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ABSTRACT: In this paper we address the question of whether it is possible consistently to reduce the number of ensemble
members at a late stage in the assimilation cycle. As an extension, we consider the question: given this reduction, is it
possible to reintroduce ensemble members at a later time, if the accuracy is decreasing significantly? To address these
questions, we present an adaptive methodology for reducing and inflating an ensemble by projecting the ensemble onto a
limited number of its leading empirical orthogonal functions, through a proper orthogonal decomposition. We then apply this
methodology with a global shallow-water-equations model on the sphere in conjunction with an ensemble filter developed
at Florida State University and the Cooperative Institute for Research in the Atmosphere at Colorado State University.
An adaptive methodology for reducing and inflating ensembles is successfully applied in two contrasting test cases with
the shallow-water-equations model. It typically results in a reduction in the number of ensemble members required for
successful implementation, by a factor of up to two. Copyright  2007 Royal Meteorological Society
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1. Introduction

The use of data, together with a model, to assess the
current state of a system and to make predictions, is
called ‘data assimilation’. The algorithms for doing data
assimilation are referred to as ‘filters’, ‘smoothers’, or
‘predictors’ (Jazwinski, 1970). The Kalman filter (KF)
(Kalman and Bucy, 1961) is an optimal data-assimilation
method for linear dynamics with an additive Gaussian
model and observation errors (Jazwinski, 1970). How-
ever, the error-covariance calculations associated with
the KF are difficult to implement for realistic systems,
because of the computational cost or the nonlinearity
of the dynamics. The ensemble Kalman filter (EnKF)
(Evensen, 1994) addresses some of these issues by using
ensemble representations for the forecast- and analysis-
error covariances through pseudo-random Monte Carlo
perturbations. Ensemble-filter algorithms are of special
interest because of their simplicity of implementation: no
adjoint operators are required (Evensen, 2003). Another
advantage is their potential for efficient use on parallel
computers with large-scale geophysical models.

There is a family of ensemble methods, includ-
ing EnKF, that use matrix square roots of the error-
covariance matrices. These methods are called square-
root filters (SRFs) (Bierman, 1977). SRFs are not unique,
since the square root of the covariance is not unique (Tip-
pett et al., 2003). Ensemble assimilation methods can also
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be considered as low-rank approximations. A good sum-
mary of ensemble SRFs that perform a transformation of
the ensemble after updating the ensemble mean can be
found in (Tippett et al., 2003).

Examples of low-rank reduced filters include: the
reduced-rank Kalman filter (RRKF) (Fisher and Anders-
son, 2001); the singular evolutive interpolated Kalman
filter (Pham et al., 1998); the reduced-rank square-
root filter (RRSQRT); the partially-orthogonal ensem-
ble Kalman filter (POEnKF) and the complementary-
orthogonal-subspace filter for efficient ensembles (COF-
FEE) (Heemink et al., 2001); and the singular evolutive
extended Kalman filter (Pham et al., 1998). All these
algorithms use a low-rank representation of the covari-
ance matrix, either by using a pseudo-random ensemble,
or explicitly. Thus, the filter analyses operate only in a
low-dimensional error subspace that approximates the full
error space.

The maximum-likelihood ensemble filter (MLEF)
(Zupanski, 2005) differs from most others in that it uses
the most likely state, rather than the ensemble mean, to
generate the statistics. It is similar to the ensemble trans-
form Kalman filter (ETKF) (Bishop et al., 2001), and
can be regarded as a maximum-likelihood approxima-
tion to it. The main difference is that the ETKF uses the
ensemble mean to approximate the true statistics, whereas
the MLEF minimizes a nonlinear cost function similar to
that used in three-dimensional variational data assimila-
tion (3D-Var) (Lorenc, 1986) and uses the solution to
approximate the square root of the analysis covariance
matrix.
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The MLEF is different from the filter of (Hamill
and Snyder, 2000), which is a hybrid of 3D-Var and
the EnKF. Hamill and Snyder (2000) use a weighted
sum of a climatological and a flow-dependent ensemble
covariance for their forecast-error covariance term. The
most important difference between this filter and the
MLEF (and all other EnKFs) is in the analysis-correction
subspace. In the case of the hybrid filter, this is the full
error space. In the case of ECMWF’s RRKF (Fisher
and Andersson, 2001), it is a subspace consisting of
some ensemble subspace plus the remaining orthogonal
complement from the climatological covariance. The
MLEF uses the ensemble-spanned subspace. We discuss
the MLEF in more detail in the next section. However,
the primary purpose of this paper is not to describe the
MLEF, but rather to use it as an example. We will focus
on the impact of ensemble reduction and inflation on this
filter.

A question that is important in ensemble data assim-
ilation is: how many ensemble members are required to
achieve a desired order of accuracy? We do not tackle
this question directly in this paper, but rather address the
related question: given an ensemble of a certain size, is
there a way consistently to reduce the number of ensem-
ble members at a late stage in the assimilation cycle, after
the errors from the initiation have been compensated for?
An extension to this question is: given such a reduction,
is it possible to reintroduce the ensemble members at a
later time if the order of accuracy is decreasing?

The answer to both these questions is: yes. In this
paper, we show this for the MLEF, but the approach
is valid for any forecast-error covariance present in
any ensemble filter. The method that we present here
makes use of a Karhunen–Loève expansion with the
full ensembles to generate specific model evaluations, or
snapshots, from which the empirical orthogonal functions
(EOFs) are extracted. This is a technique based on the
proper orthogonal decomposition (POD) (Rowley, 2005).
A detailed comparison between the method employed
here and other methods is given in Section 3.6.

In this paper we apply the technique for ensem-
ble reduction with Colorado State University’s two-
dimensional shallow-water-equations model on the sphere
(Heikes and Randall, 1995a,b; Ringler and Randall,
2002), with two sets of initial conditions taken from the
test suite described in (Williamson et al., 1992): one rep-
resenting a zonal flow around a mountain, and the other
representing a Rossby–Haurwitz wave, which is known
to generate certain types of flow depending on the choice
of parameters (Wlasak, 2002; Fletcher, 2004). It is well
known that the shallow-water-equations model captures
some of the more important flows of the full atmosphere
(Daley, 1996), and this model is therefore regarded as a
good first test for any new methodology.

The remainder of this paper is organized as follows.
The next section provides a brief summary of the MLEF,
based on (Zupanski, 2005). Section 3 describes EOFs
and the POD and their application to ensemble reduction

and inflation. Section 4 describes the shallow-water-
equations model that we use to test our method, and the
initial conditions we use, followed by the experimental
results with different initial ensemble sizes and scales of
reduction and inflation. The paper ends with a summary
of conclusions and further work.

2. The MLEF

The following summary of the MLEF is based on
(Zupanski, 2005).

2.1. Forecast step

The MLEF consists of two steps. The first, the fore-
cast step, is concerned with the evolution of the error
covariances associated with the discrete Kalman filter
(Jazwinski, 1970). We use the following notation: k is the
time index, Pf(k) is the forecast-error covariance matrix,
Pa(k − 1) is the analysis-error covariance matrix, and Me

is the nonlinear model evolution. The model error is taken
to be zero.

We define factorizations of Pa(k − 1) and Pf(k) into
their square-root forms as follows:

Pa(k − 1) = P
1
2
a (k − 1)P

T
2
a (k − 1)

Pf(k) = P
1
2
f (k)P

T
2
f (k)


 . (1)

The structure of the square-root analysis-error covari-

ance matrix P
1
2
a is:

P
1
2
a (k − 1) = (p1 . . . pN), (2)

where

pi =

 p1i

...

pMi


 ,

M is the total number of state variables and N is the
ensemble size. It is assumed that N � M .

Expanding this definition, we can express the square-

root forecast-error covariance matrix P
1
2
f (k) as

P
1
2
f (k) = ( b1 · · · bN ) ,

where

bi = Me(xa(k − 1) + pi) − Me(xa(k − 1)), (3)

xa(k − 1) being the analysis of the most likely state
from the previous cycle (the analysis part of the MLEF,
described below), found from the posterior analysis prob-

ability density function (Lorenc, 1986). P
1
2
f (k) can be

obtained from N nonlinear ensemble forecasts plus one
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control forecast. Equation (3) implies the use of a con-
trol (deterministic) forecast, instead of an ensemble mean,
commonly used in other ensemble data-assimilation
methods.

The evolution of the covariance matrix from P
1
2
f (k) to

P
1
2
a (k) is defined by:

P
1
2
a (k) = P

1
2
f (k)T(k),

where T(k) is a transformation that we define below.
Thus, we have:

Pa(k) = P
1
2
f (k)T(k)TT(k)P

T
2
f (k). (4)

This matrix transform is equivalent to the matrix trans-
form used in the ETKF algorithm (Bishop et al., 2001).

2.2. Analysis step

The discrete time index k will be omitted for most of
the remainder of this paper. The analysis step for the
MLEF involves solving a nonlinear cost function similar
to that of (Lorenc, 1986), which is based on a Gaussian
assumption for the background and observation variables.

The cost function is defined in terms of Pf, although
this matrix is never calculated in the process of the filter.
The cost function is of the form:

J (x) = 1

2
(x − xb)

TP−1
f (x − xb)+

+ 1

2
(y − h(x))TR−1(y − h(x)), (5)

where y is the vector of observations, h is the nonlinear
observation operator, R is the observation covariance
matrix, and xb is a background state. For our purposes,
we take

xb = Me(xa(k − 1)).

Note that if Pf is defined in an ensemble subspace only,
then its inverse is uniquely defined on its range.

To minimize the expression in Equation (5), a form
of Hessian preconditioning is introduced, through the
following change of variable:

x − xb = P
1
2
f (I + Ce)

− T
2 ξ , (6)

where ξ is a vector of control variables defined in the
ensemble subspace, and

Ce = P
T
2
f HTR−1HP

1
2
f

= (R− 1
2 HP

1
2
f )T(R− 1

2 HP
1
2
f ), (7)

H being the Jacobian matrix of h evaluated at x.

It may be the case that the observation operators are
highly nonlinear, and difficult to differentiate analytically,
or even discontinuous. Therefore we use information
about the forecast-error covariance matrix to approximate
the square root of Ce componentwise as

zi = (R− 1
2 HP

1
2
f )i

= R− 1
2 Hbi

≈ R− 1
2 (h(x + bi) − h(x)). (8)

The mean of x is not used in the MLEF formalism: x
can only be related to the mode for the Gaussian prob-
ability density function. The MLEF directly minimizes
the cost function with nonlinear observation operators,
whereas other EnKFs insert nonlinearities into the origi-
nal linear KF solution. Many practical EnKF algorithms
need an additional covariance inflation to account for
nonlinearities. The variable x in h(x + bi) is the current
iterative solution of the control state vector, so x = xb at
the first iteration. At a particular iteration, it is not nec-
essarily either the mean or the mode: it is just the result
of the minimization. The final result of the minimization
approximates the mode.

A matrix
Z = ( z1 · · · zN ) , (9)

is defined so that
Ce = ZTZ.

The square-root analysis-error covariance matrix is
updated as:

P
1
2
a = P

1
2
f (I + Ce(xa))

− T
2 , (10)

where xa minimizes J (x) (Equation (5)).
To generate the perturbation for the ensemble, we

simply use the columns of the P
1
2
a matrix. This represents

a square-root inverse Hessian estimated at the minimum,
and so it is a good approximation of the square-root
analysis-error covariance. The transformation T defined
above can be written as

T = (I + Ce(xa))
− T

2 .

Then Equation (10) becomes:

P
1
2
a = P

1
2
f T. (11)

The final algorithmic detail that we give here concerns
the inversion of the matrix Ce. This is accomplished
through an eigenvalue decomposition

Ce = V�eVT,
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where V is the vector of orthogonal eigenvectors and �e

is a diagonal matrix containing the eigenvalues of Ce.
Then the transformation T can be rewritten as

(I + Ce(xa))
− T

2 = V(I + �e)
− 1

2 VT. (12)

For more details of the MLEF algorithm, see (Zupan-
ski, 2005). We do not know of any biased analyses in
the MLEF. This may be related to the fact that there is
no factor 1/(N − 1) in Equation (10), so that the MLEF
can create larger, and in general different estimates for
ensembles, compared to ETKF.

3. Adaptive ensemble reduction and inflation

In this section we describe the criteria that we use for
ensemble reduction and inflation. We start with a brief
overview of the theory of EOFs and the POD. This leads
us to the Shannon entropy and the variance percentage,
which are the two measures that we use to assess the
need for a reduction in the number of ensemble members.
In Section 3.1 we show how we can use the Shannon
entropy to ascertain how many ensemble members we
need to keep. In Section 3.3 we explain the procedure
for inflating the ensemble. Lastly, in Section 3.6 we
explain the differences between the method derived here
and those described in (Oczkowski et al., 2005) and
(Heemink et al., 2001).

3.1. POD and Shannon entropy

As we have already mentioned, an important feature
of the MLEF is its ability to define the full Hessian
preconditioner in ensemble space, Equation (6). The
preconditioner is based on the ensemble correlation
matrix Ce, Equation (7). For the remainder of the paper
we will drop the notation xa for the minimum of Ce(x).
We can write

Ce = ZTZ

=

 zT

1 z1 · · · zT
1 zN

...
. . .

...

zT
Nz1 · · · zT

NzN


 . (13)

The Hessian preconditioner transformation T could also
have employed a covariance matrix defined in observa-
tion space, Co = ZZT, as discussed in (Bishop et al.,
2001). However, in order to calculate Co we need to
determine an M × M covariance matrix defined in obser-
vation space. The dual approach involves the ensemble
subspace, with an N × N covariance matrix Ce = ZTZ.
An advantage of this is that generally N � M . We also
know that the leading eigenvalues of the transformation
T form an incomplete subset of the leading eigenvalues
of Co. Therefore the two matrices have the same leading-
eigenvalue spectrum (Sirovich, 1987; Bishop et al., 2001;
Antoulas, 2005). We try to adaptively control the size of
the ensemble by employing the transformation T.

The basic problem that we address here is how to
identify bases U that represent the coherent structures,
or patterns, in a random vector field

Z = ( z1 · · · zN ) . (14)

Given an ensemble of random vector fields Z, we seek
bases that have a structure typical of the members of
the ensemble. Specifically, we consider the optimization
problem over the orthogonal transformations. This is
because the orthogonal transformations are linear, so
that the optimization problem amounts to finding best
orthogonal bases or coherent structures (Sirovich, 1987).

Thus, given a field Z, we seek the orthogonal matrix
U for which the inner product 〈zi , U〉 is the standard
Euclidean inner product. Each column zi in Z may be
expressed in terms of the basis vectors as

zi = a1U1 + · · · + aMUM, (15)

where ak = 〈zk, Ui〉. Here k and i range from 1 to M ,
and U defines the orthogonal basis. The inner-product
norm of 〈zi , U〉 here is a Frobenius norm, which is a
discrete version of the Euclidean norm (Sirovich, 1987;
Preisendorfer, 1988).

The POD method is one way to find the structures that
we seek. This method is able directly to compute the
coherent structures in a random field of ensemble mem-
bers, in an optimal-linear sense (Sirovich, 1987). This
type of decomposition has many names, including ‘prin-
cipal components analysis’, ‘Karhunen–Loève decompo-
sition’, and ‘total-least-squares estimation’. It leads to two
dual eigenvalue problems for the covariance matrix. The
detailed derivations of the eigenvalue problems used to
obtain these bases can be found in (Sirovich, 1987) or
(Berkooz et al., 1993).

Two corresponding dual eigenvalue problems for the
covariance matrix are:

CoU = �oU
CeV = �eV

}
, (16)

where the leading eigenvalues in �e of the symmetric
N × N matrix Ce = ZTZ, and the leading eigenvalues
in �o of the symmetric M × M matrix Co = ZTZ, are
equal.

There is also a direct relationship between the singular-
value decomposition (SVD) and the dual eigenvalue
problems of POD. If we compute the SVD of Z,

Z = U�VT,

then U corresponds to the matrix of left-singular vectors,
V is the matrix of right-singular vectors, and � is the
matrix containing the singular values of Z. If we let
λi be the ith-largest eigenvalue of �o, then σ 2

i = λi for
i = 1, . . . , N , where σi the ith-largest singular value of
�. See (Volkwein, 2004).
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The eigenvalue problem employed in the transforma-
tion T described in Section 2 is to find the eigenval-
ues and eigenvectors of a symmetric N × N correlation
matrix defined by Ce = ZTZ. The POD basis for this
eigenvalue problem is orthonormal, i.e.

VT
i Vj =

{
0 i �= j

1 i = j
. (17)

The trace of the matrix Ce represents the total variance
in the ensembles,

E =
N∑

i=1

λi. (18)

A variance percentage can then be assigned to each
eigenvector:

Ek = λk

E
. (19)

A standard measure of the information content in these
eigenvalues of the covariance matrix is the Shannon
entropy, which is defined as

Hs = −
N∑

k=1

Ek ln Ek. (20)

Here, N will be defined by the inflated or reduced
size of the ensemble from the previous cycle. We can
interpret the scaled eigenvalues Ek of the covariance
matrix as probabilities, since they sum to one. It is then
possible to show that the POD eigenvectors are optimal
in an information-theoretic sense (Watanabe, 1965). In
the ensemble reduction, we would like to retain as much
of the original information as possible. This is equivalent
to maximizing Hs (Watanabe, 1965). After addition of all
ordered scaled eigenvalues Ek, Hs will be flattened:

∂Hs

∂N
≈ 0.

This can be interpreted as giving a truncation degree for
the size of the ensemble, beyond which adding further
eigenvalues adds very little information. The significance
of the Shannon entropy in this context is that it provides
a measure of the distribution of the magnitudes of the
eigenvalues. The eigenvalues correspond to percentages
of energy, if energy scaling, as defined in (Oczkowski
et al., 2005), is employed.

3.2. Application to adaptive ensemble reduction

In POD, since the eigenvalues are arranged in descending
order of size, the basis is arranged in descending order of
variance. After addition of all ordered scaled eigenvalues
Ek, Hs is flattened. This provides us with a criterion
for determining the ensemble size adaptively, according
to the variance percentage retained, the limit being
expressed by:

∂Hs

∂N
≈ 0.

Equivalently, this can be thought of as a damped SVD
solution in which filter factors of zero are used for basis
vectors associated with smaller singular values (Hansen,
1998). The most common approach to regularization of
rank-deficient problems is to consider the given matrix
Ce as a noisy representation of a rank-deficient matrix,
and to replace Ce by a matrix that is close to Ce and rank-
efficient (Hansen, 1998). Using the relation between POD
and SVD defined above, one can relate ‘truncated SVD’
and regularization to the POD eigenvalue truncation
employed in this paper.

3.3. Application to adaptive ensemble inflation

The algorithm must also allow for ensemble enrichment,
in case the reduction in ensemble size is not consistent
with the decrease in the root mean square (RMS) error.
One option is to increase the correlation length of the
matrix Ce with a new update of the system by ensemble
initialization (Zupanski et al., 2006).

In this study we have adopted the following approach.
For ensemble inflation, the computed eigensets derived
from the snapshots depend on the initial and final
portions of the ensemble set under consideration. For this
purpose, the POD method can be extended, as described
in (Glezer et al., 1989; Uzunoglu, 2001; Uzunoglu and
Nair, 2001). For statistically stationary data, the extended
POD (EPOD) is equivalent to the classical POD. The
corresponding eigenvalue problem is then to find the
eigenvalues and eigenfunctions of a symmetric 2N × 2N

correlation matrix, defined by Ce, which inherits the
current zN(k) and the previous zN(k − 1). For ensemble
enrichment by inflation, the reduced ensemble can be
inflated using the ensemble data generated by the filter at
previous cycles. This means that we can define a matrix

Z̃ = (z1(k − 1) · · · zN(k − 1) z1(k) · · · zN(k)), (21)

that enables us to write

C̃e = Z̃TZ̃,

which is our new Ce matrix. This idea can be extended
to any number of previous cycles of data assimilation.
This approach can also be employed to enrich the current
ensembles from previous ensembles while keeping the
ensemble size the same. Enrichment by EPOD might also
lead to greater efficiency in the reduction strategy used
here, since we would have richer ensembles. Since our
problem is non-stationary and nonlinear, new directions
will be probably introduced by EPOD; these may improve
the results, and at least should not make them deteriorate
(Glezer et al., 1989).

3.4. Measures of performance

We use the RMS error as our measure of the performance
of the ensemble filter. This is simply

e =
√√√√ 1

M

M∑
i=1

(xi − xt)2, (22)
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where x is one of the state variables of the model, M

is the number of instances of the variable, and xt is the
‘true’ solution, which is obtained from a run of the model
without any errors added.

When the RMS error is not available, we must employ
other tools to judge the quality of a reduced or inflated
assimilation cycle. Our aim is to have an online tool for
measuring the quality of the adaptive data assimilation.
The quality of a given (reduced- or inflated-ensemble)
assimilation cycle can be judged by the extent to which
it preserves the value of the ensemble covariance matrix
structures, from the previous cycle Z(k − 1) to the
current cycle Z(k). These structures are expected to be
different, since our assimilation is evolving; however, we
would not expect a significant difference between the
error covariance matrices of two successive cycles. They
should be similar, and they should evolve to be more and
more similar if the data assimilation is successful. This
approach can be used to assess the quality of reduction
or inflation over a cycle.

To assess the quality of the Ce(k − 1) and Ce(k)

matrices, which are computed and saved at the end
of each data-assimilation cycle, we define a matrix S
(Buizza, 1994), whose (i, j) entry is

sij = 〈Vi , Ṽj�
j
e 〉, (23)

the squared scalar product of basis Vi (k − 1) of Ce(k −
1) and basis Ṽj (k) of the reduced or inflated model k − 1.
Thus, S represents the amount of the variance of the
ith eigenvector of the covariance matrix Ce(k − 1) that
is ‘explained by’ the j th eigenvector of the covariance
matrix Ce(k). The �e contains the eigenvalues of Ce(k),
representing the weight factors that are the eigenvalues
of the current cycle (Buizza, 1994). Ce(k) belongs to the
current cycle while Ce(k − 1) belongs to the previous
cycle. Based on the matrix S, a ‘similarity index’ is
defined as

SM = 1

N

N∑
i,j=1

sij . (24)

This takes values between 0 and 1. For identical models,
SM = 1, since their bases will be parallel. As SM

approaches the value 1, we would expect the RMS error
to decrease. Since our system is evolving continuously
through each cycle, we would not expect SM = 1.

3.5. Summary of the algorithm

We can summarize our algorithm for adaptive ensemble
reduction and inflation, and the preconditioning algo-
rithm, as follows.

1. Generate the forecast ensemble

Z = R− 1
2 HP

1
2
f ,

where

P
1
2
f (k) = ( b1 · · · bM )

and

bi = Me(xa(k − 1) + pi) − Me(xa(k − 1)).

2. Minimize the cost function. Generate the analysis-
error covariance matrix

Ce(xa) = ZTZ.

3. Solve the eigenvalue problem

Ce(xa)V = λV.

4. Calculate total variance

E =
∑

i

λi .

5. Decide on a new ensemble size corresponding to the
number of eigenvectors for which

∂Hs

∂N
≈ 0.

After addition of all ordered normalized eigenvalues
Ek , Hs will be flattened, as expressed by the above
equation. This can be interpreted as giving the trun-
cation degree for the ensemble, since adding further
eigenvalues adds very little information. Note that N

represents the ensemble size of the previous cycle.
6. Check the performance of ensemble reduction by

computing

SM = 1

N

N∑
i,j=1

sij

and using the bases of both cycles, as already com-
puted. If SM(k − 1) < SM(k) and Hs is becoming
flatter, then continue reduction; otherwise (if SM is
decreasing or Hs is not flattening), inflate the ensem-
ble using EPOD. Determine the new ensemble size
by using ensemble members from the previous cycle,
continuing until Hs becomes flat.

7. Generate the square-root analysis-error covariance
matrix

P
1
2
a = P

1
2
f (I + Ce(xa)

− T
2 )

(Zupanski, 2005).

3.6. Comparison with other methods

The method proposed in this paper gives a global
reduction of the ensemble. There is research by the
Chaos Group at the University of Maryland that is
based on a local ensemble Kalman filter (Patil et al.,
2001), now called the local ensemble transform Kalman
filter (LETKF) (Oczkowski et al., 2005). The important
feature of the LETKF is the use of a quantity known
as the ‘ensemble dimension’ (Patil et al., 2001), which
measures the variance associated with each ensemble
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member in terms of the eigenvalues of the forecast-
error covariance matrix. The LETKF employs spatial
localizations of the total model domain. The measure is
applied only in the local domains, and has no interaction
with the surrounding domains. In (Patil et al., 2001),
no ensemble transformation is used to define the new
ensemble size for the evolving cycles.

The approach to adaptive ensemble reduction and
inflation presented in this paper is different from that
of the variance-reduced ensemble Kalman filters, such as
RRSQRT, POEnKF and COFFEE, presented in (Heemink
et al., 2001). In our approach, the error covariance
matrix evolves in the ensemble subspace. Heemink
et al. (2001) discuss matrix-inversion problems caused
by ill-conditioning of the matrix, and filter-divergence
problems, but do not provide systematic quantitative
results on adaptive ensemble reduction and inflation.

The covariance matrix Ce is similar to the matrix
defined in (Oczkowski et al., 2005): both are defined in
the ensemble subspace. When Oczkowski et al. (2005)
calculate the ensemble size they calculate the elements
of the observed variable vectors using an energy scaling.
They define this scaling so that the Euclidean norm
of the vectors formed by the different variables has
the dimensions of energy. We perform no such scaling.
Although this may be a good approach to relating
energetic coherent structures to eigenvalues of such a
covariance matrix (Sirovich, 1987), it requires definition
of a relevant T transformation that is different from
that defined in (Zupanski, 2005). In such a (continuous,
infinite-dimensional) case, the L2 energy norm of the
Euclidean norms would have to be used, and then a
transformation like T would have to be defined for
such a norm. Oczkowski et al. (2005) do not address
the question of how to transform the reduced-ensemble
members from one cycle to another.

Oczkowski et al. (2005) use a regional covariance
matrix, whereas we use a global covariance matrix. Fur-
thermore, they do not normalize the covariance matrix

R− 1
2 by the observations, as in Equation (8). This nor-

malization avoids problems of ill-conditioning (Bishop
et al., 2001).

The MLEF estimates the mode, without requiring a
reference to the mean. It just happens that these two
estimates (of the mean and mode) are identical for the
Gaussian distribution and some other symmetric proba-
bility distributions. Nor does the MLEF try to estimate
the mean using the mode: it simply estimates the mode
by maximizing the posterior probability density function.
The covariances in the MLEF are defined as symmetric
positive-semidefinite matrices (Gaspari and Cohn, 1999),
so the expectation (mean) is not explicitly used.

4. Experiments and results

In this section we outline the model and the initial
conditions that we use for the experiments, and then
present the results.

4.1. Model, initial conditions and observations

The shallow-water equations have often been used
in the development of new numerical methods for
atmospheric models, because they exhibit the same
wave behaviour as the more complex baroclinic equa-
tions governing the motion of the atmosphere (Daley,
1996).

The nonlinear shallow-water equations on the sphere
that we use are of the form given in (Ringler and Randall,
2002). The prognostic variables of vorticity, divergence
and mass are all defined at the grid-cell centres. We use
the ‘Z’ grid introduced by Heikes and Randall (1995a,
1995b): a twisted icosahedral geodesic grid, composed
of a tessellation of hexagons and pentagons. The res-
olution of the grid enables us to have approximately
2600 height points and 5100 points for wind compo-
nents.

As initial conditions we use two of the test cases from
(Williamson et al., 1992):

• Test case 1 is a geostrophically-balanced zonal flow
over an isolated conical mountain. This induces flows
with strong nonlinearity in the vicinity of the mountain.
This set of conditions is characterized by the excitation
of Rossby and gravity waves. The initial zonal flow is
20 ms−1. The mountain is centred at (30 °N, 90 °W),
and is 2000 m tall.

• Test case 2 is a Rossby–Haurwitz wave. This is the
analytic solution of the nonlinear barotropic-vorticity
equation on the sphere, and in this model it is
non-divergent. This property does not appear in the
shallow-water model.

The observations are created by adding random pertur-
bations from a normal distribution, N(0, R), where R is
the covariance matrix, assumed to be diagonal. Its vari-
ables are uncorrelated with a model forecast, which we
refer to as the ‘truth’.

There are 1025 observations defined in each anal-
ysis cycle, uniformly distributed with respect to the
Z grid around the globe. These observations con-
sist of 513 height observations and 512 wind obser-
vations in our assimilation observation space. Since
the two wind components (east–west and north–south)
are co-located, there are 256 observation points of
the wind as a vector. In both of our test cases
the geopotential and velocity observations are uncorre-
lated.

Numerical experiments are conducted to compare the
impacts on the RMS height analysis (as well as the u

and v RMS, not shown), and the similarity index SM ,
for the adaptively reduced and inflated and the full-size
ensembles.

Two different criteria have been tested: a variance-
percentage criterion and an entropy criterion. As we
will see below, the entropy criterion appears to be
much more reliable than the variance-percentage crite-
rion.
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4.2. Test case 1

4.2.1. Ensemble reduction

The assimilation for ensemble reduction is performed
over an interval of 120 h, which corresponds to 40 cycles
of data assimilation, each representing a 3 h interval.
The initial conditions for the experimental run are as
defined above, but shifted to −3 h in order to create
an unbalanced set of initial conditions. The observation
standard deviation for the height is 5 m, and for the wind
is 0.5 ms−1. The background standard deviation for the
height is 2 m, and for the wind is 0.2 ms−1.

The algorithm allows the adaptive reduction to be
started from any cycle of the full-ensemble run. We per-
form various numerical experiments, starting the adaptive

ensemble reduction after 1, 20, 30 or 40 cycles. This pro-
vides a rigorous test of the procedure and allows for a
fuller understanding and validation of the procedure.

The figures that follow show:

• the cycle number of the full-ensemble run at which the
adaptive reduction is initiated;

• the variance percentage used as a criterion (cases of
95% and 99% explained variance have been chosen);

• the resulting reduction in the number of ensemble
members.

Some of the graphs show the evolution of the RMS
for the full ensemble compared to the RMS for the
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Figure 1. Error isolines of height analysis (m) for test case 1 at cycle 26. (a) Full ensemble (1000 members). (b) Reduced ensemble (280
members) with 95% variance retained.
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adaptively-reduced ensemble; others show the evolution
of the similarity index for the same two ensembles.

Figure 1 consists of two plots. Figure 1(a) shows
the height analysis error field for an ensemble of size
1000; Figure 1(b) shows the same field but for a reduced
ensemble size of 280, adaptively reduced at cycle 26;
both plots show the field at cycle 26. The reduction
criterion was for a variance percentage of 95%. It is
clear that the height analysis error increases only slightly
despite a substantial reduction in ensemble size.

Figure 2 shows the height analysis results for test case
1 at cycle 26. Figure 2(a) shows the height field for
an ensemble of size 1000, while Figure 2(b) shows the
height field with adaptive reduction having been applied
at cycle 20, retaining 95% variance at that time. The
ensemble size is reduced to 280. It is again clear that
the analysis height fields are similar even with a reduced
ensemble size.

Figure 3 shows results for various times at which the
reduction criterion is introduced. Here we are retaining
99% of the variance, but reducing in accordance with
the Shannon-entropy criterion. The left-hand plots are
of RMS error for the full (1000-member) and reduced
ensemble. The right-hand plots are of the ensemble size.

We see that with the variance criterion for reduction at
cycle 1 we can reduce the ensemble size by nearly 300,
but that we degrade the solution by doing so. If we use
this criterion at cycle 20, we can reduce the ensemble
size by a factor of more than two, while still obtaining
results consistent with the full field, although there are
slight differences in the later cycles. If we reduce at cycle
30, then again we can reduce the ensemble size by a
factor of more than two, and the results are still more
consistent with the full ensemble. We could improve the
RMS height analysis results for the reduced ensemble by
increasing the variance percentage used a criterion for
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Figure 2. Isolines of height analysis (m) for test case 1 at cycle 26. (a) Full ensemble (1000 members). (b) Reduced ensemble (280 members)
Adaptive reduction was introduced at 20.
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(a) (b)

(d)

(f)

(c)

(e)

Figure 3. Left panels: evolution of RMS height error for full and reduced ensembles, for adaptive reduction beginning (from top to bottom) at
cycle 1, cycle 20 and cycle 30, with a retained variance of 99%. Right panels: evolution of ensemble size for the same experiments.

the reduction – for example, by requiring an explained
variance of 99.5% instead of 99%.

Since the variance-percentage criterion does not per-
form well for the initial cycles of the ensemble data
assimilation, the remainder of the results that we show
here are based on the Shannon-entropy criterion. Never-
theless, the variance-percentage criterion might perform
well in the later cycles.

Figure 4(a) illustrates a decrease in the eigenvalue
spectrum, scaled by the total variance E, for the full

1000-member ensemble. As the assimilation proceeds,
the gradients of the normalized spectra become steeper,
while the scaled magnitudes of the eigenvalues of Ce

decrease. This signifies a reduction in the rank of the
matrix Ce as the assimilation proceeds.

Figure 4(b) shows the Shannon entropy for cycles 1,
3, 10 and 30. For cycle 30 we have

∂Hs

∂N
≈ 0,
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(a)

(b)

Figure 4. (a) Eigenvalue spectrum, for the full 1000-member ensemble,
at cycles 1, 3, 10 and 30, of the matrix Ce, and the associated eigenvalue
spectrum at cycle 1 of Co. (b) The corresponding Shannon entropy, for

the same cycles, of Ce.

which may indicate that a reduction can occur at this
point, as the change in entropy between two modes is
very small, indicating that no further information is being
added.

Figure 5 illustrates a successful application of our
adaptive ensemble reduction algorithm. The four panels
show the evolution of RMS height error, similarity
index, ensemble size, and Shannon entropy, for the same
experiments as in Figure 3.

In Figure 5(a), the RMS error of the reduced-ensemble
runs is compared with that of the full-ensemble run. The
Shannon-entropy criterion gives better results than the
variance-percentage criterion, as the RMS is nearer to
that of the full-ensemble run.

Figure 5(b) shows the similarity index between two
successive cycles k − 1 and k, for the full-ensemble
run and the two adaptively-reduced runs. A similarity
index of one would indicate equivalence between the
current cycle and the previous cycle. When the adaptive
algorithm based on the variance-percentage criterion is
activated at a given cycle of the full-ensemble run,

we observe an immediate dip in the graph, which
recovers after three or four cycles. A deeper dip may
be taken as an indication of less successful reduction.
We do not observe this dip with the Shannon-entropy
criterion.

The similarity index seems to be less sensitive in recov-
ery than the RMS error. However, careful investigation
shows the same convergence behaviour as for RMS error.

Figure 5(c) shows the evolution of ensemble size for
the percentage-variance and Shannon-entropy criteria.
Figure 5(d) shows the evolution of the Shannon-entropy
spectrum for several experiments. The behaviour of the
reduced ensemble is comparable to that of the full
ensemble. This provides further insight into how the
ensemble-reduction algorithm works in practice.

Using adaptive reduction for cases where the RMS
height analysis error is small gives a factor-of-two
economy in CPU time (corresponding roughly to a factor-
of-two reduction in the number of ensemble members),
compared to the full-ensemble run.

In all the experiments with both full-ensemble and
reduced-ensemble runs, the number of observations is
identical. There is no distance-dependent filtering in the
MLEF.

4.2.2. Adaptive algorithm

The assimilation with the adaptive algorithm is performed
over an interval of 45 hours, corresponding to 15 cycles
of data assimilation, each representing a 3 h interval.
The initial conditions for the experimental run are as
defined above, but shifted to −3 h in order to create an
unbalanced set of initial conditions. The background and
observation standard deviation for the height is 5 m, and
for the wind is 0.5 ms−1.

Figure 6(a) shows the efficiency of the inflation strat-
egy that has been adopted. The RMS error for the full
1000-member ensemble is plotted as a benchmark for
comparison. There are no spin-up cycles. The RMS
error of the full ensemble remains marginally lower than
that of the adaptive ensemble. This is expected, since
the algorithm is trying to compensate for the ensemble
members that have been lost, and it appears to be quite
efficient at this, with a much smaller start-up ensemble
(400 members, in comparison to the full ensemble size
of 1000). Figure 6(b) shows similar behaviour for RMS
height background errors.

Figure 6(c) illustrates the adaptive algorithm, com-
pared to the full-ensemble run, in terms of the ensemble
size. It demonstrates successful adaptive reduction for
the test case. Figure 6(d) shows the evolution of the
Shannon-entropy spectrum for the adaptive experiments.
It demonstrates that ensemble inflation introduces new
directions in the subspace spanned by the ensemble.

The results described above are obtained using infor-
mation from previous cycle perturbations, as defined in
Section 3.3. Given the inflation strategy, it would be
possible, for this example, to start with a much smaller
ensemble, which could then increase to capture the cor-
rect covariances, and later decrease.
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(a) (b)

(c) (d)

Figure 5. (a) Evolution of RMS height error, for cycles 1–20, for the full ensemble and for the variance-percentage and Shannon-entropy
criteria. (b) The corresponding similarity indices. (c) The corresponding ensemble sizes. (d) Evolution of Shannon entropy for several full- and

reduced-ensemble experiments.

Adaptive inflation of ensembles in later cycles might
lead to economies in computational time, compared to
the full-ensemble run. The results for test case 1 show
that the inflation-and-reduction technique introduced in
Section 3.3 exhibits adaptive behaviour.

4.3. Test case 2

The choices of parameters for the wave (Williamson
et al., 1992) are as follows. The wave number is K = 4,
which is known to be the highest stable wave num-
ber in this model (Hoskins, 1973). We set the ω and
R parameters to 7.848 × 10−6 s−1, and the minimum
height at the pole, h0, to 8000 m. These parameters
generate a fast tall wave, with eddies forming in the
troughs by 120 h (Wlasak, 2002). The observation stan-
dard deviations for the height and wind are taken as
150 m and 3.0 ms−1 respectively. The background stan-
dard deviations for the height and wind are 50 m and
5.0 ms−1 respectively. The observations are assimilated
every 6 h.

Two ensemble runs are chosen for test case 2. The
results are displayed in Figure 7, which shows the RMS
height error for ensemble sizes of 40 and 1000, each

using a 6 h interval. The figure shows convergence. The
ensemble sizes are 40 and 1000 for the last 10 cycles.
This test case gives a low-dimensional ensemble subspace
with correlation matrix Co of dimensions 1025 × 1025,
so the ensemble subspace can be much smaller than the
observation space. This is the point that we wish to
emphasize in this figure.

In a full three-dimensional model with flows that are
geostrophically balanced, as in test case 1, we may
require more ensembles initially to capture the important
parts of the flow. For test case 2, we require fewer
ensembles. This may imply (although more research is
needed here) that there are only a few directions that
dominate the ensemble space, so that it is wasteful to use
a very large ensemble.

5. Summary and conclusions

A novel adaptive methodology for reducing and inflating
an ensemble by projecting it onto a limited number of
its leading EOFs has been successfully applied in the
framework of the MLEF and ETKF for data assimilation.
The methodology is general enough to be applied and
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(a)

(d)(c)

(b)

Figure 6. (a) Evolution of RMS height error, for cycles 1–15, for the full ensemble and for the adaptive entropy criterion. (b) The corresponding
RMS height background error. (c) The corresponding ensemble size. (d) Evolution of the Shannon entropy.

Figure 7. Evolution of RMS height error for Rossby–Haurwitz wave
ensembles. Convergence is obtained with a much lower dimension of

ensemble space.

extended to most ensemble-filter techniques, such as the
EnKF and its various flavours.

Twin experiments have been run for a global shallow-
water-equations model (Heikes and Randall, 1995a,
1995b), using test cases taken from the suite of
(Williamson et al., 1992).

The idea used here originates in reduced-order mod-
elling theory as well as in regularization theory (Hansen,
1998). It allows significant economies in the application
of ensemble approaches to data assimilation, typically
reducing the ensemble size required for successful imple-
mentation by a factor of up to two. The idea is extended
to the case where inflation, rather then reduction, of the
ensemble might be necessary. This idea is successfully
tested using the same test cases.

Numerical experiments conducted with the MLEF in
the twin-experiments framework show that the adaptive
ensemble reduction and inflation perform well, compared
to the full-ensemble run, in terms of the RMS error and
similarity index. These two indicators reveal marginal
effects on the reduced-ensemble results, compared to the
full-ensemble run. This is further illustrated by consid-
ering the impact of adaptive reduction on geopotential
and velocity fields, and by considering the spectrum of
eigenvalues of the matrix Ce in the MLEF ensemble filter.
Similar experiments have been conducted with inflation
of the ensemble. These lead to a decrease in RMS error,
thus validating the inflation approach.

The goal is not necessarily to reduce, or increase, the
ensemble size, but rather to find an optimal utilization of
the available ensembles given the computing limitations
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and the complexity of the problem. From this perspec-
tive, reduction is an important part of the picture. Once
we know when and how to do that, we can come up
with a strategy for enrichment (e.g. resampling), if this
is deemed relevant to the modelling–observation system
we are using.

Crommelin and Majda (2004) highlight some limi-
tations of the EOF approach, particularly for systems
that exhibit sudden transitions between different states,
e.g. bursting behaviour. Our test cases, and short-period
atmospheric circulations in general, do not exhibit such
behaviour, but this limitation should be borne in mind,
and other optimal bases (such as principal interaction pat-
terns or bred vectors) should be considered in such cases.

Future research will be aimed at applying adaptive
ensemble reduction and inflation to non-Gaussian ensem-
bles, as well as extending the present methodology to
typical EnKF data assimilation with realistic models.
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