 .0 )
39
40 % Decide i f h can be increased , or i s about r i gh t , or needs to be reduced .
41
42 i f ( 8 . 0 ∗ e2 <= to l ∗ h / ( b − a ) )
43 h = h ∗ 2 .0
44 q = q + q2
45 x0 = x2
46 n = n + 1
47 break
48 e l s e i f ( e2 <= to l ∗ h / ( b − a ) )
49 h = h
50 q = q + q2
51 x0 = x2
52 n = n + 1
53 break
54 else
55 h = h / 2 .0
56 i f h too smal l then e x i t error
57
58 end loop1
59
60 end loop2
61
62 end

10 Example: Adaptive quadrature of hump() over [0,2]

Consider the quadrature of the hump() function. The function has a very sharp variation in [0.2,0.4] and a
mild variation in [0.6,1.1]. We can imagine that the trapezoid rule would have some trouble around these
bending areas. When we run a simple version of the adaptive code, we get a good estimate for the integral,
and we can see that the program took smaller steps in the problem areas.

1 hump adapt :

5



2 Use adapt ive t rapezo id i n t e g r a t i o n to es t imate
3 the i n t e g r a l o f hump(x ) from 0 to 2 .
4
5 At x0 = 0 .02 , t ry sma l l e r h = 0.01
6 At x0 = 0 .12 , t ry sma l l e r h = 0.005
7 At x0 = 0 .245 , t ry b igge r h = 0.01
8 At x0 = 0 .245 , t ry sma l l e r h = 0.005
9 At x0 = 0 .265 , t ry sma l l e r h = 0.0025

10 At x0 = 0.3475 , t ry b igge r h = 0.005
11 At x0 = 0.3575 , t ry b igge r h = 0.01
12 At x0 = 0.3675 , t ry sma l l e r h = 0.005
13 At x0 = 0.5425 , t ry b igge r h = 0.01
14 At x0 = 0.7725 , t ry b igge r h = 0.02
15 At x0 = 0.8325 , t ry sma l l e r h = 0.01
16 At x0 = 0.9925 , t ry b igge r h = 0.02
17 At x0 = 1.3925 , t ry b igge r h = 0.04
18 At x0 = 1.6725 , t ry b igge r h = 0.08
19 At x0 = 2 , t ry b igge r h = 0.015
20
21 Number o f s ub i n t e r v a l s = 185
22 I n t e g r a l e s t imate = 29.3281
23 Exact i n t e g r a l = 29.3262
24 Error = 0.00190283
25 Error t o l e r an c e = 0.01

Listing 6: Output from hump adapt.m

Although the adaptivity seemed to work reasonably well for hump(), the adaptivity would be much more
necessary in cases where f(x) was highly oscillatory, so that the curve cannot be well approximated by
straight line segments unless they are very small.

11 Assignment #7

Consider the function
f(x) = ex sin(x)

over the interval [a, b] = [0, 2π].

Write a program hw7.m which

1. Uses trapezoid rules Tn(f, a, b) of order n = 2nlog for nlog = 0, 1, 2, ..., 10 to estimate the integral
I(f, a, b);

2. Evaluates the error En(f, a, b) = I(f, a, b)− Tn(f, a, b) (Work out the formula for I(f, a, b)!);

3. Prints n, Tn(f, a, b), En(f, a, b) for the 11 values of n;

Turn in: your file hw7.m by Friday, October 11.

6


