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Numerical Comparison of 
Iterative Ensemble Kalman 
Filters for Unsaturated Flow 
Inverse Modeling
Xuehang Song, Liangsheng Shi, Ming Ye, Jinzhong Yang,* 
and I. Michael Navon
This study evaluated three algorithms of the iterative ensemble Kalman 
filter (EnKF). They are Confirming EnKF, Restart EnKF, and modified Restart 
EnKF developed to resolve the inconsistency problem (i.e., updated model 
parameters and state variables do not follow the Richards equation) in 
vadose zone data assimilation due to model nonlinearity. While Confirming 
and Restart EnKF were adapted from literature, modified Restart EnKF was 
developed in this study to reduce computational costs by calculating only 
the mean simulation, not all the ensemble realizations, from time t = 0. A 
total of 11 cases were designed to investigate the performance of EnKF, 
Confirming EnKF, Restart EnKF, and modified Restart EnKF with different 
types and spatial configurations of observations (pressure head and water 
content) and different values of observation error variance, initial guess of 
ensemble mean and variance, ensemble size, and damping factor. The 
numerical study showed that Confirming EnKF produced considerable 
inconsistency for the nonlinear unsaturated flow problem, which differs from 
the apparent consensus opinion that Confirming EnKF can resolve the incon-
sistency problem. In contrast, Restart EnKF and its modification can resolve 
the inconsistency problem. Restart EnKF and its modification outperformed 
EnKF and Confirming EnKF in the various cases considered in this study. It ws 
also found that combining different types of observations can achieve bet-
ter assimilation results, which is useful for monitoring network design.

Abbreviations: EnKF, ensemble Kalman filter; IC,               inconsistency.

Inverse modeling is always required in vadose zone modeling to estimate optimum 
soil hydraulic parameters in soil water retention and hydraulic conductivity functions 
and to quantify parameter uncertainty (Vrugt et al., 2008). Among various inverse 
approaches, data assimilation methods have become popular because they can update 
not only model parameters (e.g., soil hydraulic parameters) but also system states (e.g., 
hydraulic head). The ensemble Kalman filter (EnKF) (Evensen, 1994, 2009; Burgers et 
al., 1998) is one of the most popular sequential data assimilation methods, and it has 
been recently used for soil moisture estimating (Reichle, 2008) and inverse modeling 
in vadose zone hydrology (e.g., Li and Ren, 2011; Wu and Margulis, 2011, 2013). As a 
Monte Carlo method, EnKF avoids evolving the covariance matrix of the probabilistic 
distribution function of the state vector (Johns and Mandel, 2007). It does not require 
the direct calculation of the objective function value or the evaluation of the tangent 
linear operator (as in the extended Kalman filter) or adjoint equations (as in variational 
data assimilation). Furthermore, EnKF is inherently compatible with parallel computa-
tion techniques because each ensemble member can be independently run on a different 
processor. Although EnKF does not require linearization of nonlinear systems, however, 
EnKF may not be suitable for parameter estimation for highly nonlinear systems (Sakov 
et al., 2012) because nonlinear systems always correspond to non-Gaussian distribu-
tions of model parameters and model errors. A vadose zone system is highly nonlinear 
due to a rapid change in surface moisture (the driving force) and, more importantly, 
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the nonlinear relation between soil moisture and pressure head. 
Therefore, research is needed to better understand the applicabil-
ity of EnKF to vadose zone inverse modeling.

When applying EnKF to unsaturated flow inverse modeling, 
the nonlinearity may cause a possible inconsistency between 
updated parameters and updated system states, i.e., updated 
pressure heads and soil hydraulic parameters do not follow the 
Richards equation. It happens because EnKF updates model 
parameters and state variables synchronously using linear update 
formulae, which cannot guarantee that the updated parameters 
and state variables follow the nonlinear Richards equation. An 
extreme example is that updates of the state variables are physi-
cally unreasonable, e.g., water saturations being <0 or >1.0. 
While the extreme cases can be easily identified and fixed, the 
inconsistency problem is always hidden and difficult to resolve. 
In addition, the inconsistency may accumulate in assimilation 
steps and will eventually lead to incorrect parameter estimates 
and model predictions. There is an urgent need to resolve the 
inconsistency problem.

Considerable attention has been paid to resolve the problems 
of nonlinearity and inconsistency in ensemble data assimila-
tion, and various approaches have been developed. One of the 
most prominent methods is the particle filter (Moradkhani, 
2005; Montzka et al., 2011; Rings et al., 2012), which uses a set 
of particles to represent the posterior density and thus makes 
no restrictive assumption about the probability density func-
tion of the state vector. There are also other approaches such 
as merging EnKF and particle filter (Hoteit et al., 2008) and 
modifying EnKF (e.g., the non-Gaussian EnKF of Anderson, 
2010). This study focused on the iterative EnKF, which modi-
fies EnKF to include an option of updating the state variables 
by rerunning the nonlinear model with the updated model 
parameters. In comparison with the other approaches for 
nonlinear systems, iterative EnKF is still within the frame-
work of EnKF and thus theoretically straightforward. The 
concept of iterative updating can be traced back to Jazwinski 
(1970) and Navon (1998) for global and local iterations of 
the extended Kalman filter; the difference between global 
and local iterations is whether the update is conducted across 
many assimilation cycles (global) or across a single assimila-
tion cycle (local). For EnKF, global and local iterations can 
be found in Vrugt et al. (2005) and Zupanski and Collins 
(2005), respectively. With respect to the starting time of each 
iteration, iterative EnKF algorithms can be classified into two 
categories: (i) a Confirming EnKF (Wen and Chen, 2006) 
that reruns the nonlinear model from the previous assimilat-
ing step (Moradkhani et al., 2005; Wen and Chen, 2006; Li 
and Reynolds, 2007; Lorentzen and Naevdal, 2011); and (ii) 
a Restart EnKF that reruns the nonlinear model from time 
zero (Reynolds et al., 2006; Gu and Oliver, 2007; Thulin 
et al., 2007; Wang et al., 2010; Chen, 2012; Elsheikh et al., 

2013). Hendricks Franssen and Kinzelbach (2008) compared 
EnKF, Confirming EnKF, and Restart EnKF in a numerical 
study of synthetic groundwater modeling with moderately and 
strongly heterogeneous transmissivity fields and found that the 
latter two methods gave only slightly better results than EnKF. 
The seemingly consensus opinion is that Confirming EnKF 
can resolve the inconsistency problem. However, Zafari and 
Reynolds (2007) showed in theoretical and numerical stud-
ies that Confirming EnKF cannot resolve the inconsistency 
problem. This study contributes to the debate in the context 
of vadose zone modeling through a numerical study.

The objective of this study was twofold: (i) to conduct a compre-
hensive numerical study for better understanding the strength 
and weakness of Confirming EnKF and Restart EnKF; and 
(ii) to modify the Restart EnKF algorithm to improve its com-
putational efficiency because rerunning the nonlinear model 
from time zero is computationally expensive. The numerical 
study showed that the inconsistency problem occurs in EnKF 
results and cannot be resolved by using Confirming EnKF but by 
Restart EnKF. This finding is consistent with that of Zafari and 
Reynolds (2007) but different from that of Hendricks Franssen 
and Kinzelbach (2008) and thus challenges the seemingly con-
sensus opinion that Confirming EnKF has been accepted as a 
common practice in many studies to alleviate inconsistency (Gu 
and Oliver, 2006; Krymskaya et al., 2008; Hendricks Franssen 
and Kinzelbach, 2008; Li et al., 2010; Zagayevskiy et al., 2012; 
Zhang et al., 2012).

The numerical experiments of this study have several unique 
features. First, different from the previous studies of data 
assimilation that have been focused on one-dimensional homo-
geneous or layered soil columns (e.g., Montzka et al., 2011; Lü 
et al., 2011; Li and Ren, 2011; Wu and Margulis, 2011), this 
study looked at two-dimensional, heterogeneous soils with 
more complicated f low patterns and a larger number of state 
variables. It revealed challenges of applying existing EnKF 
algorithms to more realistic vadose modeling in randomly 
heterogeneous soils. The numerical experiment also compre-
hensively investigated the factors (observation error variance, 
initial guess, and ensemble size) that may affect the possible 
inconsistency in data assimilation. The damping factor and 
two types of observations (pressure head and water content) 
were also considered. The damping factor was used in the 
manner of Wu and Margulis (2011) to reduce filter divergence. 
Evaluating data values of the two types of observations is help-
ful to design monitoring networks for site characterization and 
reduction of predictive uncertainty, as reported in previous 
studies (Abbaspour et al., 2000; Jacques et al., 2002; Abbasi 
et al., 2003a, 2003b; Zhang et al., 2003; Mirus et al., 2009; 
Verbist et al., 2009; Wöhling and Vrugt, 2011). The EnKF, 
Confirming EnKF, Restart EnKF, and modified Restart EnKF 
are described, followed by a discussion of the numerical results. 
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 6Unsaturated Flow and 
Ensemble Kalman 
Filter Methodologies
Governing Equation
This study considered a two-dimensional, transient unsaturated 
flow system in a randomly heterogeneous soil. The unsaturated 
flow is govern by the Richards equation:
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where q is the soil volumetric water content [L3/L3], t is time [T], h 
is the soil water pressure head [L], K(h) is the unsaturated hydrau-
lic conductivity [L/T], x is the horizontal coordinate [L], z is the 
vertical coordinate [L], and S(t,z,h) is the root water uptake or 
other source–sink term [T-1]. Solution of Eq. [1] requires a rela-
tion describing the soil water retention characteristics. The van 
Genuchten–Mualem (van Genuchten, 1980) equation is one of 
the most widely used relations:
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is the effective water saturation (dimensionless), qr and qs are the 
residual and saturated volumetric water contents [L3/L3], respec-
tively, Ks is the saturated hydraulic conductivity [L/T], a and n are 
parameters related to the soil pore-size distribution (dimension-
less), and m = 1 – 1/n (dimensionless). Hysteresis of water retention 
curves was not considered in this study. With the given boundary 
and initial conditions, Eq. [1] can be solved using standard Galerkin 
finite element methods. The variably saturated finite element code 
SWMS-2D of Šimůnek et al. (1994) was used in this study.

Ensemble Kalman Filter with 
Augmented Vector
The EnKF method is briefly described here. Detailed description 
of the method can be found in Evensen (1994) and Naevdal et al. 

(2005). The augmented vector, yn, of model parameters and state 
variables is denoted as
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where mn and un are the vectors of model parameters (e.g., hydraulic 
conductivity) and state variables (e.g., pressure head) , respectively, 
at time tn. For a set of observations dobs,n, available at time t = tn, 
its relation with the true but unknown state variable dtrue,n and the 
true augmented state vector ytrue,n can be expressed as

= + = +obs true, obs, true, obs,,n n n n nd d Hye e  [6]

where eobs,n is observation error, which is assumed to be Gaussian 
with mean E(eobs,n) = 0 and the covariance of observation error 

n
CD  = E(eobs,neobs,n

T). It is assumed that the observation error is 
uncorrelated at different observation times. The observation opera-
tor, H, represents the relation between the augmented state vector 
and the observation vector.

Ensemble Kalman filter is a Monte Carlo method with Ne ensem-
ble members of yn. For each member, the model parameters and 
state variables in vector yn are updated simultaneously by updating 
the model analysis, yn

a, from the model forecast, yn
f, via

( )= + -a f f
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where the subscript j represents the jth realization of the ensemble, 
duc,n,j is a randomly perturbed observation according to Eq. [6], 
and Kn is the Kalman gain, defined as
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and the covariance matrix, f f
n ny yC , is estimated by
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where áyn
fñ denotes the ensemble mean of yn

f.

In the study of Hendricks Franssen and Kinzelbach (2008), a 
damping factor was introduced to reduce the inbreeding problem 
that results in increasing underestimation of ensemble variance 
with time. This is achieved by decreasing the magnitude of the 
update by revising Eq. [7] as

( )= +a -a f f
, , uc, , ,n j n j n n j n jy y K d Hy  [10]

where a is the damping factor, with values between 0 and 1. Wu 
and Margulis (2011, 2013) conducted a similar operation but lim-
ited the damping factor to the parameter update. Because model 
parameters and state variables were updated in two separate steps 
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in this study, the damping factor was used in the manner of Wu 
and Margulis (2011).

Confirming, Restart, and Modified Restart 
Ensemble Kalman Filters
Figure 1 illustrates the basic ideas of Confirming EnKF, Restart 
EnKF, modified Restart EnKF, as well as their major differences 
from the original EnKF. Confirming EnKF includes in EnKF an 
additional step, called “confirming”, to ensure that the updated 
state variables and model parameters are consistent, which, how-
ever, may be only “plausibly consistent” (Aanonsen et al., 2009) 
because Confirming EnKF cannot resolve the inconsistency prob-
lem, as shown below. At each assimilation step, Confirming EnKF 
updates the only model parameter vector mn and subsequently uses 
the updated parameters to compute the state variable vector un at 
time tn by running the simulator again from the previous time 
tn−1 via

( )® -=a a a
, -1 , 1,,n j n n n j n jfu m u  [11]

where fn−1®n refers to the model simulator from time n − 1 to n.

The major difference between Confirming EnKF and Restart 
EnKF is the starting time of rerunning the forward model. Instead 

of rerunning from the previous time, Restart EnKF reruns from 
time zero via

( )®=a a
, 0 , 0,,n j n n j jfu m u  [12]

where f0®n refers to the model simulator from time 0 to tn. This 
update procedure is different from that of Gu and Oliver (2007) 
because local optimization for further parameter updating was 
not conducted in this study due to computational cost. Including 
the parameter update using local optimization at each assimila-
tion step is expected to improve the performance of Restart EnKF. 
While Eq. [12] makes Restart EnKF intrinsically consistent, as 
shown below, the computational cost of Restart EnKF is unaf-
fordable for computationally expensive models because it requires 
rerunning all the ensemble members from t = 0 at each assimila-
tion step.

To improve the computational efficiency of Restart EnKF, a modi-
fied Restart EnKF was developed in this study to rerun only the 
mean of the ensemble. The modification is based on the obser-
vation that the ensemble spread is similar in EnKF, Confirming 
EnKF, and Restart EnKF at any assimilation step, regardless of 
the prediction values of the three algorithms. In each assimilation 
step of the modified Restart EnKF, only the model parameters 
are updated, and the mean of the updated model parameters is 
approximated by
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The ensemble mean is used to rerun the simulator from time zero 
to the current time to estimate an updated mean of the state vari-
ables via

( ) ( )®»re a
0n n nE f Eu m  [14]

Subsequently, a new ensemble of the state variables is constructed 
by replacing the mean of each realization with the new one in two 
steps. The first step consists in evaluating the fluctuation of the 
EnKF ensemble realizations around their mean via
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The second step is to construct the ensemble of the modified 
Restart EnKF by imposing the updated mean on the fluctuation 
of the forecast ensemble via

( )= +Da re f
, ,n j n n jEu u u  [16]

It should be noted that the modified Restart EnKF is based on 
two assumptions. First, the state variables computed by the param-
eter ensemble mean are regarded as an approximation of the state 

Fig. 1. Flowcharts of (a) original ensemble Kalman filter (EnKF), (b) 
Confirming EnKF, (c) Restart EnKF, and (d) modified Restart EnKF; 
t0 is the initial time, mn and un are the vectors of model parameters 
(e.g., hydraulic conductivity) and state variables (e.g., pressure head) 
, respectively, at time tn, ámnñ and áunñ are the means of mn and un, 
respectively, the superscript f indicates forecast and the superscript a 
indicates assimilated.
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variable ensemble mean. The other assumption is that parameter 
variances change slightly in each assimilation step, which is the 
reason why the fluctuation of the state variable corresponding to 
the updated parameters can be replaced by that of the forecast. 
While the second assumption is not difficult to satisfy (because 
the observation information is gradually incorporated into the 
assimilation), the first one is strict and is satisfied only when 
the parameter ensemble mean is the same as the apparent mean 
obtained through perturbation theories (e.g., Ye et al., 2004) or 
the effective mean obtained using spectrum theories (e.g., Yeh et 
al., 1985).

 6Numerical Experiments
Experiment Design
A synthetic experiment was designed to evaluate the four EnKF 
algorithms mentioned above in 11 cases (Table 1), with different 
values of the observation error variance, initial mean and variance, 
ensemble size, and damping factor, as well as different types of 
observations and configurations. Figure 2 shows a sketch of the 
synthetic problem. The size of the two-dimensional domain is 200 
by 200 [L2], and the domain is discretized into a grid with 50 by 
50 uniform elements, each of which has the size of 4 by 4 [L2]. 
The bottom and two lateral sides are impervious boundaries, and 
the top side is composed of steady-state rainfall of 0.2 [L/T]. The 
initial pressure head is -200 [L] at the top and gradually changes to 
0 at the bottom, representing a hydrostatic condition. A reference 
field of log hydraulic conductivity (Y = lnKs) was generated by a 
Karhunen–Loeve expansion (Zhang and Lu, 2004), with mean áYñ 
= álnKsñ = 2, variance sY

2 = 0.7, and a separated exponential cova-
riance function. The horizontal and vertical correlation lengths 
of the reference Y field and initial Y realizations were 50 [L] and 
20 [L], respectively. The remaining parameters in Eq. [2] and [3] for 
the unsaturated flow problems were assumed to be deterministic 

constants, with qr = 0.0001, qs = 0.399, a = 0.0174, and n = 1.3757. 
The pressure head, h, and moisture content, q, observations at 20 
locations were drawn from the simulation with the true param-
eters. The total simulation time was 200 [T]; the initial time step 
was 0.001 [T], the minimum time step was 0.001 [T], and the 
maximum time step was 0.5 [T]. The observations every 1 [T] were 
assimilated.

Evaluation of the Algorithms for the 
Inconsistency Problem
The performances of the four EnKF algorithms were evaluated in 
this study using the root mean square error (RMSE):
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and Ensemble Spread
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where xi
t is the reference value of the logarithm 

of the hydraulic conductivity, Y, or the pressure 
head, h, a

ix  and VAR(xi
a) are the ensemble 

mean and variance, respectively, at each 
element, and Ng = 2500 is the number of ele-
ments in the computational grid. The RMSE 
measures the deviation between the ensemble 
mean and reference field, and the ensemble 
spread represents the estimated uncertainty of 
the ensemble. Lower RMSE indicates better 
estimation. If the uncertainty of the state is 
estimated properly, the ensemble spread should 
be close to the RMSE. The inconsistency (IC) 

Table 1. Parameter sets for 11 cases of numerical experiments with observations of pressure head 
h and water content q.

Case
Observation 
error variance

Mean of initial 
realizations

Variance of initial 
realizations

No. of 
realizations

Damping 
factor Observations

Reference – 2.0 0.7 – – –

Case 1 0.64 2.0 0.7 1000 1 20 h

Case 2 64 2.0 0.7 1000 1 20 h

Case 3 0.64 2.0 0.4 1000 1 20 h

Case 4 0.64 2.0 1.0 1000 1 20 h

Case 5 0.64 3.0 0.4 1000 1 20 h

Case 6 0.64 3.0 1.0 1000 1 20 h

Case 7 0.64 2.0 0.7 100 1 20 h

Case 8 0.64 2.0 0.7 1000 0.1 20 h

Case 9 0.0025 3.0 1.0 1000 1 20 q

Case 10 0.64 h, 0.0025 q 3.0 1.0 1000 1 10 h, 10 q

Case 11 0.64 h, 0.0025 q 3.0 1.0 1000 1 10 h, 10 q

Fig. 2. Study domain, boundary conditions, and 20 locations (squares) 
for observations of pressure head and moisture content.
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between Y and h is indirectly measured by comparing the mean 
values before and after rerunning the simulator via

( )
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IC
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i i
i

x x
N

 [19]

where r
ix  is the mean of h computed by rerunning the simulator 

from time zero. Smaller IC values suggest smaller inconsistency.

The inconsistency problem was investigated in Case 1 (Table 1), in 
which the mean and variance of the initial realizations of the Y field 
were set to 2.0 and 0.7, respectively, the same as those of the refer-
ence Y field. A relatively large ensemble size of 1000 was used to 
constrain spurious correlations and the resulting filter divergence, 
which may happen with a small ensemble size. Figure 3 compares 
the RMSE and ensemble spread of Y and h for EnKF, Confirming 
EnKF, Restart EnKF, modified Restart EnKF, and an uncondi-
tional run without data assimilation. It shows that the results of 
Restart EnKF and modified Restart EnKF are similar and sig-
nificantly better than those of EnKF and Confirming EnKF. The 
RMSE values of Y for EnKF and Confirming EnKF can even be 
larger than those of an unconditional model run without data 
assimilation. After t = 25, the RMSE of Y and h increased dra-
matically for EnKF and Confirming EnKF. This was attributed to 
inconsistency and its accumulation with time because Fig. 4 shows 
that the IC values of EnKF and Confirming EnKF increased rap-
idly after t = 25. On the contrary, the IC values are zero for Restart 
EnKF and remained low for the modified Restart EnKF. Figures 
3 and 4 suggest that, while the inconsistency problem cannot be 
resolved by Confirming EnKF, it can be resolved by Restart EnKF 
and its modification. Figure 5 plots the spatial distribution of IC 
at different time steps for EnKF, Confirming EnKF, and modified 
Restart EnKF. It shows that the inconsistency started at the top 

of the domain and gradually moved downward with the wetting 
front. The inconsistency was the largest for Confirming EnKF and 
smallest for the modified Restart EnKF.

Fig. 3. Comparison of (a) RMSE of Y (lnKS, the saturated hydraulic 
conductivity), (b) RMSE of pressure head h, (c) ensemble spread of Y, 
and (d) ensemble spread of h of four ensemble Kalman filter (EnKF) 
algorithms and an unconditional run without assimilation in Case 1.

Fig. 4. Inconsistency (IC) values for pressure head h of the four ensem-
ble Kalman filter (EnKF) algorithms in Case 1.

Fig. 5. Inconsistency (IC) values of the original ensemble Kalman 
filter (EnKF), Confirming EnKF, and modified Restart EnKF at (a–c) 
time t = 10, (d–f ) t = 20, (g–i) t = 50, and (j–m) t = 100 in Case 1.
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Spatial distributions of the mean and variance of the estimated Y 
fields of the four EnKF algorithms at t = 200 are shown in Fig. 6 
and 7. Figure 6 also illustrates the reference and initial Y field. The 
estimated Y fields were similar for Restart EnKF and its modifica-
tion; they captured the patterns of the reference field and were better 
than those of EnKF and Confirming EnKF, which contained a large 
number of aberrant points. The contours of sY in Fig. 7 are similar 
for the four methods, which was also true for other time steps, as 
indicated by the ensemble spread shown in Fig. 3. This suggests that 
the four methods exhibit similar performance in terms of ensemble 
spreading, which is the basis of the modified Restart EnKF.

Effects of Data Assimilation Parameters
We investigated the performance of EnKF, Confirming EnKF, 
Restart EnKF, and the modified Restart EnKF in eight cases 
(Table 1) under different parameters, i.e., observation error vari-
ance, initial mean and variance, ensemble size, and damping factor. 
The inconsistency under the different parameters and its damage 
to the assimilation results wee particularly analyzed. Case 1 is the 
base case to mimic the reference case, and the other seven cases 
were adjusted from Case 1. The rationales of designing the seven 

cases are given below. The assimilation data are the pressure head 
values observed at the locations shown in Fig. 2.

Observation Error Variance
Case 2 wass identical to Case 1, except that the observation error 
variance increased from 0.64 to 64, considering that pressure 
head measurement errors can be substantial. Equation [7] sug-
gests that a larger observation error variance 

eDC  will lead to 
a smaller correction to the forecast. Therefore, a larger obser-
vation error may lead to less numerical inconsistency of EnKF 
in nonlinear problems. Figure 8 shows the values of RMSE and 
ensemble spread in Cases 1 and 2. The RMSE curves suggest that 
Restart EnKF and modified Restart EnKF produced poorer Y 
estimates when the observation error variance was larger, while 
the results of the original EnKF and Confirming EnKF were 
somewhat improved due to the alleviated inconsistency. However, 
the inconsistency problem still existed for EnKF and Confirming 
EnKF, as shown in Fig. 9, which plots the IC values of Case 2. 
The ensemble spread curves are higher when measurements with 
lower precision are used due to the smaller magnitude of correc-
tion during the assimilation.

Initial Guess of Ensemble Mean and Variance
In EnKF, the initial realizations of Y are generated based on the 
prior information (e.g., mean and variance) and may deviate from 
the true field. The effects of the prior variance on the performance 
of the four EnKF algorithms were investigated by decreasing the 
value of the prior variance from 0.7 in Case 1 to 0.4 in Case 3 and 
increasing it to 1.0 in Case 4; the value of the prior mean remained 

Fig. 6. Spatial distribution of (a) reference Y (lnKS, the saturated 
hydraulic conductivity), (b) initial Y, and assimilated Y of (c) original 
ensemble Kalman filter (EnKF), (d) Confirming EnKF, (e) Restart 
EnKF, and (f ) modified Restart EnKF at time t = 200 in Case 1.

Fig. 7. Spatial distribution of variance of Y (lnKS, the saturated hydrau-
lic conductivity) for (a) original ensemble Kalman filter (EnKF), (b) 
Confirming EnKF, (c) Restart EnKF, and (d) modified Restart EnKF 
at time t = 200 in Case 1.
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at 2.0. Cases 5 and 6 are identical to Cases 3 and 4, respectively, 
except that the value of the prior mean increased from 2.0 to 3.0.

Figure 10 compares the RMSE values of Y in Cases 1, 3, and 4. 
The figure shows that, when there is no rerunning in the original 
EnKF, the RMSE values are smaller when the initial variance value 
is larger (Fig. 10a). When the rerunning was for the assimilation 
step from tn−1 to tn in Confirming EnKF, the RMSE values were 
similar for the three prior variance values in early assimilation steps 
but became larger for larger initial values in later steps (Fig. 10b). 
In this case study, the value of the prior variance barely affected the 
RMSE curves of Restart EnKF and its modification (Fig. 10c and 
10d). There are two reasons for the lower dependence of the prior 
variance for Restart EnKF and the modified Restart EnKF. The 
first is that the prior means for Cases 1, 3, and 4 were identical. If 
the algorithms ran correctly (without divergence or inconsistency), 
the RMSE curves for Cases 1, 3, and 4 should be close. The second 
reason is that the given prior variances for Cases 1, 3, and 4 were 
large enough to capture the possible real Y field. For example, if 
a very small variance of 0.0001 was given to Case 3, a constant 

RMSE would be produced and a large difference between Case 1 
and Case 3 would be observed.

Figure 11 compares the RMSE values of Y in Cases 3 to 6, in which 
the initial mean increased from áYñ = 2.0 (the true value) in Cases 
3 and 4 to áYñ = 3.0 in Cases 5 and 6. For all four EnKF algo-
rithms, the RMSE values of Cases 5 and 6 are larger than those of 
Cases 3 and 4, indicating the effects of the initial guess of áYñ on 
the data assimilation results. Because the modified Restart EnKF 
depends on áYñ more than the other three algorithms, caution 
should be used when the prior mean value is uncertain. In Cases 
5 and 6, Restart EnKF and its modification outperformed EnKF 
and Confirming EnKF because the former two methods have 
smaller RMSE values. In addition, for Restart EnKF and its modi-
fication, because the initial guess of áYñ deviates from its true value, 

Fig. 8. Comparison of (a) RMSE of Y (lnKS, the saturated hydrau-
lic conductivity), (b) RMSE of pressure head h, (c) ensemble spread 
of Y, and (d) ensemble spread of h of four ensemble Kalman filter 
(EnKF) algorithms in Cases 1 and 2. Observation error variance sobs

2 
increased from 0.64 in Case 1 to 64 in Case 2.

Fig. 9. Inconsistency (IC) values for pressure head h of the four ensem-
ble Kalman filter (EnKF) algorithms in Case 2.

Fig. 10. Comparison of RMSE values of Y (lnKS, the saturated hydrau-
lic conductivity) for (a) original ensemble Kalman filter (EnKF), (b) 
Confirming EnKF, (c) Restart EnKF, and (d) modified Restart EnKF 
with prior variance s Y

2 values of 0.7 (Case 1), 0.4 (Case 3), and 1.0 
(Case 4).

Fig. 11. Comparison of RMSE values of Y (lnKS, the saturated hydrau-
lic conductivity) for (a) original ensemble Kalman filter (EnKF), (b) 
Confirming EnKF, (c) Restart EnKF, and (d) modified Restart EnKF 
with four different sets of prior variance s Y

2 values in Cases 3 to 6.
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the RMSE curves rise sharply at early time; the RMSE values drop 
gradually as more measurements are incorporated into the data 
assimilation. The RMSE values of EnKF and Confirming EnKF 
are less desirable because the RMSE values of EnKF are larger at 
later time than at early time and the RMSE values of Confirming 
EnKF at late time are similar to those at early time.

Ensemble Size
To investigate the impact of ensemble size, Case 1 was resimulated 
using a reduced ensemble size of 100 (Case 7). To further evaluate 
the uncertainty of ensemble selection, five different ensembles were 
used in Case 7. Figure 12 compares the RMSE of the estimated Y 
with 1000 and 100 realizations. When the ensemble size was 
reduced to 100, all four EnKF algorithms produced larger RMSE 
values, indicating worse assimilation performance. In particular, 
Fig. 12a shows that the original EnKF collapsed for all five smaller 
ensembles. The performance of Confirming EnKF with 1000 real-
izations was surprisingly worse than that with 100 realizations. Thus, 
an improved performance of Confirming EnKF cannot be expected 
even when a large ensemble size is used due to the impacts of incon-
sistency. The performance of the RMSE of h (Fig. 13) is better than 
that of the RMSE of Y in that the RMSE of h does not diverge for 
EnKF (Fig. 13a). In comparison with the RMSE of Y, the RMSE 
of h with 100 realizations is close to that with 1000 realizations. In 
addition, the RMSE curves of h among the five ensembles are more 
similar than those of Y, especially for Restart EnKF and its modi-
fication, which suggests that the ensemble size has a smaller impact 
on the estimation of h than of Y. This is the strength of the Restart 
EnKF and its modification because a large ensemble size is compu-
tationally impractical in real-world applications of data assimilation.

Effects of Damping Factor
Based on Case 1, Case 8 was designed to consider the impact of 
the damping factor (a = 0.1) on parameter updates according to 

Eq. [10]. The comparisons of Cases 1 and 8 for all four EnKF algo-
rithms are shown in Fig. 14. Including the damping factor resulted 
in a significant reduction of the RMSE for EnKF, and the reduced 
RMSE is close to that of Restart EnKF and its modification. 
However, the RMSE value of Confirming EnKF with the damping 
factor increased substantially compared with the one without the 
damping factor; the RMSE values of Restart EnKF and its modi-
fication with the damping factor are also higher than the original 
ones. Including the damping factor led to a moderate increase in 
the ensemble spread for the four algorithms. We thus conclude that 
the damping factor can improve the stability of EnKF but may help 
little for Confirming EnKF. Including the damping factor also 
worsened the performance of Restart EnKF and its modification 
because the observation data value was reduced.

Fig. 12. Comparison of RMSE values of Y (lnKS, the saturated hydrau-
lic conductivity) for (a) original ensemble Kalman filter (EnKF), (b) 
Confirming EnKF, (c) Restart EnKF, and (d) modified Restart EnKF 
with ensemble sizes of 1000 (Case 1) and 100 (Case 7). Five ensembles 
of 100 realizations were used in Case 7.

Fig. 13. Comparison of RMSE values of pressure head h for (a) origi-
nal ensemble Kalman filter (EnKF), (b) Confirming EnKF, (c) Restart 
EnKF, (d) modified Restart EnKF with ensemble sizes of 1000 (Case 
1) and 100 (Case 7). Five ensembles of 100 realizations were used in 
Case 7.

Fig. 14. Comparison of (a) RMSE of Y (lnKS, the saturated hydraulic 
conductivity), (b) RMSE of pressure head h, (c) ensemble spread of 
Y, and (d) ensemble spread of h of the four ensemble Kalman filter 
(EnKF) algorithms without (Case 1) and with (Case 8) damping fac-
tor a = 0.1.
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Effects of Observation Type
In Cases 1 to 8, the assimilation data were 20 observations of pres-
sure head obtained in the two vertical lines shown in Fig. 2. The 
effects of different observation types (pressure head and water 
content) and the configuration of the observations were investi-
gated in Cases 9 to 11. Case 9 was identical to Case 6 but with 
20 observations of water content. Because water content can be 
accurately measured in practice, the observation error variance 
was set to 0.0025. Cases 10 and 11 were modified from Case 9 by 
replacing the 20 observations of water contents by 10 observations 
of pressure head and 10 observations of water content. In Case 10, 
the observations of water content were above the observations of 
pressure head; the locations of water content and pressure head 
were opposite in Case 11.

The performance of the different algorithms for Case 6 and Case 
9 are compared in Fig. 15. In Case 6 with pressure head used for 
assimilation, the original EnKF and Confirming EnKF performed 
worse than the Restart EnKF and its modification. In Case 8 with 
water content used for assimilation, however, the RMSE values of 
Y are visually the same for all the algorithms and the RMSE values 
of h are similar at early time. This is also the case for the ensemble 
spread of Y and h. This suggests that using water content for assimila-
tion may be helpful in alleviating the inconsistency problem for the 
original EnKF and Confirming EnKF because water content is less 
sensitive than pressure head to soil water movement. For example, a 
slight change in water content may correspond to a dramatic change 
in pressure head, especially in dry soil. However, it should be noted 
that valuable information on water movement may be lost for param-
eter estimation when using moisture content for assimilation.

Figure 16 for Case 10 is similar to Fig. 15 for Case 9, except for 
a surprisingly improved RMSE of Y and h observed at the first 

100 assimilation steps, even with original EnKF and Confirming 
EnKF. The RMSE curves of Y for EnKF and Confirming EnKF 
increase at later times because the inconsistency occurred as the 
water infiltrated into the deeper soil. Figure 17 for Case 11 does not 
show any improvement for EnKF and Confirming EnKF; instead, 
the two algorithms diverge as in Case 6. Comparing all the moni-
toring strategies, Case 10 (10 water content measurements at the 
top and 10 head measurements at the subsoil) obtained the best 
estimation of Y in terms of the smallest RMSE for Restart EnKF 
and the modified Restart EnKF. Generally, more correction will 
be given to the parameter estimation when more sensitive data 
are available. For our investigation, it seems that sensitive data do 
not always bring benefits to the assimilation because its associated 
correction may be too large (for example, the early rising in Fig. 16 
for Case 6), and incorporating some insensitive data is helpful to 
improve the performance, especially when the flow zone is under-
going a relatively drastic change in pressure head (for example, the 
early time of infiltration in our cases).

Comparing Fig. 15 to 17 shows that the RMSE and ensemble 
spreading of h are significantly improved in Case 11. However, 
none of alternative monitoring strategies in Cases 9 to 11 yielded 
better results than the original one in Case 6.

 6Conclusions
This numerical study aimed at evaluating three algorithms of itera-
tive EnKF (i.e., Confirming EnKF, Restart EnKF, and a modified 
Restart EnKF) for resolving the inconsistency problem in estimat-
ing soil hydraulic parameters of unsaturated flow problems. While 
Confirming and Restart EnKF were adapted from literature, the 
modified Restart EnKF was developed in this study to reduce 
the computational cost by recalculating only the mean simula-
tion, rather than all the ensemble realizations, from time t = 0. A 

Fig. 15. Comparison of (a) RMSE of Y (lnKS, the saturated hydraulic 
conductivity), (b) RMSE of pressure head h, (c) ensemble spread of 
Y, and (d) ensemble spread of h of the four ensemble Kalman filter 
(EnKF) algorithms with 20 assimilation data (obs.) for pressure head 
(Case 6) and water content (Case 9).

Fig. 16. Comparison of (a) RMSE of Y (lnKS, the saturated hydraulic 
conductivity), (b) RMSE of pressure head h, (c) ensemble spread of 
Y, and (d) ensemble spread of h of the four ensemble Kalman filter 
(EnKF) algorithms with 20 assimilation data (obs.) for pressure head 
(Case 6) and 10 data for water content located above 10 data for pres-
sure head (Case 10).
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total of 11 cases were designed to investigate the performance of 
EnKF, Confirming EnKF, Restart EnKF and the modified Restart 
EnKF algorithms with different values of the observation error 
variance, the initial guess of ensemble mean and variance, ensemble 
size, and the damping factor as well as different observation types 
and configurations of observation data. The major findings of the 
numerical study are summarized as follows:

1. Although there is a seeming consensus opinion that Confirming 
EnKF can resolve or alleviate the inconsistency problem, it was 
found in this study that Confirming EnKF produced consider-
able inconsistency for the nonlinear unsaturated flow problem 
in a randomly heterogeneous soil. For the numerical example, 
the inconsistency problem started at the top of the domain and 
gradually moved downward with the wetting front.

2. In contrast, Restart EnKF can fully resolve the inconsistency 
problem and produced the best results of data assimilation 
among the four EnKF algorithms tested in this study. While 
the local optimization of Gu and Oliver (2007) was not con-
ducted in this study, it is not expected to alter this conclusion. 
Modified Restart EnKF can substantially reduce computa-
tional costs and produce assimilation results as accurate as those 
of Restart EnKF.

3. Using data of higher observation variance may alleviate the 
inconsistency problem to a certain extent for EnKF and 
Confirming EnKF due to the small amount of correction 
during the assimilation.

4. The original EnKF and Confirming EnKF are more likely to 
produce erratic Y RMSE values under different initial prior 
variances. However, Restart EnKF and its modification work 
more stably regardless of the initial variance.

5. When the initial guess of the ensemble mean of Y deviates from 
the true value, its impacts on Restart EnKF and its modification 
are smaller than on EnKF and Confirming EnKF, suggesting 
robustness of Restart EnKF.

6. When the ensemble size decreases, performance deterioration 
is less for Restart EnKF and its modification than for EnKF 
and Confirming EnKF.

7. Including the damping factor can improve the stability of 
EnKF but not Confirming EnKF. However, it may deteriorate 
the performance of Restart EnKF and its modification due to 
the loss of data value.

8. Due to the rapid soil water movement driven by atmospheric 
boundary conditions, using moisture content (instead of pres-
sure head) observations in the topsoil is helpful to maintain 
stability of the assimilation process. On the contrary, using 
more sensitive data like pressure head in the subsoil can better 
capture the details of water movement. Combining different 
types of observations can achieve better assimilation results.

Although we preliminarily discussed the application of iterative 
EnKF algorithms for parameter estimation in the vadose zone and 
fully investigated the consistency introduced by nonlinear unsatu-
rated flow, it should be noted that the present work was based on 
several important assumptions, such as greatly simplified bound-
ary conditions (e.g., the constant rain rate of the upper boundary 
and the impervious lower boundary), a relatively small variance 
of the saturated hydraulic conductivity and a known variogram, 
limited anisotropy, and other predetermined parameters in the 
van Genuchten–Mualem equation. A more comprehensive study 
considering effects like boundary conditions and other parameters 
is still required in the future.
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