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SUMMARY 
The formulation of the National Centers for Environmental Prediction four-dimensional variational data- 

assimilation (4D-Var) system is described. Results of applying 4D-Var over a one-week assimilation period, with 
a full set of physical parametrizations, are presented and compared with those of 3D-Var. The linearization has 
been performed without simplifications and, therefore, the tangent-linear and adjoint codes are consistent with 
the nonlinear physical parametrizations. The 4D-Var assimilation is similar in formulation to the 3D-Var analysis, 
except that observations are used at the appropriate time in 4D-Var. Compared with the 3D-Var runs, the 4D-Var 
results showed good convergences, smaller analysis increments, and a comparable fit of analyses and short-range 
forecasts to observations. A consistent improvement with the 4D-Var system is observed in short-range (six-hour) 
forecasts of all model variables except the specific humidity. The temperature analyses from 4D-Var were found to 
be better in most of the areas where the analysis errors from 3D-Var were largest, although the globally averaged 
root-mean-square difference in the 4D-Var temperature analysis was larger due to a very small degradation in 
some parts of the globe that include data-rich areas. The globally averaged root-mean-square difference in the 
4D-Var specific-humidity analysis, compared with that of 3D-Var, was larger and was found to result from 
slightly increased analysis-error maxima in the 4D-Var results over data-sparse tropical regions. The 3 4  day 
forecasts from 4D-Var analyses compared more favourably than forecasts from the 3D-Var analyses with the 
targeted mid-Pacific dropwindsonde observations available from the 1998 North Pacific Experiment. Compared 
with conventional observations, a consistent improvement in the 1-5 day forecasts of wind and temperature was 
shown in the tropics and the southern hemisphere. 
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1. INTRODUCTION 

The atmosphere, whose past, present and future changes in weather are of great in- 
terest to meteorologists and to society, is governed by complex mechanical and thermo- 
dynamical laws. These laws can be formulated into a set of partial differential equations 
(the governing equations) which can be solved numerically, but not analytically. The set 
that is solved numerically is usually a simplified, approximate, and discretized form of 
the governing equations. They are solved as an initial-value problem in which atmos- 
pheric states at future times are predicted from the current atmospheric state (initial 
condition). Besides theoretical and arithmetical errors, uncertainties in the initial con- 
ditions are a major source of errors in numerical weather prediction. Four-dimensional 
variational data assimilation (4D-Var) is a logical and rigorous mathematical method 
to obtain the 'best' estimate of the model initial condition-a three-dimensional dis- 
crete representation of the atmosphere-from observational measurements and a priori 
knowledge of the atmospheric state. A cost function that involves a model trajectory 
(an additional time dimension as compared with 3D-Var) has to be minimized, which 
requires the adjoint model in order to solve this problem at a reasonable computing cost. 

Originally, 4D-Var was applied to different theoretical or adiabatic models 
(Le Dimet and Talagrand 1986; Derber 1985; Lewis and Derber 1985; Talagrand and 
Courtier 1987; Courtier and Talagrand 1987; Derber 1989; ThCpaut and Courtier 1991; 
Navon et al. 1992; Chao and Chang 1992). Theoretical analyses suggest that a model 
* Corresponding author: Florida State University, Department of Meteorology, 404 Love Building, Tallahassee, 
FL32306-4520, USA. e-mail: zou@bamboo.met.fsu.edu 
@ Royal Meteorological Society, 2001. 
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that includes diabatic physical processes can provide a better data-assimilation vehicle, 
and reduces the negative impact of the perfect-model assumption in the current 4D-Var 
formulation. A 4D-Var system with physical processes is more adequate than an adia- 
batic version for using observations of quantities derived from physical processes (such 
as rainfall, radar reflectivity, cloud water, and rain water). Direct assimilation of non- 
conventional data, such as rainfall data, requires that the moist physics and its adjoint 
be included in the nonlinear forecast model and in the adjoint model (Zupanski and 
Mesinger 1995; Zou and Kuo 1996; Xiao et al. 2000). Recently, a 4D-Var system, 
with physics ranging from simplified to improved and complex, has been developed 
at ECMWF* (Rabier et al. 1998; Mahfouf and Rabier 2000; Rabier et al. 2000; Klinker 
et al. 2000), at NCEP? using a mesoscale limited-area model (Zupanski and Zupanski 
1995), and at NCARS and Florida State University using a non-hydrostatic mesoscale 
model (Zou and Kuo 1996). Given the many unique features, the encouraging results and 
the future potential of rlD-Var, a major effort has been made towards the development 
of a 4D-Var system using the NCEP global spectral model and its ‘full-physics’ adjoint 
model. This paper reports and describes the recently completed NCEP 4D-Var system 
and presents some preliminary numerical results. 

Development of the NCEP 4D-Var system started with an adiabatic adjoint version 
of the NCEP global spectral model (Navon et al. 1992). Later, some penalty terms were 
added to the cost function to test the control of gravity-wave oscillations in the 4D-Var 
framework (Zou et al. 1993a). The adjoints of two moist physical parametrization 
schemes (grid-scale precipitation and cumulus convection) were then developed and 
included in the 4D-Var assimilation model (Zou et al. 1993b). All these experiments 
were carried out in the absence of a background term, and used NCEP analyses as 
‘observations’. The current paper summarizes the continuing development of a ‘full- 
physics’ NCEP 4D-Var system which combines an operational 3D-Var system (Parrish 
and Derber 1992) with a diabatic version of the NCEP global medium-range forecast 
model and its tangent linear and adjoint models. We compare the numerical results 
obtained using 4D-Var with those of 3D-Var when the same number of conventional 
observations (mainly radiosonde, surface, aircraft, satellite, and dropsonde data) were 
used, and examine the influence of the use of 4D-Var on the analyses and subsequent 
forecasts. 

Note that there are differences between the global forecast model used in this 
study (a version that was operational before 1995) and the current NCEP medium- 
range forecast model, as well as between the 3D-Var system used in this study and 
the current NCEP 3D-Var system. The current operational system uses a simplified 
Arakawa-Schubert scheme for cumulus parametrization, three- six- and nine-hour 
forecasts from the guess fields to interpolate the guess fields to the observation time, a 
constraint on supersaturation and negative specific-humidity values, a new formulation 
of background error defining the spectral statistics as a function of the total wave 
number and allowing a specification of a spatial variance field, a three-dimensional 
ozone analysis, and the use of TOVS-lB§ and GOES¶ radiances. 

The paper is arranged as follows. In section 2, we briefly describe the physical 
processes and their adjoint operators which were not included in our previous studies. 

* European Centre for Medium-Range Weather Forecasts. 
t National Centers for Environmental Prediction. 
$ National Center for Atmospheric Research. 
5 TIROS (Television InfraRed Operational Satellite) Operational Vertical Sounder- 1 B. 
1 Geostationary Operational Environmental Satellite. 
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These include surface processes, vertical diffusion, shallow convection and gravity- 
wave drag parametrizations. An interesting example illustrating challenges related to 
the development of adjoint physics is reported in the same section. Some test results 
showing the validity of the tangent linear model (TLM) with complex physics, as well 
as the correctness of both the tangent linear and adjoint models, are also included in 
section 2. Experimental design and formulations of the 3D-Var and 4D-Var problems 
(the cost functions) are described in section 3. Results of analyses using both 3D-Var 
and 4D-Var are presented in section 4. Forecast differences resulting from 3D-Var and 
4D-Var analyses are shown in section 5. The misfit of the 3D-Var and 4D-Var analyses 
to conventional data are examined and their geographical dependences with respect to 
observations are discussed. Conclusions are presented in section 6. 

2 .  PHYSICAL PROCESSES AND THEIR TANGENT LINEAR AND ADJOINT OPERATORS 

A set of linear and adjoint operators for the physical processes in NCEP’s global 
forecast model has been developed, without any simplification or modification to 
the original schemes. Thus, the main feedback loops between the processes are the 
same as in the original nonlinear forecast model except for radiation. The adjoint 
of radiation processes was developed (Li and Navon 1998), but was not included in 
these experiments. In the following we briefly describe the six physical parametrization 
schemes that, along with their tangent linear and adjoint operators, were included in the 
4D-Var system. 

( a )  Surface processes 
The main purpose of surface processes in the NCEP model is to predict the surface 

(air-ground interface) temperature and humidity, and to estimate the fluxes of momen- 
tum, heat and humidity in the surface layer of the atmosphere (Miyakoda and Sirutis 
1977). The surface-process scheme calculates the surface temperature ( Ts), the subsur- 
face soil temperatures (T,J and Tg.2), the transfer coefficients for momentum and heat 
(CD and CH), the snow melt, the surface specific humidity, and the roughness length 
(7-0). The calculation of the above variables requires the iterative solution of a series of 
implicit nonlinear equations. 

A full linearization of the parametrization scheme for the surface processes was 
performed. A complete adjoint operator for the surface parametrization scheme was 
developed. However, for the experiments that were conducted in this study, the pertur- 
bations for the surface temperature, the subsurface soil temperatures, the snow melt, 
the surface specific humidity, and the roughness length were set to zero, resulting an 
effective partial linearization for variables associated with the calculations of the transfer 
coefficients in the surface boundary layer. 

(6) Vertical difision 
The effects of vertical turbulent eddy transfer of momentum, heat, and moisture 

throughout the atmosphere are represented by a local-K approach. The diffusivity 
coefficients are parametrized as functions of the local Richardson number. The vertical 
diffusion calculation is carried out after the nonlinear dynamics and is added to the 
adiabatic nonlinear tendencies (splitting method). Numerical calculations of the vertical 
diffusion involve the formulation of the diffusion coefficients, the discretization of the 
vertical differentiations, and the set-up of the upper and lower boundary conditions. The 
lower boundary condition is determined by the previously mentioned surface processes. 
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We have done a complete linearization of the original vertical diffusion scheme 
without simplification. When a new variable-dependent denominator is created during 
the course of linearizing the original NLM, we add a small number (determined 
by machine accuracy) to that denominator to avoid abnormal growth of the tangent 
linear perturbation solution. We did not experience a serious convergence problem of 
minimization due to the spurious noise that may still be present in the tangent linear 
perturbation solution of vertical diffusion (Janiskova et al. 1999). 

(c) Shallow convection 
Shallow convection simulates the effect of shallow non-precipitating cumulus clouds 

by carrying out an enhanced vertical diffusion of specific humidity and temperature in 
the model columns that contain a conditionally unstable layer near the surface and in 
which no deep convection has been performed. This allows a vigorous vertical mixing 
of water vapour that would otherwise tend to accumulate near the surface in synoptically 
inactive regions. 

The shallow-convection process is treated in the same way as the model's basic 
vertical diffusion, except that the values of the diffusion coefficient are prescribed. Cloud 
base is determined from the values of the lifting condensation level, which has been 
calculated from the deep-convection cumulus parametrization scheme. The cloud top is 
determined as the minimum between the highest unstable layer and the sixth ~7 layer 
from the model top. 

( d )  Gravity-wave drag parametrization 
The gravity-wave drag parametrization was used as a momentum-damping mech- 

anism to improve the medium-range performance of the NCEP model (Pierrehumbert 
1986)". 

(e)  Moist processes 
Moist processes in the NCEP global model include (i) large-scale precipitation and 

(ii) deep-cumulus convection. The large-scale precipitation simulates the condensation 
of excess water vapour when supersaturation is reached, and turns it into large-scale 
precipitation. Some of the precipitation formed in the upper layers is allowed to re- 
evaporate into the unsaturated lower layers when the condensed water falls through 
them. The cumulus parametrization simulates deep convection. It is modelled by a 
Kuo-Anthes type scheme. A certain amount of moisture convergence, a deep condi- 
tional instability, a warm low-level temperature, and the absence of a low-level inver- 
sion, are required to trigger the convection. Details of these two moist processes have 
been described by Zou et al. (1 993b) and the references therein. We mention that the cur- 
rent NCEP medium-range forecast model uses a simplified Arakawa-Schubert cumulus 
parametrization (Pan and Wu 1995). 

(f) Linear and adjoint operators of the physical processes 
Given the discretized version of a particular physical parametrization scheme in the 

form of a sequence of computer codes, both the tangent linear and the adjoint models 
were constructed by differentiation and transposition of these codes. This process is 
done in two steps: (a) linearize the forward discretized nonlinear model (NLM), with 
respect to the NLM state, to obtain the discretized TLM as a sequence of computer 
* An example of adjoint coding for part of the codes in the gravity-wave drag parametrization is given at 
http://ww w.met.fsu.edu/adjoint. 
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codes in which the ‘on-off’ switches are kept the same as in the NLM (the basic- 
state variables are used for the ‘IF’ statements in the computer code); and (b) view 
the operator (a matrix) of the tangent linear physics, M, as a consequence of multiple 
matrices MN . . . M I ,  and develop the computer codes that represent the transposition 
of these matrices, i.e. MT, MZ, . . . , M;. The matrix MT = MT . . . M: constitutes the 
operator of the adjoint physics. 

Notice that, in the entire adjoint development procedure, we never store a full 
matrix. We are on1 concerned with the following task: given the input Xr to M, or 
the input y, to M,, obtain an output vector of MrXr or MFy,. In other words, we 
do not need the explicit form of the matrices, but are only interested in the result of 
each matrix (the tangent linear operator or adjoint operator) multiplied by a vector (the 
input to the tangent linear operator or to the adjoint operator). Examples have been 
illustrated by Navon et al. (1992), Zou et al. (1993b) and Zou (1996) for the practical 
adjoint coding using the adjoint of finite-difference method (for example, see Sirkes 
and Tziperman 1997). For an adiabatic model, or for simple physics, the logic of the 
numerical calculation in the original nonlinear code is simple and straightforward. For 
other physical processes, it can be very difficult and the adjoint coding can become very 
tricky*. 

1y 

(8) Perturbation solutions and their linear approximations 
The correctness of a TLM may be checked by examining how well its solution 

approximates the difference between the two NLMs’ solutions as the size of the initial 
perturbation tends toward zero. The ratio of the two solutions approaches unity linearly 
as the magnitude of the initial perturbation is reduced. For a finite-amplitude initial 
perturbation, the degree to which the adiabatic TLM solution approximates the NLM 
perturbation solution depends on the degree of nonlinearity, which is related to the 
usefulness of the TLM. 

The difference between the solution and the perturbation solution of a nonlinear 
diabatic model depends, not only on the nonlinearity, but also on discontinuities caused 
by ‘on-off’ switches in the model physical processes. Figure 1 shows the time evolution 
of the globally averaged root-mean-square (rms) temperature difference between the 
perturbed and unperturbed (the basic state) NLM solutions: 

0, a )  = Mt{xo + a(xf) - xo)} Xperturbed NLM 

0 )  = M1 (xo), (2)  
Xbasic state 

where Mt is the operator representing the operations performed in the NLM to obtain 
the model forecast at time t from an initial condition at time to (t z to), xo is the 
NCEP analysis at 00 UTC 21 February 1998, xf) is the NCEP analysis at 00 UTC 

15 February 1998, and a is a real number with its values ranging from lo-’ to lo-’* 
controlling the magnitude of the initial perturbation. Therefore, the initial perturbation 
a h x o  (= a($) - xo)) is the difference between the two analyses multiplied by a factor 
of a. 

We observe from Fig. 1 that the nonlinear perturbation solutions are close to the 
tangent linear solution only when the initial perturbations are very small (a 6 
However, a large discrepancy is observed between the NLM perturbation and its TLM 
* One such example that was encountered i n  developing the adjoint of NCEP’s gravity-wave drag parametrization 
scheme is shown at http://www.met.fsu.edu/adjoint-this example may serve as a test for a comprehensive 
‘automatic’ adjoint-code generator. 
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Figure 1. The time evolution of the globally averaged root-mean-square (rms) differences of the temperature 
perturbation from the tangent linear model (thick solid line with circles) and the nonlinear model (broken lines) 
with the initial perturbation of aSx0 at 00 UTC 21 Februay 1998, with a takmg various values in the range 10-1 
to lo-", 6x0 is the difference between the two analyses at 00 UTC 15 February and 00 UTC 21 February 1998. 

The rms values are normalized by a .  

approximation in the course of the time integration for initial perturbations ranging 
from a = lo-' to a = This behaviour may be attributed to strong nonlinearities 
associated with the physical processes and the presence of the 'on-off' switches in 
various physical parametrization schemes. We notice that, sometimes, the nonlinear 
perturbation solution with a larger initial perturbation (for example a = lo-' (dotted 
line in Fig. 1)) can diverge more slowly from the TLM approximation than the solution 
with a smaller initial perturbation such as a = (dash-double-dots line), indicating 
a strong nonlinear effect in the diabatic forecast model when the initial perturbations are 
not sufficiently small. 

The tangent linear solution for the initial perturbation of a Ax0 can be expressed as 

xTLM(t, a )  = aMt6x0, ( 3 )  

where Mf = 8 M f / 8 x  is the operator of the TLM. We observe from (3) that, as a 
decreases, the rms evolution in time changes only in magnitude. Therefore, we can 
conclude from Fig. 1 that the nonlinear perturbation solutions will not be approximated 
well by the TLM solution when lo-' 3 a 3 without even examining the variation 
of the TLM solution in time, since the shapes of the NLM solutions in this range of a 
change. This conclusion does not depend on how we code the TLM; i.e. whether the 
'on-off' switches are kept the same as in the NLM, or whether the switches are different 
(Zou 1996). From Fig. 1, we find that the TLM solutions with physics approximate the 
NLM perturbation solutions very well when lo-'' 6 a! < but not so well when 
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Figure 2. The six-hour forecasts of the temperature perturbations on the 500 Wa surface from (a) the tangent 
linear model with the initial perturbation of 8x0 and from the nonlinear models with the initial perturbations as in 

Fig. 1 for (b) a = lo-'. (c)  a = and (d) a = w5. 

a 3 The differences between the TLM solutions and the nonlinear perturbation 
solutions when a 6 lo-" are due to round-off errors. 

For correctness, a diabatic TLM may not compare better with a diabatic NLM than 
an adiabatic TLM with an adiabatic NLM. But, for usefulness, a TLM that includes the 
linearized model physics will always compare better with a diabatic NLM than with an 
adiabatic TLM. In an incremental approach, the TLM is used to advance the analysis 
increment forward in time, and the adjoint model is used to calculate the gradient of 
the cost function defined in the TLM. Therefore, the discrepancy between the TLM 
solution and the nonlinear perturbation solution does not affect the accuracy of gradients 
calculated at the inner loops of the minimization. For a non-incremental approach, the 
TLM model is not used and the adjoint model is used to calculate the gradient of the cost 
function, which is defined using the NLM forecasts. As was indicated by Zou (1996) 
and Zhang et al. (2000), the results of an adjoint integration with discontinuous physics 
provide useful subgradient information. The discontinuity in the physical processes, 
however, gives rise to a discontinuous cost function and a discontinuous gradient, which 
may render a minimization problem more difficult to solve. 

In order to compare the TLM forecast results more precisely with those of the NLM, 
we show in Fig. 2 the six-hour forecasts of the 500 hPa temperature perturbation over a 
selected area from the TLM (Fig. 2(a)) and NLM, with various sizes of initial perturba- 
tion represented by the values of a (Figs. 2(b)-(d)). We find that the TLM solution could 
be a very good approximation of the corresponding nonlinear perturbation solutions 
when lo-'' 6 a 6 lo', where .Y varies from - 1 to -4 depending on the physical loca- 
tions of the verification regions. It seems that the initial perturbation should be smaller 
for the TLM to approximate the NLM with the same accuracy over regions where the 
diabatic processes have a larger effect on the atmospheric state than elsewhere. 
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3. DESCRIPTION OF THE 3D-VAR AND 4D-VAR DATA ASSIMILATION EXPERIMENTS 

(a) 3D-Vur system 
The NCEP operational 3D-Var system has been described by Parish and Derber 

(1992), Derber and Wu (1998), and Derber and Bouttier (1999). A brief description is 
provided below: 

An objective function J is defined as a summation of the background term, an 
observational term, and a penalty term: 

T -1 2J(xa) = (Xa - xb) B, (Xa - xb) 

+ {H(xa> - yobsIT R-' {H(xa) - Yobs) + ~ J c ,  (4) 
where xa is an N-component vector of analysis variables (the vorticity, the unbalanced 
part of the divergence, the unbalanced temperature, the logarithm of the unbalanced 
surface pressure, and the water-vapour mixing ratio), Xb is a six-hour forecast from the 
previous cycle of analysis (also known as the background or first guess), and yobs is an 
M-component vector of observations. Bo is a diagonal N x N forecast-error covariance 
matrix, R is an M x M observational-error covariance matrix (including both the 
instrument and the representative errors), H is an observation operator that converts 
the analysis variables on model grids to the observation quantities and locations, and Jc 
is a dynamical constraint term used to increase the balance in the analysis increment. 

Under the transform of 

xa = xb f c z ,  c = (K), ( 5 )  

the cost function becomes a function of z: 

~ J ( z )  = ZTZ 4- {H(Xb + CZ) - yobsjT R-' {H(Xb + CZ) - Yobs] 

Minimization of J with respect to z is carried out by solving the equation 

25,. ( 6 )  

using a perturbation method, where H = aH/ax is the tangent linear of the observation 
operator H ,  and dk = yobs - H ( X b  + Czk). It consists of an outer loop (k) and an inner 
loop for each outer loop. Assume that at the kth iteration ( k  = 1, 2, . . . ), z = Zk and 
x = xk (notice that z1 = 0 and x1 = xb). The value of z at the ( k  + 1)th iteration, zk+l, 
is found by adding a small perturbation 8 k  (to be determined by an inner loop) to zk; i.e. 

zk+l = zk + 8 k .  (8) 
The value of 8k is found by solving the following linear equation 

using a conjugate-gradient algorithm (the inner loop). Equation (9) can be written in an 
explicit form: 

a2 " )  8 k  = - (z, - CTH:R-'dk + - a J C )  (10) 
a2 

(I + C T H ~ R - ~ H ~ C  + - 
a22 

(g g)  Iy , coefficients 
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The data-assimilation cycle using 3D-Var is carried out at six-hour intervals with 
analysis times ( t i )  centred at 00 UTC, 06 uTC, 12 UTC and 18 UTC. Data within t i f 3  h 
are taken as observations at time ti in our 3D-Var experiments (in the current operational 
version, observation increments are calculated at observational times through time 
interpolation). The six-hour model forecast starting from the 3D analysis at the analysis 
time t i  is used as the background field Xb for the 3D analysis at the next analysis 
time ti+l. All the experiments are carried out at the T62L28 resolution. 

(b) 40-Var system 
To facilitate the system validation, 4D-Var experiments were made very similar to 

those of 3D-Var. The two systems have the same background covariance matrix, the 
same observational data, the same spectral resolution used during the minimization, and 
the same number of iterations. The only difference between 3D-Var and 4D-Var was 
that, in 4D-Var, observations were grouped into a smaller one-hour time interval instead 
of a six-hour interval, as in 3D-Var. Specifically, a modification is made to the Jo term 
(the second term in (4) is 2 x Jo)  of the total cost function in 4D-Var experiments: 

where A is the transformation from analysis variable Xa to model variable x, t j  = 
to + j A t ,  A t  = 1 h, and to is the time at the beginning of the six-hour assimilation 
window (e.g. x(to) = Xa). Therefore, NCEP's global spectral model (represented by the 
M operator) is incorporated into the NCEP Spectral Statistical Interpolation analysis 
system, forming the so-called NCEP 4D-Var system. Data within t j  f 0.5 h are assim- 
ilated into the model at time t j  in 4D-Var. The global spectral model and its TLM are 
used to propagate the background field (Xb) and analysis increments (x - Xb) in time. 

The linear equation solved in 4D-Var, corresponding to (10) solved in 3D-Var, is 
modified into 

+ ">. az 

where dk(tj) = Yobs(tj) - H(A- 'M, ,  A(xb + Czk)], MtJ is the NLM operator represent- 
ing the operations performed in the NLM to obtain the model forecast at t j  from an 
initial condition at time to, M,, is the tangent linear operator representing the operations 
performed in the TLM to obtain the model forecast of perturbation at tj  from an initial 
perturbation at time to, and MT is the adjoint model operator representing the operations 
performed in the adjoint model to obtain the gradient of a forecast aspect J with respect 
to the initial condition at time to, given the forcings a J / a x l J  at time tj. 

(c) Experiment design 
A one-week period of data-assimilation cycles from 00 UTC I5 February to 00 UTC 

21 February 1998 was chosen for running both the 3D-Var and 4D-Var experiments. 
This period during February 1998 was selected because of the North Pacific Experiment 
(NORPEX) (Langland et a2. 1999), which took place in the north-eastern Pacific Ocean 
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TABLE 1 .  THE CPU TIMES ON THE 
NCEP CRAY C90 COMPUTER 

CPU times 
Integration (s) 

Six-hour integration 
Nonlinear model 140 
Tangent linear model 250 
Adjoint model 304 

Six-hour 4D-Var 13 850 
3D-Var 220 

20 iterations 

and collected targeted airborne dropwindsonde data. For every 3D-Var and 4D-Var 
minimization, we carried out 20 iterations in total over two outer loops. The small 
number of 20 iterations with two outer loops was used for a one-week period of data- 
assimilation cycles to save computational resources, and was determined by examining 
the convergence rate during a few minimizations with more than 20 iterations. It was 
found that the decrease in the values of the cost function during the initial 20 iterations 
was 75% of the total reduction in 100 iterations. The large number of total 100 iterations 
with four outer loops was carried out for the first one-day cycle to examine the extra 
benefit of more iterations. 

The first 3D-Var minimization was carried out at 00 UTC 15 February 1998 ( to) ,  
followed by a six-hour model forecast starting from the first analysis. The second 
3D-Var was carried out at 06 UTC 15 February 1998 ( t l )  with the six-hour forecast 
from the previous analysis time used as the background field, followed by the next cycle 
of data assimilation. The 4D-Var assimilation cycles started with the first minimization 
being carried out in a six-hour time window of [(to - 3 h), (to + 3 h)] in order to include 
the same observations as the first 3D-Var experiment. The initial condition at the zeroth 
iteration at the time (to - 3 h) used the NCEP background field at 21 UTC 14 February 
1998. The ith 4D-Var experiment was carried out in the ith six-hour window [(ti - 3 h), 
(t i  + 3 h)], where (ti = to + 6 x i h), using the six-hour forecast starting from the 
previous 4D-Var analysis at (ti-1 - 3 h). 

In 4D-Var, the minimization calls the tangent linear model twice and the adjoint 
model once for each inner loop. The NLM is called for each outer loop. The TLM and 
the adjoint model used in the 4D-Var assimilation include all the physical processes 
except radiation, and have the same resolution as the nonlinear full forecast model 
(T62L28). Computational costs on the NCEP CRAY C90 computer for a six-hour time 
integration of the NLM, TLM and adjoint model, and for the 3D-Var and 4D-Var with 
a total of 20 iterations (with two outer loops) are shown in Table 1. The TLM costs 
twice as much as the NLM, and the adjoint model costs more than twice (a factor of 
about 2.2) the cost of the NLM. Most of the computational expenses in 4D-Var are 
due to forward and backward time integrations of the forward models (the NLM and 
TLM) and the adjoint model. A CPU-time increase by a factor of about 60 is observed 
in replacing 3D-Var with 4D-Var, implying the need for ‘wall-clock’ time reduction 
before the 4D-Var can be considered for operational implementation. We mention that 
this factor of 60 may be overestimating the 4D-Var CPU increase for several reasons. 
First, the tangent linear and adjoint models are run at the same resolution as the NLM. If 
the 3D-Var and 4D-Var basic state were run at a resolution of, say, T212 instead of T62, 
the ratio between the 4D-Var CPU time and the 3D-Var CPU time could be reduced by 
a factor of 10. Second, the 3D-Var cost is underestimated due to the use of conventional 
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Number of iterations 

Figure 3. Variations of the values of the cost functions ( J  = Jb + Jo + J c )  during the minimization processes 
of the first seven assimilation cycles (from 06 UTC 15 February to 18 UTC 17 February 1998) for 3D-Var (solid 
line) and 4D-Var (dashed line). The 4D-Var was carried out including all the physics processes. The dot on the 
middle panel represents the value of the cost function calculated using the 3D-Var forecasts (the 3-6 hour forecast 
starting from 18 uTC 15 February for observations during the period 21 UTC 15 February to 00 UTC 16 February 
and the 0-3 hour forecast starting from 00 UTC I6 February for observations during the period 00 UTC to 03 UTC 

I6 February). 

data only. If satellite data, such as GPS* occultation measurements of refraction angles 
(Zou et al. 2000), were included, the 3D-Var cost would be much higher and the ratio 
between 4D-Var and 3D-Var costs would be reduced. For example, if the 3D-Var cost 
is doubled due to the use of indirect observations, the ratio between 4D-Var and 3D-Var 
costs will be reduced from about 60 to about 30. Finally, the data communication is 
carried out by ‘writing to’ and ‘reading from’ a hard disk, which takes much more CPU 
time than keeping the data in memory. 

4. THE FIT OF THE BACKGROUND AND ANALYSIS TO THE DATA 

Figure 3 shows the evolution of the cost function for the seven continuous six- 
hour assimilation cycles from 06 UTC 15 to 00 UTC 17 February 1998 in the 3D-Var 
and 4D-Var experiments. The decrease of J in the 4D-Var results (dashed line) was 
very similar to those for 3D-Var (solid line). This implies that the nonlinearity and 
discontinuity associated with the complicated physics do not cause the minimization to 
fail, which is consistent with the previous work by Zou et al. (1993b), Zou (1996), and 
Zupanski and Mesinger (1995). It is interesting to note that, in the 4D-Var experiments, 
J at the beginning of all the assimilation cycles (at the point defined by the background 
field) was always smaller than in the 3D-Var results. The value of the cost function 
reached at the end of each assimilation cycle in 4D-Var was, in most cases, smaller than 
in 3D-Var, except at 12 UTC 15 February. 

The background term J b  (the first term in (4)) and penalty term Jc were much 
smaller than the observation term .lo, and do not represent major contributors to the 
total cost function. The variation of mismatch between the observations and the model 
fields with respect to the number of iterations thus has a behaviour similar to the total 
* Global Positioning System. 
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TABLE 2. THE ROOT-MEAN-SQUARE DIFFERENCES BE- 
TWEEN THE 3D-VAR AND 4D-VAR BACKGROUND AND 
ANALYSIS FIELDS AND THE OBSERVATIONS (VECTOR 
WIND, TEMPERATURE, SPECIFIC HUMIDITY AND SUR- 
FACE PRESSURE) OVER A ONE-WEEK PERIOD (THE FIRST 

CYCLE IS OMITTED) 

Data V T 4 Ps 
assimilation (m s-') (degC) (kg kg-') (hPa) 

Background 
3D-Var 6.80 1.98 1.28 1.95 
4D-Var 6.43 1.89 1.49 1.81 

Analysis 
3 D - v ~  3.87 1.61 1.13 1.49 
4D-Var 3.83 1.64 1.3 I 1.46 

cost function shown in Fig. 3 for both the 3D-Var and 4D-Var runs, and is not shown 
here. The fact that the fit to the observations is slightly better in 4D-Var than in 3D-Var 
is surprising, since in 4D-Var the forecast-model constraint is imposed to the time 
evolution of analysis increments, which is not required in 3D-Var. By examining the 
assimilation results carefully, we find that the better fit to observations in 4D-Var was 
due to the fact that the observational times were being considered more precisely in 
4D-Var than in 3D-Var. In 4D-Var the fit to observations of model fields means the 
fit to observations of the fields from the assimilation window, tj - 3 h to ti + 3 h, at 
the time of the observations as defined by Jo,  whereas in 3D-Var the fit as given by 
Jo is measured using a single 'analysis' time field, t i ,  irrespective of the observation 
times. The nonlinear and linear forecast models are used for evolving the backgrounds 
and analysis increments in 4D-Var. Using the 3-6 forecasts from the previous 3D-Var 
analysis at 18 UTC 15 February, and the 0-3 hour forecasts from the current analysis 
at 00 UTC 16 February to calculate the value of the cost function, we obtained an even 
larger value of the cost function (the dot in the middle panel of Fig. 3) than in 3D-Var. 
This implies that the distance to the observations of the short-range forecast from the 
3D-Var analysis is larger than that from the 4D-Var analysis. This suggests that 4D-Var 
may produce better quality time-continuous reanalysis data than 3D-Var, a task that is 
not limited by the operational constraint on computational time. 

The fit of the background and analyses to the observations at each analysis time 
(3D-Var) or six-hour assimilation window (4D-Var) was computed and averaged over 
the one-week period of data-assimilation cycles, omitting the first cycle. Results are 
presented in Table 2. Compared with the 3D-Var analyses, the 4D-Var analyses fit the 
radiosonde wind and surface pressure data better, but fit the temperature and specific- 
humidity data less well. The fit of the 4D-Var background fields to the radiosonde 
temperature, wind and surface pressure observations is better than the fit of the 3D-Var 
backgrounds to the observations. The 4D-Var background and analysis of the specific 
humidity do not fit as well as those of the 3D-Var. This may be related either to large 
model errors in the humidity field, or to the inadequate specification of background- 
error variances for specific humidity in the 4D-Var, or to both. The weak dynamical link 
between the moisture and other variables and the very few observations in the tropics, 
where the specific humidity is largest, are also reasons for a poor moisture analysis. 
Further efforts are required to improve the global analysis of moisture variables. 
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TABLE 3. THE ROOT-MEAN-SQUARE DIFFERENCES 
BETWEEN THE 3D-VAR AND 4D-VAR ANALYSES 
AND THE CONVENTIONAL DATA (VECTOR WIND, 
TEMPERATURE, SPECIFIC HUMIDITY AND SURFACE 

PRESSURE) OVER L A N D  DURING A ONE-DAY PERIOD 

Data V T 4 
assimilation (rn s-') (degC) (kg kg-I) In ps  

20 iterations 
3D-VX 5.04 1.52 0.81 1.52 
4 D - v ~  4.91 1.59 0.88 1.49 

100 iterations 
3D-VX 4.49 1.29 0.73 1.39 
4 D - v ~  4.31 1.38 0.87 1.33 

The units for p s  are Wa. 

5 .  3D-VAR AND 4D-VAR RUNS WITH INCREASED NUMBER OF ITERATIONS 

In order to see how the data-assimilation results change if more iterations (>20) 
are camed out for each analysis (for 3D-Var) or six-hour assimilation (for 4D-Var), and 
how the 4D-Var data-assimilation results differ from those of the 3D-Var, we repeated 
the first one-day assimilation cycles with 100 iterations for each minimization. Both the 
convergence and the spatial distributions of the rms differences between the analyses 
and the conventional data are examined. 

The fit of analyses with 20 and 100 iterations to conventional data over land 
are shown in Table 3. Both the 3D-Var and the 4D-Var with 100 iterations improve 
the analysis fit to the observations in all model fields, compared with analyses with 
20 iterations. Compared with 3D-Var, the fit of the 100 iteration 4D-Var analysis to the 
observations shows a similar result to the 20 iteration run: an improved fit in the wind 
and surface pressure fields, and a degraded fit in the temperature and specific-humidity 
fields. We mention, however, that the wind analysis over the ocean in the 100 iteration 
run of 3D-Var is degraded in comparison with its 20 iteration run. Further study is 
required to understand what could have caused this to happen. 

Figure 4 shows the rms errors of the 3D-Var and 4D-Var analyses of wind for all 
the observations in the six-hour window centred at 00 UTC 16 February. The 4D-Var 
fit to observations was much better than that of 3D-Var at all times in the assimilation 
window. (Notice that the observations at the 3D-Var analysis time are in the middle of 
the 4D-Var assimilation window). Again, we note that the operational NCEP 3D-Var 
system uses three-hour, six-hour and nine-hour forecasts from the previous analysis for 
the calculation of the innovation vectors. This modification noticeably improves the 
3D-Var fit to data at times different from the analysis times. This enhancement, however, 
is not included in these 3D-Var runs. We notice from Fig. 4(a) that the 4D-Var fit to the 
observations at the beginning of the assimilation window is poorest, which could be 
caused by the adjustment in the model state at the initial time (21 UTC 15 February) due 
to model errors when the observations at the future times (t  > 21 UTC 15 February) are 
closely fitted. 

To gain some insights into where the misfits come from, we examine the spatial dis- 
tributions of the rms differences between the analyses and the observations at 00 UTC 
16 February 1998 for each field (Figs. 5-9). For the wind analysis (Fig. 5) ,  we find 
that the rms differences based on 3D-Var are largest over the western Atlantic and the 
Pacific Oceans (Fig. 5(a)). The 4D-Var procedure significantly reduced these differences 
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Figure 4. (a) The root-mean-square differences between the observations for the six-hour wind data centred at 
00 UTC 16 February 1998 and the 3D-Var (solid line) and 4D-Var (dashed line) analyses after 100 iterations, 
and (b) the total number of wind observations at different times during the six-hour window. The horizontal axis 

indicates the time (in hours) before and after the central analysis time. 

(Fig. 5(b)). The rms differences of the wind analyses are distributed more homoge- 
neously in 4D-Var than in 3D-Var. The differences between the two rms differences 
(Fig. 5(c)) show more clearly where the 4D-Var improved the fit to the wind observa- 
tions (negative areas) and where it fits the wind observations less well (positive areas). 
The 4D-Var reduced the wind analysis errors mostly over oceans near the eastern coasts 
in the northern hemisphere. The wind analysis errors are slightly increased over land 
near the western coasts, and some degradation is also seen in the eastern oceanic areas. 
The geographical locations where large improvements are observed in the fit to wind 
observations by 4D-Var are found to be closely correlated with the locations where a 
high number of wind observations are available (Fig. 5(d)). It seems that 4D-Var is able 
to fit the wind analysis better than 3D-Var. The maximum error reduction in the wind 
fields by 4D-Var is found to be over data-rich oceanic regions. 

It is less obvious how the differences in the temperature analyses are associated 
with the distribution of observations (Fig. 6). Comparing the spatial distributions of the 
rms differences in temperature between 3D-Var and 4D-Var (Figs. 6(a) and (b)), it is 
surprising to find larger numbers of extrema of the rms differences from 3D-Var than 
in 4D-Var. For example, there are nine rms error extrema in the 3D-Var analysis where 
the rms errors of temperature exceed 4 degC, while there are only three such difference 
extrema in the 4D-Var analysis. The differences between the rms errors of 4D-Var and 
3D-Var over areas where 3D-Var fits the observations better are below 1 degC. On the 
other hand, the differences between rms errors of 4D-Var and 3D-Var over areas where 
4D-Var fits the observations better are as large as 5 degC. However, the positive areas 
of the 4D-Var analysis errors minus the 3D-Var analysis errors (Fig. 6(c)) cover a larger 
portion of the globe and include data-rich areas such as the USA, the east coast of China, 
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Figure 5. The spatial distributions of the root-mean-square differences of wind between the analyses and 
observations at 00 UTC 16 February 1998 after one-day cycles of data assimilation: (a) 3D-Var, (b) 4D-Var. 
(c) differences between 4D-Var and 3D-Var, and (d) the number of wind observations in a 4 x 6 grid box. Contour 

intervals are 2 m SKI for (a), (b) and (c) and 200 for (d). 
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Figure 6. As Fig. 5, but for temperature. Contour intervals are 1 degC for (a), (b) and (c) and 100 for (d). 
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7. As Fig. 5 ,  but for specific humidity. Contour intervals are 1 g kg-* for (a) and (b), 0.5 g kg-' for (c) 
and 30 for (d). 
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As Fig. 5 ,  but for surface pressure. Contour intervals are 1 hPa for (a), (b) and (c)  and 50 for (d). 
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and Australia (Fig. 6(d)). Globally, this results in larger rms differences in the 4D-Var 
temperature analysis than 3D-Var. Regionally, 4D-Var fits the observations much better 
than 3D-Var over several local areas, particularly those where 3D-Var differences are 
large. 

Figures 7 and 8 are similar to Figs. 5 and 6 except that they are for the specific 
humidity and surface pressure fields, respectively. The rms differences of the moisture 
analyses in both 3D-Var and 4D-Var are largest over the data-sparse tropical oceanic 
regions (Fig. 7(a) and (b)). Over data-rich regions (see Fig. 7(d)), the analysis differ- 
ences are small in both analyses. The difference maxima in 4D-Var correspond to the 
difference maxima in 3D-Var, except that maximum values are usually slightly higher 
in 4D-Var than in 3D-Var. However, some improvement in the 4D-Var moisture analysis 
fit to observations is found in the southern hemisphere (Fig. 7(c)). From these results, 
we feel that a slight modification to the background difference variance of moisture in 
4D-Var may bring the moisture analysis differences in 4D-Var to a level similar to those 
in 3D-Var. Further change in the moisture analysis can be expected by including more 
satellite data, which are sensitive to the moisture content in the atmosphere over tropical 
regions. In general, the analysis differences of the surface pressure compared with the 
observations are smaller in 4D-Var than in 3D-Var over the globe. Large analysis differ- 
ences in the surface pressure found in 3D-Var in the southern hemisphere (Fig. 8(a)) are 
significantly smaller in 4D-Var (Fig. 8(b)). 

6. FORECAST RESULTS FROM 3 D - V A R  AND 4D-VAR ANALYSES 

An important test of analysis quality is the resultant accuracy of the forecasts. In 
order to obtain further understanding of the 4D-Var analysis results, 1-5 day forecasts 
have been conducted starting with the 3D-Var and 4D-Var analyses from 00 UTC 
16 February to 00 UTC 21 February 1998. These forecasts are compared with the 
NORPEX targeted aircraft dropwindsonde data and the conventional radiosonde data. 

(a)  Forecast verijication with NORPEX targeted dropwindsonde data 
The NORPEX field program took place over the north-east Pacific Ocean for the 

period 28 January to 31 February 1998 to study the impact of targeted dropwindsonde 
and satellite observations on 1-4 day model forecasts of weather. Here, we use the 
targeted dropwindsonde data deployed by high-altitude jet aircraft as verification data 
for the 1-5 day forecasts from the 3D-Var and 4D-Var analyses. There were about 33 
aircraft dropwindsonde profiles available around 00 UTC 20 February and 40 aircraft 
dropwindsonde profiles around 00 UTC 22 February 1998 over the mid-Pacific area 
north of Hawaii. These dropwindsonde data were distributed along the flight track (see 
dots in Fig. 10) in a baroclinic zone. The fit of the four-day forecasts from the 3D-Var 
and 4D-Var analyses at 00 UTC 16 February 1998 (after one day of data-assimilation 
cycles) is shown in Fig. 9. The forecast from the 4D-Var analysis produced, on average, 
a closer fit to the dropwindsonde data than the forecast from the 3D-Var analysis. The 
largest improvement of the 4D-Var forecast over the 3D-Var forecast was found near 
500 hPa. The large differences between 3D-Var and 4D-Var analyses, when verified 
with dropsondes over the central Pacific, are partly due to the exclusion of all satellite 
radiance data from our experiments. 

The differences in the fit of the four-day forecasts to the NORPEX dropwindsonde 
data at 00 UTC 20 February 1998 partially reflect the differences between the 3D-Var 
and the 4D-Var forecasts near a tropospheric jet region. Figure 10 shows the predicted 
wind speed distributions at 500 hPa (Fig. 10(a)) and the difference between the two 
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Figure 9. The root-mean-square differences of (a) wind (m SKI) and (b) temperature (degC) between the four- 
day forecasts and all the dropwindsonde data at 00 UTC 20 February 1998 from 3D-Var (solid lines) and 4D-Var 

(dashed lines) experiments. The numbers of dropsondes are indicated in Fig. 10. 

(Fig. lO(b)). The aircraft dropwindsonde data obtained in the 1998 NORPEX were 
located mostly in the south of the jet axis and the jet-exit region. The jet in the 4D-Var 
forecast is narrower and more to the west than the jet in the 3D-Var forecast. The wind- 
speed difference is negative at the jet-axis region and positive north and south of the 
jet in mid latitudes. The differences between the 3D-Var and 4D-Var forecasts and the 
dropwindsonde data could have been greater if these dropwindsonde verification data 
were located further to the north. 

Differences in the temperature fields on the 500 hPa of the four-day forecast 
(Figs. 1O(c) and (d)) are mainly in the distribution of the mid-latitude thermal ridge. 
The thermal ridge in the 4D-Var forecast is behind that of the 3D-Var forecast. Tem- 
perature differences between the 3D-Var and 4D-Var forecasts (Fig. 10(d)) show a 
positive-negative dipole structure along the thermal ridge, strongly reflecting the phase 
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Figure 10. The four-day forecasts of (a) wind and (b) temperature on the 500 hPa surface at 00 UTC 20 February 
1998 from the 4D-Var (solid lines) and 3D-Var (dashed lines) analyses at 00 UTC 16 February 1998 after a one-day 
cycle of assimilation, and the differences between the forecasts from the 4D-Var and 3D-Var analyses of (c) wind 
and (d) temperature on the 500 hPa surface at 00 UTC 20 February 1998. Contour intervals for (a), (b). (c) and (d) 

are 10 m s-', 2 degC, 4 m SKI, and 1 degC, respectively. 
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Figure 11. Cross-sections of the four-day forecasts of (a) wind and (c) temperature along the longitude 176" W at 
00 UTC 20 February 1998 from the 4D-Var (solid line) and 3D-Var (dashed line) analyses at 00 UTC 16 February 
1998 after a one-day cycle of assimilation, and of the differences between the forecasts from the 4D-Var and 
3D-Var analyses of (b) wind and (d) temperature. Contour intervals for (a), (b), (c), and (d) are 6 m s-I, 1 m s-', 

4 degC, and 0.5 degC, respectively. 
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TABLE 4. THE ROOT-MEAN-SQUARE WIND (m S - '  ) AND TEMPERATURE (degC) DIFFERENCES BETWEEN 
T H E  FORECASTS FROM THE 3D-VAR A N D  4D-VAR ANALYSES AND NORPEX DROPWINDSONDE DATA AT 

oOUTCFEBRUARY1998 

1 -day forecasts 2-day forecasts 3-day forecasts 4-day forecasts 

3D-Var 4D-Var 3D-Var 4D-Var 3D-Var 4D-Var 3D-Var 4D-Var 

Wind 5.44 5.18 6.48 6.50 10.41 9.34 8.06 7.65 
Temperature 2.25 2.23 2.70 3.19 3.93 3.83 4.28 3.84 

TABLE 5.  THE ROOT-MEAN-SQUARE WIND (m S - I )  AND TEMPERATURE (degC) DIFFERENCES BETWEEN 
THE FORECASTS FROM THE 3D-VAR AND 4D-VAR ANALYSES AND CONVENTIONAL DATA OVER A 

ONE-WEEK PERIOD 

1-day forecasts 2-day forecasts 3-day forecasts 4-day forecasts 5-day forecasts 

3D-Var 4D-Var 3D-Var 4D-Var 3D-Var 4D-Var 3D-Var 4D-Var 3D-Var 4D-Var 

Southern hemisphere 
Wind 7.6 5.41 8.14 6.43 8.34 7.13 8.50 7.90 8.73 8.18 
Temperature 3.03 2.95 3.75 3.49 4.17 3.93 4.70 4.67 4.69 4.63 

Tropics 
Wind 6.99 6.24 7.69 7.24 9.32 7.91 8.69 8.36 9.50 9.19 
Temperature 2.43 2.42 2.81 2.81 3.28 3.25 3.65 3.64 3.93 3.88 

Northern hemisphere 
Wind 8.39 7.85 10.18 9.87 11.73 11.72 13.36 13.33 15.16 .15.24 
Temperature 2.89 2.87 3.78 3.84 4.50 4.55 5.17 5.21 5.57 5.33 

differences in the two forecasts. The magnitude of the temperature differences for the 
two four-day forecasts was as large as 2.5 degC at 500 hPa. 

Figure 11 shows a cross-section of the temperature and wind fields along the south- 
to-north flight track at 176"W. We find that the mid-latitude front and the upper-level jet 
were stronger in the 4D-Var simulation than in the 3D-Var simulation. The maximum 
differences in wind and temperature between the two simulations were as large as 
7 m s-l and 2.5 degC. 

Since the data assimilation was done in a cycling mode, we can also examine 
the differences in the 1-4 day forecasts compared with the same dropwindsonde data 
at 00 UTC 20 February 1998. The overall performances of the 3D-Var and 4D-Var 
forecasts, ranging from 1-4 days and verified by these dropwindsonde data, are provided 
in Table 4. We find that, except for the two-day forecast, the one-day, three-day and four- 
day forecasts from the 4D-Var analyses, as verified by the NORPEX dropwindsonde 
data, are better than the forecasts from the 3D-Var analyses. 

During the NORPEX experiment, targeted dropwindsonde observations were also 
available at 00 UTC 22 February over the north Pacific ocean. Comparing the 3D-Var 
and 4D-Var forecasts with these dropwindsonde observations, the same positive impact 
of 4D-Var is found. 

(b) Forecast verification with conventional observations 
In this section, the 1-5 day forecasts are compared with all the conventional data. 

The model forecasts were initialized with analyses obtained during the one-week period 
of data-assimilation cycles. Results are presented in Table 5. 
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Improvements in the wind and temperature forecasts due to the use of 4D-Var are 
found in the southern hemisphere and tropics. In the northern hemisphere, improvement 
to the model forecasts is found only in the wind field. The temperature forecasts show 
mixed results, with slight improvements in the one-day and five-day forecasts, and a 
degradation in the two- to four-day forecasts. These results are encouraging since the 
4D-Var system used a small number of iterations, a static 3D-Var background-error 
covariance matrix, and conventional data only. 

7. CONCLUSIONS AND DISCUSSIONS 

This paper presents the first results produced using a newly developed NCEP 4D-Var 
system. A one-week period of experimentation with a resolution of T62L28, including a 
comprehensive set of physics parametrizations (with the exception of radiation) and 
the 1997 operational 3D-Var background formulation, have been studied. The one- 
week period was chosen from the NORPEX field experiment, for which targeted 
dropwindsonde data were available for forecast verification. We find that the very-short- 
range forecasts used as backgrounds were consistently closer to the data in 4D-Var than 
in 3D-Var. The analysis increments in 4D-Var at each analysis cycle were smaller than 
those in 3D-Var when observations were fitted to a similar level in both experiments. 
These results are consistent with the findings in Rabier et al. (2000) using ECMWF's 
3D-Var and 4D-Var systems. Model forecasts from the 4D-Var analyses compared 
better than 3D-Var with the targeted dropwindsonde data available during the NORPEX 
experiment. The forecast verifications by conventional observations showed mixed 
results. The 1-5 day 4D-Var forecasts are better for both wind and temperature fields 
over the southern hemisphere and tropics when compared with 3D-Var forecasts. In the 
northern hemisphere, 4D-Var improved one- to four-day wind forecasts but degraded 
the five-day forecast. Temperature fields were improved on forecast days one and five, 
but degraded on forecast days two to four. 

The numerical results of 4D-Var shown in this paper are mainly presented for the 
purpose of system validation. This first version of the 4D-Var system has been made as 
similar as possible to the 3D-Var system. The two systems used six-hour assimilation 
windows, the same amount of data, the same number of iterations, the same spectral 
resolution, and the same quality control for observations. Satellite data have not yet been 
included in the 4D-Var system. There is room for further improvement of the 4D-Var 
results by including satellite data, speeding up the convergence rate, and modifying the 
current use of 3D-Var background information in the 4D-Var system. 

The high computational cost of the 4D-Var system has limited us to a one-week 
period of experimentation. A one-week assimilation is certainly not enough to draw firm 
conclusions on the performance of a forecast system. Aspects of the 4D-Var analysis, 
including reduction of rms increments and better fit of the background to observations, 
are more robust than the forecast scores, given the similarity of these analysis features 
to those obtained at ECMWF. "he potential advantages of using 4D-Var in operations 
have not been investigated. The development of a diabatic global 4D-Var system, how- 
ever, will permit the exploration of scientific and practical issues that are related to 
the operational use of 4D data assimilation. These issues include improving the min- 
imization algorithm, modifying the 4D-Var background term, defining a new 4D-Var 
configuration with physical processes activated during selective periods of the mini- 
mization, optimizing the 4D-Var code, and running it on a multi-processor massively- 
parallel computer. More comprehensive tests, with longer periods of assimilation, will 
be conducted when some of these issues are resolved. 
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APPENDIX 

The correctness check of the 4D-Var system with ‘full-physics’ linear and adjoint 
models 

First, the correctness of the tangent linear and adjoint operators of all the physical 
processes is carefully checked in isolation. These operators are then linked to the 
adiabatic version of the NCEP model and its adjoint. The correctness of the ‘full- 
physics’ TLM is tested against the NLM by a Taylor expansion and the correctness 
of the ‘full-physics’ adjoint model is tested against the ‘full-physics’ TLM through an 
algebraic equality equation (Navon et al. 1992). 

Table A.l shows some of the test results, From Table A.l and many other test 
results not shown here, we feel that both the tangent linear and the adjoint models of 
the NCEP global forecast model with ‘full-physics’ are constructed correctly and are 
used for the further examination of the linear model with physics (section 2.8) and the 
4D-Var experiments in section 4. 

Having correctly developed the ‘full-physics’ tangent linear and adjoint models, 
we proceed with the linkage of these models to the NCEP 3D-VAR analysis system. 

TABLE A.1. CORRECTNESS CHECK OF THE TANGENT LINEAR 
AND ADJOINT MODELS WITH ‘FULL-PHYSICS’ 

(a) Tangent linear model test 

10-1 
10-2 
10-3 
10-4 

10-6 
10-7 
10-8 

10-10 
10-1 ’ 

1.00000230 
1 .OooOo860 
0.99999999 
1.00000000 
0.99999991 
0.99999843 
0.99999493 
0.99987260 
0.99821241 
1.04891570 
0.87474641 

0.3318034167069~ lo7 0.3318034167091 x lo7 

xo is the NCEP guess field at to (18 UTC 20 February 1998). h is 
taken as XO, x’(~R) is the two-hour forecast of the TLM, and ?(to) is 
the result of the adjoint model integration starting with % ( f R )  = x’(~R) 
at the time t~ . 
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TABLE A.2. GRADIENT CHECK WITH THE 
‘FULL-PHYSICS’ ADJOINT MODEL 

10-1 1.12857500 
10-2 1.01285740 

1 .OO128570 
10-4 1.00012860 

1 .OW0 1 290 

10-7 0.99999996 
10-8 0.99999936 

1.00000940 
10-10 1.00033 100 
lo-” 0.99490424 
10-12 1.00495380 
10-13 1.00495380 
10-14 2.00990760 

10-6 1 .00000 120 

xo is the NCEP guess field at to (18 uTC 
20 February 1998). 

A gradient check follows after the linkage is done. The cost function J used for the 
gradient check included observations over a six-hour window from 15 UTC 20 February 
to 21 UTC 20 February 1998. Test results are presented in Table A.2. We find that 
the gradient calculation using the ‘full-physics’ adjoint model has a similar degree of 
accuracy to that using the adiabatic adjoint model (Navon et al. 1992). 
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