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A B S T R A C T
All numerical models are imperfect. Weak constraint variational data assimilation (VDA), which provides a treatment
of the modelling errors, is studied; building on the approach of Vidard et al. (Tellus, 56A, pp. 177–188, 2004). The
evolution of model error (ME) is modelled using ordinary differential equations, which involve a scalar parameter.
These approaches were tested using different high-resolution advection schemes. The first set of experiments were
constructed to see if it is possible to account for (numerical) discretization error within such a framework. In other set
of experiments, a systematic source of modelling error was introduced by deliberately specifying an incorrect value
for the Coriolis parameter in the model. Results with observational state at half of the model state resolution, are also
presented. We also discuss a method of estimating the scalar parameter in the ME through VDA. In all cases, the inclusion
of ME provides reduction in forecasting errors. Also, our experiments indicate that different settings of the model (e.g.
using different high-resolution advection schemes) would need different ME formulation. Results presented in this paper
could be used to formulate sophisticated ME forms to account for systematic errors in higher dimensional models with
complex advection schemes.

1. Introduction

Variational data assimilation (VDA) aims to find a model trajec-
tory that best fits (in a least squared sense) the observational data
over an assimilation time interval, by adjusting the initial con-
ditions supplied for forward model integration (LeDimet and
Talagrand, 1986; Navon et al., 1992). In the so-called ‘strong
constraint’ or ‘classical’ VDA, it is assumed that the forecast
model perfectly represents evolution of the actual atmosphere.
The best-fit model trajectory is obtained by adjusting only the
initial conditions via minimization of a cost functional, subject
to the model equations as strong constraint. However, numerical
weather prediction (NWP) models are imperfect, since they are
discretized; dissipative and dispersion errors arise, and subgrid
processes are not included. In addition, most of the physical pro-
cesses and their interactions in the atmosphere are parametrized.
Also, a complete mathematical modelling of the boundary con-
ditions and forcing terms can never be achieved. Usually all
of these modelling drawbacks are collectively addressed by the
term, ‘model error’ (ME).
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Thus, giving up the assumption that the model is perfect, in
the context of strong constraint VDA leads us to ‘weak constraint’
VDA, which is the main theme of this paper; since we include time
evolution of the variables, we could say weak constraint 4D-Var
(time, plus three space dimensions). Instead, we prefer to use
the general term VDA, because we have used a two-dimensional
global shallow water model for presenting our results.

Model error is formally introduced as a ‘correction’ to the time
derivatives of model variables in the weak constraint formulation
of VDA. Let the vector x(t) be used to represent the state of the
atmosphere, then its evolution accounting for ME in the NWP

model is written as,

dx(t)

dt
= M[x(t)] + T[η(t)], (1)

where M[.] denotes all the mathematical operations involved
in the NWP model, η represents ME and T[.] is an operator
that accounts for the fact that only certain components of the
state vector have modelling errors. ME usually varies both spa-
tially and temporally and has both systematic and stochastic
components.

Early efforts to model the systematic component of ME were
pioneered by Derber (1989). He suggested a simplified approach
to model η to be equal to λ(t) φ. The temporal part, λ(t), is a
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Table 1. List of acronyms used

Acronym Definition

ECMWF European Centre for Medium-Range Weather Forecasts
hPa Hectopascals
RMSE Root-mean-squared error
UTC Universal time coordinate
PPM Piecewise parabolic method
ME Model error
DA Data assimilation
VDA Variational data assimilation
SWE Shallow water equations
NWP Numerical weather prediction
GCMs General circulation models
T −06 Data set from ERA-40 reanalysis project valid for 00 UTC 2 February 2001
T00 Data set obtained by 6-h integration of T −06

T +06 12-h integration of T −06

T +12 18-h integration
T +18 24-h integration
T +24 30-h integration
T +30 36-h integration

specified function of time alone, and φ is a spatially dependent,
control variable. Three different forms of λ were considered,
namely, parabolic, delta function and constant in time. It was
observed that the parabolic variation of λ provided results com-
parable to a constant in time λ. Using a similar approach (Wer-
gen, 1992; Zupanski, 1993) it was shown that inclusion of ME
allows significant reduction in forecast RMSE (see Table 1 for a
list of acronyms and their definitions).

For dynamically evolving systems, such as discrete NWP mod-
els, ME is expected to depend on the model state and should
be evolving in time (Griffith and Nichols, 1996, 2000). Various
simple (temporally constant, linearly and harmonically evolv-
ing) forms for systematic component of ME were considered by
Griffith and Nichols (2000) and Nichols (2003).

Similar approaches for systematic ME as a discrete in time
process were considered by Martin et al. (2002), and reduction
of ME control vector size by projecting it on to the subspace
of eigenvectors corresponding to the leading eigenvalues of the
adjoint-tangent linear operators was illustrated by Vidard et al.
(2000). Discrete evolution of ME as Markov process was studied
by Daley (1992), Zupanski (1997), Zupanski et al. (2005) and
Trémolet (2006, 2007).

Vidard et al. (2004) (from now onwards referred to as
VPLD04) considered a continuous-in-time form for the evo-
lution of ME. This approach is consistent with the fact that
model equations are first written as continuous differential equa-
tions and then descretized in space and time. If the initial ME,
η(t0) = η0, then VPLD04 modelled the evolution of ME as,

dη

dt
= �[η(t), x(t)] + q(t), (2)

where q (t) is the stochastic component of ME, which has been
assumed to be zero. They set �[η(t), x(t)] = η(t), hence the
evolution of ME term was modelled by the following simple
exponential growth equation,

dη

dt
= η(t). (2)

Such a ‘deterministic’ approach to model the evolution of ME
significantly simplifies the weak constraint VDA since only the
initial ME (η0) is to be obtained via solution of the optimization
problem (see VPLD04 and/or Section 4 for additional details).

In this paper, we extend the approach of VPLD04 to
parametrize the evolution of ME, using a continuous model. To
this end, we propose three models and study their impact on the
reduction for forecast errors, through data assimilation. Each of
these models for ME has been tested with different model settings,
by changing the advection scheme used in forward and adjoint
models. A consistent method of decreasing the discretization
errors (principally truncation errors) is to refine the model res-
olution, such an approach in VDA was studied by LeDimet and
Shutyaev (2005), henceforth referred to as LDS05.1 If discretiza-
tion error is assumed to be the only source of ME, we analyse
whether any of the proposed ME forms can indeed account for
it via weak constraint VDA. Instead of following the model grid
refinement approach of LDS05, here, we consider an alternative
procedure. The observations are obtained using a high accurate
scheme, such as the PPM scheme, but the model uses low accurate
advection schemes (unconstrained or constrained van Leer) that

1 However, this approach is limited by the resolution of the observational
system; indeed, one of the conclusions of LDS05 was that the improve-
ment in predictability is most sensitive to the observational errors.
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differ in their diffusivity properties via application of different
slope limiters, see Akella and Navon (2006) for further details.
These high-resolution advection schemes are highly efficient in
conserving (numerical) flux, especially, using the finite volume
formulation (highly relevant e.g. in chemical tracer advection,
see Hourdin et al., 2006, the Community Multiscale Air Quality
(CMAQ); Byun and Schere (2006) and references therein).

We also study the performance of these approaches, when a
systematic error in the coriolis parameter is introduced in the
model. As in the study of VPLD04, we do not account for the
stochastic component of ME; however, if the random errors can-
not be neglected, ensemble data assimilation methods, such as
variants of the Kalman filter (Dee and Da Silva, 1998; Zupanski
and Zupanski, 2006) provide efficient framework for modelling
and estimation of stochastic ME. Finally, we generalize the pro-
posed forms of the ME formulation, using a scalar parameter. An
optimal value of this parameter is estimated via minimization of
the weak constraint VDA cost functional, hence the model error
parameter adjusts to fit the observations at run-time.

Following is the plan of the present paper. In Section 2.1,
we introduce the numerical model; a twin experiment set-up,
whereby model generated trajectory is used as observations
(Section 2.2), is also described. In Section 3, we briefly present
the strong constraint VDA, which is followed by the weak VDA.
In the same section, we formulate the different forms of ME. The
experiments, results and their discussion is provided in Section
5. We summarize our results with conclusions in Section 6.

2. Numerical model and observations

2.1. Shallow water finite volume model

In this paper, a global two-dimensional shallow water equations
(SWE) model has been used for numerical experiments. Solutions
of SWE exhibit some of the important properties of large-scale
atmospheric flow, and the equations have certain important fea-
tures (such as, horizontal dynamical aspects) in common with
more complicated NWP models. Therefore, derivation and testing
(Williamson et al., 1992) of various algorithms for solving SWE

has often been a first step towards developing new atmosphere
and ocean general circulation models (GCMs). In spherical coor-
dinates, the vorticity divergence form of the SWE can be written
as,

∂h

∂t
+ ∇ · (Vh) = 0, (3)

∂u

∂t
= �v − 1

a cosθ

∂

∂λ
(κ + ϕ), (4)

∂v

∂t
= −�u − 1

a

∂

∂θ
(κ + ϕ), (5)

where h represents the fluid height (above the surface height,
hs), V = (u, v), u and v represent the zonal and meridional wind

velocity components, respectively, θ and λ are the latitude and
longitudinal directions, respectively, ω is the angular speed of
rotation of the earth and a is radius of the earth. The free surface
geopotential is given by

ϕ = ϕs + g h, (5)

ϕs = ghs, κ = 1
2 V · V is the kinetic energy and � = 2ωsin θ +

∇ × V is the absolute vorticity.
The explicit flux-form, semi-Lagrangian, finite-volume shal-

low water equations model of Lin and Rood (1997), henceforth
referred to as LR97, has been used for forward model integration.
This model serves as the dynamic core in the community atmo-
sphere model (CAM), version 3.0, and its operational version
implemented at NCAR and NASA is known as finite volume
general circulation model (FV-GCM). A two grid combination,
based on C- and D-grids, was used for advancing from time step
tn to tn + � t. In the first half of the time step, advective winds
(time centred winds on the C-grid: (u∗, v∗)) are updated on the
C-grid, and in the other half of the time step, the prognostic
variables (h, u, v) are updated on the D-grid.

Using the finite volume method, within each cell of the dis-
crete grid, if we consider a piecewise linear approximation to
the solution, whose slope is ‘limited’ in a certain way depend-
ing on the values of the solution at the neighbouring grid cells,
one can consistently derive a family of van Leer schemes. Al-
ternatively, if we assume a piecewise parabolic approximation
to the solution within each cell, then we obtain the PPM scheme.
For further details on formulation of these schemes, see Lin
et al. (1994) and Akella and Navon (2006), hereafter referred
to as AN06. We will follow the suggestion in LR97 and al-
ways use unconstrained van Leer scheme to advect winds on
the C-grid (this strategy provides solutions, whose accuracy is
comparable to those obtained by using more CPU demanding
advection schemes e.g. constrained van Leer and PPM schemes).
Whereas on the D-grid, we will be using the unconstrained, con-
strained van Leer, and the PPM schemes. From now onwards,
we will use the following convention to refer to our advection
schemes.

(i) ‘Unconstrained van Leer scheme’: unconstrained van Leer
on both C- and D-grids;

(ii) ‘Constrained van Leer scheme’: constrained van Leer on
D-grid and unconstrained van Leer scheme on C-grid and

(iii) ‘PPM scheme’: PPM scheme on D-grid and unconstrained
van Leer scheme on C-grid.

The poles have been treated in a fashion similar to that in
Suarez and Takacs (1996). Further details of the model can be
found in LR97 and references therein.

2.2. Observations

Reanalysed data on a 2.5◦ × 2.5◦ grid (500 hPa
pressure level; geopotential height and velocity fields)
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Fig. 1. Isolines of height field (m), top
panel: T −06 (reanalysed 500 hPa pressure
level data valid at 00 UTC 2 February 2001)
from the ECMWF ERA-40 data set; bottom
panel: a 36 forward model integration using
the PPM scheme.

from the ERA-40, ECMWF 40-year reanalysis system
(http://www.ecmwf.int/research/era/), valid at 0000 UTC 2
February 2001 (henceforth denoted by T −06), was used to spec-
ify the initial conditions for forward model integration. The PPM
scheme with a 2.5◦ × 2.5◦ (144 × 72 cells) grid resolution and
time step of � t = 450 s, has been used in this article, to generate
a ‘reference trajectory’. Synthetic observations are obtained by
randomly perturbing the reference trajectory (please see Sec-
tion 5 for further details). In Fig. 1 we display configuration of
the reference trajectory; height field at T −06 and a 36-h forecast
(with the PPM scheme).

3. Strong constraint VDA

Data assimilation schemes determine the analysed atmospheric
state as an ‘optimal’ combination of a priori background infor-
mation and observational information. Let xt be a projection of
‘true’ state of the atmosphere onto model space, xb be the back-
ground field and yo denote observations. Usually a short-range
forecast provides xb. Then the error in the background field is
equal to eb = xb − xt, and the error in the observations field is
given by eo = yo − H(xt); H is the observation operator. Denoting

the mathematical expectation operator by E[.], the background
error and observation error covariances are given by B = E[(eb −
E[eb])(eb − E[eb])T ] and R = E[(eo − E[eo])(eo − E[eo])T ], re-
spectively. Error covariances measure the uncertainty, involved
with both of these data sources, hence they determine the qual-
ity of data assimilation. Mostly, due to lack of knowledge of the
true state of the atmosphere, xt, we can only guess what B and
R should be. Thus, they are approximations of the ‘true’ error
covariances.

In strong constraint version of VDA, neglecting ME, we mini-
mize the following nonlinear quadratic cost functional, Jo, with
respect to the initial state, x(t0) as a control variable (Kalnay,
2003),

J [x(t0)] = 1

2
[x(t0) − xb]T B−1 [x(t0) − xb]︸ ︷︷ ︸

Jb

+

+ 1

2

n∑
i=0

[H (x(ti)) − yo(ti)]
T R−1 [H (x(ti)) − yo(ti)],

︸ ︷︷ ︸
Jo

(6)

Tellus 61A (2009), 1



116 S. AKELLA AND I. M. NAVON

subject to the following model equations as strong constraint,

x(t0) = x0,

dx(t)

dt
= M[x(t)].

(7)

This is achieved by using iterative minimization algorithms,
such as quasi-Newton or truncated-Newton methods. These al-
gorithms require availability of gradient of the cost functional
with respect to the control variables, which is in-turn efficiently
obtained by backward integration of the adjoint model (Lorenc,
1986; Navon et al., 1992). Note that in the above model equa-
tions, we did not account for ME, that is, η (t) ≡ 0, ∀ t.

The formulation of the so-called background cost functional,
Jb, term is crucial to the performance of the data assimilation
system. Considering a single observation, at a single grid point,
the analysis increment is proportional to a column of B. Hence
background error covariance spreads out the information in the
analysis from the observations and provides statistically consis-
tent increments at the neighbouring gridpoints and levels of the
model. It also ensures that observations of one model variable
produce dynamically consistent increments in the other model
variables. Using background knowledge makes the VDA problem
well-posed, even when there are only a few observations; also,
it fills any data voids with ‘good quality’ information (Navon
et al., 2005). In addition, the background state, xb provides an
initial guess for minimization of J . Ideally the optimal design
of background error covariance should take into account the av-
erage variances, autocorrelations and balance properties of the
background errors so that the covariances of short-range forecast
errors in data assimilation are adequately represented (Derber
and Bouttier, 1999). Our focus is on ME in this article, hence we
follow the approach of VPLD04 to construct (‘static’ in time)
B as a multivariate and cross-correlated operator (Derber and
Bouttier, 1999; Weaver and Courtier, 2001). The observation
error covariance matrix has been taken to be a block diagonal
matrix, R = [104 I, 100 I, 100 I].

4. Weak constraint VDA

In strong constraint VDA, model equations are assumed to be
‘perfect’; therefore, MEs (whose causes have been described ear-
lier in the introduction) are not taken into account. The weak
constraint VDA provides a framework for incorporating ME in the
model equations via explicit introduction of an extra term, η (t),

dx(t)

dt
= M[x(t)] + T[η(t)]. (8)

The operator T [·] maps the space of the ME to the space of the
model state, x. If one has a priori knowledge that the numerical
model has some severe drawbacks, for example, modelling of
the atmosphere in certain regions of the globe, (say, one of the
poles) then the operator, T [·] should be specified in such a way
that only those model gridpoints (at that pole) have MEs, and in
comparison, the rest of the model states do not have any ME. In

the literature (for instance, see Griffith and Nichols, 2000 and
VPLD04), it has been assumed that the model state at every
grid point has an associated error, which implies that T [·] is
identically equal to the unit matrix, I, and the dimension of η is
equal to that of the model state, x ; we assume, in the present
article, T = I.

Following Derber (1989) and VPLD04 in the spirit of varia-
tional continuous assimilation’, we will model the evolution of
ME as a continuous process, as the following initial value problem
(IVP),

dη

dt
= �[η(t), x(t)] + q(t). (9)

In this paper, we are concerned only with the systematic part of
ME, hence, the stochastic component, q (t), is neglected. There-
fore, the above differential equation simplifies to

dη

dt
= �[η(t), x(t)]. (10)

For closure of the above IVP, we need to specify the initial value
of η (t0) =η0 and the nature of the mapping �[.].

First, we describe the methodology used to calculate the initial
value of ME and then address the issue of different approaches
for modelling the evolution of ME, using different forms of �[.].
To obtain η0, the following weak constraint VDA cost functional
is minimized (note that it is similar to the cost functional in eq.
(6), but includes an extra term, Jη),

J [x(t0), η(t0)] = 1

2
[x0 − xb]T B−1 [x0 − xb]︸ ︷︷ ︸

Jb

+ 1

2

n∑
i=0

[H (x(ti)) − yo(ti)]
T R−1 [H (x(ti)) − yo(ti)],

︸ ︷︷ ︸
Jo

+ 1

2
[η0 − ηb]T Q−1 [η0 − ηb],︸ ︷︷ ︸

Jη

(11)

where Q is the model error covariance matrix.
Just as in the background state, xb was used as an initial guess

for x0 to minimize the strong constraint VDA cost functional, we
use ηb as an initial guess for η0 to minimize the above Jη in the
weak constraint VDA. Hence the above cost functional, J (x0, η0)
is minimized subject to the following equations as constraints:

x(t0) = x0; η(t0) = η0,

dx(t)

dt
= M[x(t)] + η(t);

dη

dt
= �[η(t), x(t)].

⎫⎬
⎭ (12)

Introducing the following augmented Lagrangian functional,
the above constrained minimization problem becomes an
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unconstrained problem,

L(x, η, x∗, η∗) = J (x0, η0)

+
∫ tn

t0

〈
x∗,

{
dx(t)

dt
− M[x(t)] − η(t)

}〉
dt

+
∫ tn

t0

〈
η∗,

{
dη

dt
− �[η(t), x(t)]

}〉
dt, (13)

where x∗, η∗ are the Lagrange multiplier vectors corresponding
to x, η, respectively, and 〈·, ·〉 denotes Euclidean inner product.

Using calculus of variations, the extrema ofL are the solutions
of the Euler–Lagrange equations (the extrema of L are the same
as the extrema of J (x0, η0)). Using the first-order optimality
criteria, at the extrema of the Lagrangian,L, following equations
are satisfied.

∂L
∂x

= 0,
∂L
∂η

= 0, (14a)

∂L
∂x∗ = 0,

∂L
∂η∗ = 0. (14b)

Equations (14b) yield the equations describing the evolution of
model state and ME,

dx(t)

dt
= M[x(t)] + η(t),

dη

dt
= �[η(t), x(t)], (14b)

respectively. Whereas eqs. (14a) yield the following adjoint
equations that describe the evolution of the adjoint variables
x∗, η∗,

x∗(tn) = 0, η∗(tn) = 0,

−dx∗(t)

dt
=

[
∂M
∂x

]T

x∗ +
[

∂�

∂x

]T

η∗+

δ(t − ti)
n∑

i=0

[
∂H

∂x

]T

R−1 [H (x(ti)) − yo(ti)],

(15a)

−dη∗(t)

dt
=

[
∂�

∂η

]T

η∗ + x∗. (15b)

Note that the evolution of x∗ and η∗ is coupled via the �[.]
operator. Also the gradient of the cost functional, J (x0, η0),
with respect to the model state, x0 and ME state, η0 is given by

∇x0J = ∇x0Jb + ∇x0Jo = B−1[x0 − xb] + x∗(t0), (16a)

∇η0J = ∇η0Jη + ∇η0JO = Q−1[η0 − ηb] + η∗(t0). (16b)

As usual, backward integration of the adjoint models (15a) and
(15b) from time tn → t0, provides us the values of initial ad-
joint states x∗(t0) and η∗(t0). Therefore, the gradient in weak
constraint VDA is given by (∇x0J , ∇η0J )T . Comparing this with
the gradient in strong constraint VDA, which was only ∇x0J , the
size of the optimization problem is doubled.

In strong constraint version of VDA,we used a square-root
formulation for the background error covariance matrix, B and
transformed the space in which minimization was performed,

such that there was no need for calculating B−1. The ME covari-
ance matrix, Q, has been handled in a similar fashion, details
were provided by VPLD04.

Now we address possible approaches to model the evolution
of ME, using different forms of the mapping, �[η (t), x (t)],
which maps the space of state variables, x and the space of
ME, η, onto η only. As noted above, this mapping couples the
evolution of the adjoint variables corresponding to the model
states and ME, and it also increases the complexity involved in
the backward integration of the adjoint models, eq. (15). ‘To the
best of our knowledge, the issue of MEs in solutions of inverse
problems using high resolution advection schemes has not been
addressed as yet’; hence to begin with, in this paper, we assume
that ∂�

∂x = 0, that is, �[.] maps ME onto itself. This assumption
significantly simplifies the adjoint model equations, since the
evolution of x∗ is unchanged, and we can concentrate only on
the evolution of ME and its corresponding adjoint state.

The strong constraint VDA can significantly reduce the compo-
nent of forecast errors due to inaccurate specification of model
initial conditions. Therefore, through weak constraint VDA, we
aspire to further reduce the forecasting errors by reduction of
errors such as those arising from discretization. Since the ME

evolution is assumed to be governed by the following equation,

η(t0) = η0,
dη

dt
= �[η(t)], (16b)

the rate of growth (or decay) of η (t) in time is given by the
particular form of �[η]. If �[η] < 0, ∀η, then ME monotonically
decreases in time; if �[η] = 0, ∀η then it is constant, and if
�[η] > 0, ∀η, then it grows in time. We considered all these
possibilities and investigated the following three forms of �,

(i) Decaying ME, �[η] = − βη,
(ii) Constant ME, �[η] = 0,
(iii) Growing ME, �[η] = γ η,

where β and γ are constants, and in our numerical results,
we specified β�t = 0.2 and γ�t = 0.01 (henceforth, the time
step �t = 450 s as in Section 2.2). These ‘values’ of β and γ

were chosen arbitrarily, so that the qualitative aspects of different
forms (decaying, constant and, growing) of ME can be studied
in the context of the various advection schemes (see Sections
5.1–5.3 for details). In the next section, we generalize the above
forms and provide a methodology to obtain the parameter (β or
γ ) value via ‘optimal’ parameter estimation.

4.1. Model error parameter estimation

We start by writing the following general form for the evolution
of ME,

dη

dt
= α η(t), (17)

where the scalar parameter, α, is determined via minimization
of the weak constraint VDA cost functional. Therefore, we add

Tellus 61A (2009), 1
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the following quadratic penalty term:

Jα = 1

2

1

bα

(α − αb)2 (18)

to the cost functional in eq. (11), where the initial guess or back-
ground value of the parameter is denoted by αb and the quadratic
penalty coefficient for deviations from that value by bα . Hence
after every kth minimization iteration in addition to the initial
conditions xk

0 and ηk
0, we also obtain an optimal parameter value

αk , such that there is a correspondence between the optimal ME
parameter α and initial condition η0 and model initial conditions
x0. To briefly sketch the details of this procedure, if at the end
of kth minimization iteration, we have the set {xk

0, ηk
0, αk}, with

a cost functional and gradient values Jk, ∇Jk , respectively. We
compute a new parameter value, αk+1, in a sequence of i inner
iterations, through a parameter estimation procedure (for details
on parameter estimation in VDA, see e.g. Navon, 1998). These
inner iterations are terminated when

‖∇J (xk
0, η

k
0, α

k+1
i )‖2

‖∇J (xk
0, η

k
0, α

k)‖2
� TOLinner,

or if i � nMAX inner, where nMAX inner is a preset number of
maximum iterations. Having found an optimal parameter value
at k + 1 iteration, we ‘fix’ it and use it in eq. (17), to obtain
new values of xk+1

0 and ηk+1
0 in a sequence of ‘outer’ iterations,

yielding {xk+1
0 , ηk+1

0 , αk+1}. The termination criteria for the outer
iteration cycles will be specified in Section 5.1. To summarize,
the qualitative form (decaying, constant or growing) of ME will
be primarily determined based on observational misfit, and such
a parameter estimation leads to a general modelling of ME. We
also need to specify bα , which will be discussed in Section 5.4.

5. Results with various experiments

5.1. PPM perfect 2.5 × 2.5

In the first set of experiments, using the initial condition at T −06,
(introduced in Section 2.2), we integrated the forward model for
36 h, with the PPM advection scheme, saving forecasts at every
6-h interval (2.5◦ × 2.5◦ grid resolution and time step of 450 s),
as reference trajectory. A 24-h data assimilation time window
[T 00 − T +24] has been used, T +30 was taken to be forecast
verification time. See Table 1 and Fig. 2 for nomenclature of the
different time intervals.

The goal of this experiment is to investigate if it is possible
to account for the discretization error of the other advection
schemes by including for them a ME term in VDA (unconstrained
and constrained van Leer schemes are known to be diffusive
when compared with the PPM scheme, please see AN06; LR97;
Lin et al. (1994)). Hence the grid resolution and time step are
same for the observational (PPM advection) and numerical (other
advection schemes) models; also, observations are exactly the
same as the reference trajectory. Note that the PPM scheme is
‘exact’ for this particular experiment.

Fig. 2. Illustration of data assimilation time window; xb was generated
by a 6-h integration, using data at T −06. T +30 is forecast verification
time. Observations are used at T 00, T +06, T +12, T +18 and T +24.
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Fig. 3. RMS geopotential height field (m2/s2) forecast errors with
different advection schemes for the PPM perfect experiments described
in Section 5.1.

To motivate our results, in Fig. 3, we show the geopotential
height field RMSE2 between model forecasts and observations
for the two van Leer advection schemes. Among the van Leer
schemes, the constrained van Leer scheme is better than the un-
constrained van Leer scheme due to the monotonicity constraint
applied in the former, hence it yields lesser forecast error.

For the assimilation experiments, we used an unconstrained
limited memory quasi-Newton (L-BFGS) minimization algo-
rithm (Liu and Nocedal, 1989; Nash and Nocedal, 1991) for
minimization of the cost functionals given in eqs. (6) and (11).
Following termination criteria was used in all DA experiments:

‖(∇J )k‖2

‖(∇J )0‖2
≤ EPS, (19)

(∇J )k is the gradient at the kth minimization iteration and EPS
was set to 1.0 × 10−2. During the minimization process, due

2 RMSE between fields x and y was calculated as√
1

N×M

∑N
i=1

∑M
j=1(xi,j − yi,j )2
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Fig. 4. Plot of the observational cost
functional, Jo (normalized using value at
first minimization iteration), for the strong
and weak constraint VDA, with various forms
of ME for the PPM perfect 2.5 × 2.5
experiment, described in Section 5.1. Panel
(a) uses the unconstrained van Leer
advection scheme and panel (b), constrained
van Leer.

to the regularization property of the minimization algorithm,
the differences on larger scales are fit in the first few iterations,
yielding the largest decrease in the cost functional, thereafter
minimization proceeds to fit the smaller discrepancies, or small
decreases in the value of the functional. Hence, all VDA mini-
mization iterations were terminated using above criteria, or after
120 function evaluations, which ever happens first.

Figures 4(a) and (b) provide a plot of the normalized misfit
between observations and model prediction, Jo in eqs. (6) or

(11), versus number of cost functional evaluations during VDA

for both unconstrained and constrained van Leer schemes. Note
the improved fit of model states and observations when ME term
is included, when compared with no ME in strong constraint VDA.
Among the various forms (decaying, constant, growing) of ME
proposed in Section 4, the constant ME exhibits the best fit with
the observations, whereas the decaying ME performs negligibly
better than the strong constraint VDA. In the earlier minimization
iterations, for the constrained van Leer, the growing ME form
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Fig. 5. RMS geopotential height field (m2/s2) errors before and after
strong constraint, as well as weak constraint VDA for the PPM perfect
2.5 × 2.5 experiment (Section 5.1). Panel (a) uses the unconstrained
van Leer advection scheme and Panel (b) constrained van Leer.

does not perform well, but does better in fitting the small-scale
differences towards the latter iterations (after 80), though not as
well as the constant ME.

In Fig. 5, we compare the RMSE in geopotential height field
before and after VDA for the unconstrained and constrained van
Leer schemes (though not shown, the RMSE in wind fields was
significantly reduced using different forms of ME). In all cases,
the RMSE has been reduced by 50% or more via VDA. Also the
optimized initial condition is able to provide a better forecast at
T +30 (30-h forward integration from T00). Consistent with the
best observational fit as in Fig. 4, the constant ME provides the
least RMSE. As earlier, results with the decaying ME form are
similar to the strong VDA. The growing ME does provide lesser

RMSE (compared with strong VDA, specifically, the unconstrained
van Leer, except at T00) within the window of data assimilation,
whereas the forecast at T +30 is deteriorated. We note that in
the case of the constrained van Leer scheme, all the proposed
forms of ME exhibit similar behaviour in RMSE reduction after
VDA, particularly within the window of assimilation. This loss
of contrasting performance of various ME forms, compared with
the unconstrained van Leer scheme could be due the fact that
the constrained van Leer scheme fits the observations better than
the unconstrained scheme (Fig. 3) even without VDA. Also, we
recall that the cause of the observational misfit is purely due
to the discretization error of the PPM and constrained van Leer
schemes, which is smaller compared with the error between the
PPM and unconstrained van Leer schemes. This smaller disc-
treziation error could explain the reason for various ME forms to
be peforming slightly better than the strong VDA in the case of
more accurate constrained van Leer scheme; however, this issue
will be further examined in Section 5.3.

The above results indicate that discretization error for the
lesser accurate van Leer schemes, compared with the PPM

scheme, could be accounted for, by including a ME term. How-
ever, the forecast RMSE, obtained using growing ME, is higher
than that obtained in the strong VDA case, for both advection
schemes. Also the decaying ME form performed very similar to
the strong VDA, which provides no treatment of model error. In
Fig. 6, we plot the initial (at time T00) model error (height field
component) after minimization and the forecast (at time T +30)
for the constant, growing and decaying ME forms, with the un-
constrained van Leer scheme. We note that the model error at
T00 has identically similar features for the constant and growing
forms, except for the difference in magnitudes. For the growing
ME, because of the growth rate γ = 0.01/�t specified in Sec-
tion 4 and following the ordinary differential equation in time,
the model error at T +30 looks exactly similar to that at T00 but
increased by about one order of magnitude; this increase could
explain why the forecast RMSE is higher than the strong VDA.
The initial model error for the decaying ME at T00 looks like
a smoothed version of the initial model error for the constant
and growing ME forms and, due to the specified decay rate β =
0.2/� t, decreases to insignificantly small value very quickly,
which explains why its performance is similar to the strong VDA.
Further, the analysis error at T00 and forecast error at T +30, after
minimization, plotted in Fig. 7 supports the above argument.
The strong VDA and the decaying ME form exhibit almost iden-
tical (both in magnitude and features) errors at T00 and T +30.
The growing ME shows the highest error (larger than strong VDA,
as was shown in the RMSE plot, Fig. 5). Indeed the locations of
maximum error seem to be the same for all the methods after
VDA, in particular, the constant ME reduces the error magnitude
at those locations by about one-fifth, comparing before and af-
ter VDA (the plots for the constrained van Leer scheme lead to
similar conclusion, hence not shown). These results suggest that
the specification of growth and decay rates is very important for
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(b) Growing ME

(c) Decaying ME

(a) Constant ME

Fig. 6. Spatial distribution of model error after weak constraint VDA, height field (m) component at initial and final time for the PPM perfect 2.5 × 2.5
experiments described in Section 5.1, using the unconstrained van Leer advection scheme. Left-hand column, at time T00; right-hand column, T +30.

better performance of proposed forms of ME, this issue will be
further discussed in Section 5.4.

In the following experiments, we examine the impact of differ-
ing ME in a more ‘realistic’ setting. The number of observations
used for assimilation is decreased and therefore only a part of
the state vector is observed. 3

3 we use a regular grid resolution for the observations; more complicated,
non-uniform observational network would be tackled in future work.

5.2. PPM perfect 5 × 5

This experiment is similar to above experiment, except that the
observations used in assimilation were specified at a grid res-
olution of 5◦ × 5◦. Hence the spatial degree of freedom for
minimization is reduced by one-fourth; however, the time fre-
quency has been kept the same, that is, observations used every
6 h as indicated in Fig. 2. Also the criteria for termination of
minimization iterations has been kept the same as earlier (1%
decrease in gradient L2 norm or 120 cost function evaluations,
whichever came first, details were given in Section 5.1).
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(b) Strong constraint VDA

(a) Before VDA

(c) Weak constraint VDA, constant ME

(d) Weak constraint VDA, growing ME

(e) Weak constraint VDA, decaying ME

Fig. 7. Spatial distribution of error in height
field (m) at initial and final time for the PPM
perfect 2.5 × 2.5 experiments described in
Section 5.1, using the unconstrained van
Leer advection scheme. Left-hand column,
at time T00; right-hand column, T +30.
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Fig. 8. Same as in Fig. 5, but with the observations at 5◦ × 5◦ grid
resolution, PPM perfect 5 × 5 experiments described in Section 5.2.

Forecast RMSE obtained using the assimilated initial condi-
tions, is plotted in Fig. 8 (the fit with observations,Jo, mirrors the
information provided in forecast RMSE plot, hence, not shown).
As the number of observations is decreased (2.5◦ × 2.5◦– 5◦ ×
5◦ grid resolution), the RMSE after assimilation increased when
compared with results presented in the above section. We note
that the error at T00 is comparable to the error before VDA; how-
ever, when we relaxed one of our termination criteria (in this
case, 120 cost function evaluations, which was reached first),
the error at T00 was also decreased. However, for the sake of
a fair comparison, we used the same termination criteria as
before.

As earlier, the constant ME yields the smallest RMSE among all
the VDA methods considered, for both of the van Leer schemes.
Once again, for the more accurate constrained van Leer scheme,

the proposed ME forms give performance comparable to the
strong VDA. However, the results with the unconstrained van
Leer scheme do suggest that when sources of error are—(a)
discretization error: modelled via different advection schemes
(observations: PPM, model: unconstrained or, constrained van
Leer); (b) lack of observations—supplied at a lower resolution
than model grid, can be accounted for by a constant model error.
In the case of the constrained van Leer scheme, the above forms
of ME seem not to be peforming much better than the strong
VDA. To investigate this behavior, we present the following set
of experiments, in which we introduced another source of ME,
by specifying an incorrect value of the Coriolis parameter.4

5.3. Wrong Coriolis

In the following experiments, the Coriolis parameter specified in
the forecast and adjoint models was wrongly specified by setting
the angular velocity of the earth to 0.98 times the correct value
of 7.292 × 10−5 s−1, which is a consistent source of modelling
error. In Fig. 9, a comparison of the forecasting errors using the
correct and incorrect Coriolis parameter is shown for the two
van Leer schemes. Note that the constrained van Leer scheme
is more sensitive to this systematic error than the unconstrained
van Leer scheme and therefore, hopefully, a good test case to
see if any of the proposed ME forms will work better than the
strong VDA.

As in the above PPM perfect experiments (Section 5.1), ob-
servations were obtained by using the PPM advection scheme,
with the correct Coriolis parameter and adding a 1% random
perturbation. Therefore, the observations were used every 6 h,
on a 2.5 × 2.5 grid resolution. Forecast RMSE obtained after data
assimilation is plotted in Figs. 10(a)–(c). Though we report re-
sults obtained using the PPM scheme (in the forecast and adjoint)
model, one should not compare the PPM results with the van Leer
scheme results, recall that the (reference trajectory and hence)
observations were generated using the PPM scheme. However,
in these experiments, the PPM has been included to see how it
behaves in the above proposed weak constraint VDA framework,
when there is a consistent source of ME, in particular, can we
use any of the MEs to account for the error from misspecified
Coriolis parameter alone? On the other hand, for the van Leer
schemes the sources of error are: incorrect Coriolis parameter,
less accurate advection scheme.

Indeed, the consistent source of model error through misspec-
ified Coriolis parameter contrasts the peformance of various ME
forms, when compared with the strong VDA for the higher accu-
rate constrained van Leer advection scheme. However, as dis-
cussed earlier in PPM perfect 2.5 × 2.5 (Section 5.1), the strong
VDA and decaying ME form yield similar RMSE errors. Since the
misspecification of Coriolis parameter is a ‘constant’ source of

4 similar approaches to introduce consistent model error were used, see
for instance, VPLD04, Dee and Da Silva (1998).
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Fig. 9. A comparison of the forecast RMSE, using the correct and
incorrect (2% error) Coriolis parameters. Panel (a), unconstrained van
Leer scheme; panel (b), constrained van Leer scheme.

ME, it is expected that constant ME form would work well, exactly
as the results reveal, even for the PPM scheme. On the other hand,
the growing ME exhibits the largest errors. We note that for the
constrained van Leer and PPM scheme the error at T00 is slightly
higher than that for the strong VDA, even with the constant ME,
as mentioned earlier; this could be alleviated by relaxing the
minimization termination criteria and doing more function eval-
uations. However, notable gain is obtained in lesser error at all
other times, including at T +30.

All of the above results do indicate that the choice of ME is
not only highly dependent on the source of the error, but also the
advection scheme, that is, the model (both forward and adjoint)
used. In other words, higher accurate models, such as those with
constrained van Leer and PPM advection schemes could be less
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Fig. 10. RMS geopotential height field (m2/s2) errors before and after
strong constraint, as well as weak constraint VDA for the Wrong Coriolis
experiment, described in Section 5.3. (a) and (b) use the unconstrained
and constrained van Leer schemes and (c) uses the PPM scheme.
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sensitive to certain forms of modelling ME. Though our results
suggest that the constant ME could be used to model systematic
errors as considered above, but depending on the nature the
model, the performance with different ME forms (when compared
to strong VDA) could significantly vary.

5.4. Estimation of model error parameter

In the weak constraint VDA results presented so far, we arbitrar-
liy assigned certain values to the model error parameters β, γ ,
to model the evolution of ME as decaying, constant or growing
ME. We note that in practice, it would be extremely difficult to
determine both the exact nature of the ME (decaying/ constant/
growing) and values of the parameters. The above results with
fixed set of parameter values indicated that usage of such values
could result in no positive gains, for example, the decaying ME

form leads to model error values of almost zero and therefore
same results as strong VDA. On the other hand, the growing ME

form leads to higher errors than the strong constraint VDA. There-
fore, the choice of particular forms of ME considered needs to be
generalized, such that the parameter value is ‘adaptively’ found
while minimizing the weak constraint VDA cost functional. In
Section 4.1, we mentioned such a procedure of optimal model
error parameter estimation. To that end, we modified the cost
functional by addition of a quadratic penalty term given in eq.
(18). This also implies that the form of ME ‘varies’ as mini-
mization is carried out, therefore we iteratively find ‘optimal’
initial conditions x0 and η0, as well as optimal parameter value
α after every inner and outer iterations. We should note that this
parameter is not part of the model equations (in our case, the
SWE equations system), rather it is part of the ME formulation
in the context of weak constraint VDA, therefore the process is
‘dynamically’ estimating a new optimal parameter value, in or-
der to fit the model trajectory with the observations. Hence as
the observational misfit decreases with minimization iterations,
a ‘saturation’ occurs, that is, a steady value for the parameter
could be obtained, after every cycle of inner and outer iterations.

Finding an optimal value for the penalty coefficient bα in the
cost functional Jα , eq. (18), could be laborious, as described in
Zhu and Navon (1999). If from the start of minimization, the
parameter values are far from the feasible region, the minimiza-
tion is highly sensitive to the penalty coefficient. However, if
from the beginning, we are already in the feasible region, the
minimization could be insensitive to the choice of the penalty co-
efficient. In such a situation, if we increase the penalty term, for
example, by an order of magnitude, there could be no change in
parameter estimate, except for a slowing down of minimization
convergence rate.

For the initial guess αb, we specified the same value of the ME
parameter as was used in the growing ME, that is, γ�t = 0.01
(with �t = 450 s as mentioned earlier in Sections 2.2 and 4).
This value was indeed in the feasible region as our cost func-
tional was insensitive to the choice of the penalty coefficient bα ,

which we set to 10−2. Further decreasing bα , that is, increasing
the penalty cost functionalJα , from this value only slowed down
the minimization, but yielded the same results. The inner itera-
tion termination criteria in Section 4.1, TOLinner and nMAX inner

were respectively specified to be equal to 0.8 and 20. In Fig. 11(a)
we plot the variation of the ME parameter α, versus number of
iterations, the experiment setting is same as in the PPM perfect
2.5 × 2.5, Section 5.1 (here we show results with the con-
strained van Leer, similar results were obtained with the uncon-
strained van Leer). Note that the parameter value monotonically
decreases before saturating, at around −2 × 10−3. Based on this
result, and given the previous observation that the constant ME
form, for which the parameter value is simply equal to zero, we
chose initial guess values αb � t that are ‘smaller’ in magnitude
than both γ�t and currently obtained ‘optimal’ estimate of −2
× 10−3, in the vicinity of −4.5 × 10−4. The goal of these ad-
ditional VDA experiments is to see if indeed we obtain the same
saturated value for the ME parameter, and is there any impact of
the choice of different αb on the estimated parameter value. In
Fig. 11(b), we compare the evolution of the parameter estimates
in the three additional VDA experiments. We observe that indeed
the final saturated value is ‘close’ to the previously obtained sat-
urated value of −2 × 10−3. We do not expect the same value to
be obtained from all the experiments, due to the round off errors
in minimization, particularly towards the termination of mini-
mization. Further, when we specified initial guess αb�t larger
in magnitude than those mentioned, for example, αb�t = |β�|
= 0.2 which was used in the decaying ME form (Section 4), we
obtained a similar saturated value, but at the expense of a few
hundred more minimization iterations. The RMSE from all these
various adaptive parameter estimation experiments are plotted
in Fig. 12, these results compare very well with the constant ME
results. In the current experimental setting, the source of model
error, being only the difference in advection scheme, we would
expect that a constant form for the ME to work best, hence the
saturated value for the model error parameter estimate would be
small. This generalized approach to obtain the value of the ME

parameter provides a flexible approach to modelling ME, which
deserves further investigation.

6. Summary and conclusions

In this paper, we study the impact of including a systematic
(or, deterministic) ME term, in the framework of weak constraint
VDA. Following VPLD04, a continuous (in time) differential
equation form for the evolution of ME has been considered; to that
end, three forms—decreasing, constant and growing models—
were tested, with respect to the strong constraint VDA, which
does not have any treatment of ME. Note that these are very
simple forms of ME, which are independent of the model state.
In addition, we proposed and tested a model error parameter
estimation methodology that generalized the above mentioned
three ME forms.
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Fig. 11. Variation of the ME parameter, as
the weak constraint VDA (using constrained
van Leer advection scheme) cost functional
is minimized, for parameter estimation
described in Section 5.4; (a) starting with an
initial guess for the parameter, that is same
as the growing ME, γ�t = αb�t = 10−2,
considered in Section 4 and (b) ME parameter
estimation starting with initial guesses for
the parameter value that are slightly
perturbed from an arbitrarily small initial
value of −4.5 × 10−4.

Discretization errors in numerical models have been consid-
ered to contribute to ME. As pointed in LDS05, one way to
account for such errors would be to increase model resolution,
but if the observations are only available at a certain resolution,
it is questionable, whether a highly resolved model will provide
lesser forecast errors. Here, we considered an alternative proce-
dure, where by the observations are obtained using a high accu-
rate scheme, such as the PPM scheme, but the model uses lower
accurate, advection schemes (unconstrained or constrained van

Leer), which differ in their diffusivity properties (via, applying
different slope limiters). Indeed as expected, amongst the two
van Leer schemes, the higher accurate, constrained van Leer
scheme yielded lower forecast errors, with no assimilation, Fig.
3. Then in assimilation experiment, PPM perfect 2.5 × 2.5 we
show that it is possible to account for discretization error of van
Leer advection schemes by including for them a ME term; more
than 50% reduction in forecast RMSE was obtained. Therefore,
changing the formulation of numerical discretization scheme,
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Fig. 12. RMS geopotential height field (m2/s2) errors before and after
weak constraint VDA (using constrained van Leer advection scheme) for
the adaptive model error parameter estimation experiment (Section
5.4). We compare the forecast RMSE for the constant form of the ME and
that obtained with an optimal parameter values estimated after
minimization. The ME parameters were adaptively estimated as shown
in (a) and (b).

and weak VDA is another possible way to decrease model error.
Comparable results were shown in the PPM perfect 5 × 5 exper-
iment, where the number of observational degrees of freedom
was reduced to one-fourth of the model state. The constant ME for
the unconstrained van Leer scheme consistently yielded lesser
forecast RMSE within every experiment (as expected, lesser ob-
servational resolution degraded the VDA results amongst different
experiments). However, for the constrained van Leer scheme, the
improvement using ME was not as significant as in the case un-
constrained van Leer scheme, though for every experiment it
was better than the unconstrained van Leer scheme. Therefore,
we observed that the nature of the results obtained using differ-
ent forms of ME is not only highly dependent on the source of
the error, but also on the particular advection scheme, that is, the
model used. Hence different settings of the model could need
different ME forms to achieve higher reduction in forecasting
errors.

We conducted another set of experiments (Wrong Coriolis)
in which, a systematic modelling error was introduced by in-
correct specification of Coriolis parameter. Such a source of ME
consistently degraded forecasts. Forecast RMSE after weak con-
straint VDA showed contrasting differences in the performance
of different ME forms. The PPM scheme was used to generate the
observations, therefore it was not used for assimilation in PPM

perfect experiments. However, we did use it in the wrong Corio-
lis experiments to study whether we can we use any of the model
error forms to account for the systematic error from Coriolis pa-
rameter misspecification alone (since, in this case, the advection
scheme is same for model and observation trajectories). Results
with the decaying form and strong VDA were always coincident,

for all the experiments presented, this was shown to be due to the
specified decay rate. The growing form exhibited higher errors
than the no ME, that is, strong VDA, this was shown to be due to
the assigned growth rate. In all cases, the constant ME performed
better than the strong VDA.

In our experiments, we had an a priori knowledge of the source
of model error (discretization error, misspecified Coriolis pa-
rameter), and therefore we choose certain simple parameterized
forms for the ME to study which one of them is able to account
for the ME in VDA framework. To generalize these various forms
of proposed model erros, we suggested a parametrization of the
model error, whereby the model error form or the parameter
value would be adaptively determined during minimization of
the weak constraint VDA. Forecast RMSE results with the opti-
mal parameter are very similar to the constant ME, given the
nature of systematic MEs studied in this paper. Therefore, these
results indicate that one could parametrize ME in the proposed
framework, and also estimate the parameters while minimizing
observational misfit.

In this study, the model error was assumed to be system-
atic; however, the random or stochastic component (Buizza
et al., 1999; Tsyrulnikov, 2005) of model error could be sig-
nificant, and its estimation and possible removal (Dee and Da
Silva, 1998) in either an ensemble or variational data assimi-
lation (possibly using high resolution advection schemes, such
as the van Leer and/or PPM schemes presented here) system
deserve further exploration, particularly, using 3-D plus time
models such as the FV-GCM.
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