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Abstract

A general method based on adjoint formulation is discussed for the optimal control of distributed pa-
rameter systems (including boundary parameter) which is especially suitable for large dimensional control
problems. Strategies for efficient and robust implementation of the method are described. The method is
applied to the problem of controlling vortex shedding behind a cylinder (through suction/blowing on the
cylinder surface) governed by the unsteady two-dimensional incompressible Navier–Stokes equations space
discretized by finite-volume approximation with time-dependent boundary conditions. Three types of
objective functions are considered, with regularization to circumvent ill-posedness. These objective func-
tions involve integration over a space–time domain. The minimization of the cost function uses a quasi-
Newton DFP method.

A complete control of vortex shedding is demonstrated for Reynolds numbers up to 110. The optimal
values of the suction/blowing parameters are found to be insensitive to initial conditions of the model when
the time window of control is larger than the vortex shedding period, the inverse of the Strouhal frequency.
Although this condition is necessary for robust control, it is observed that a shorter window of control may
suffice to suppress vortex shedding.
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1. Introduction

Application of optimal control theory to flow control problems has recently attracted increased
attention [1,3,6,8,18,13,23,30,31,36]. A key element of an optimal flow control problem is the
minimization of an objective or cost functional which provides a quantitative measure of the
desired objective and depends critically on the solution (known as the optimal solution) that
satisfies the partial differential equations governing the fluid flow. For instance, the integral of the
dissipation function may be employed as an objective functional, the governing PDEs are the
Navier–Stokes equations, and their optimal solution represents the flow with minimum drag on a
body (e.g., [1,18]). Minimizing a defined objective functional is necessarily an iterative proce-
dure due to the nonlinearity of the Navier–Stokes equations, and therefore is computationally
intensive.

Complete mathematical treatment of optimal control problems and their computer imple-
mentations have been carried out in such relatively simple cases as Burgers’ equation (e.g.,
[4,7,8,32]) and the steady two-dimensional Navier–Stokes equations (e.g., [9,12,20,21,29]). The
state equations (i.e., the equations governing the flow) are treated as constraints, and all the state
variables and control parameters are involved in the minimization process. Constrained mini-
mization algorithms then become applicable such as the general reduced gradient or the gradient
projection algorithms [9] and the sequential quadratic programming [12,29].

The optimal control problems associated with the unsteady Navier–Stokes equations pose a
challenge for current computational techniques and computer capabilities. The dimension of the
unsteady problem is N times larger than that of the corresponding steady-state problem when the
number of time steps is N. For large N, constrained minimization algorithms are computationally
infeasible. Alternative approaches have been employed in some recent attempts at solving such
problems numerically (e.g., [3,23,30,31]). Among the alternative approaches are the suboptimal
control algorithms that create reduced problems of tractable dimensions. They are essentially of
two types. The first type is the method of instantaneous control introduced in [8], where a steady
optimal control problem is solved at each discrete time level ti, and optimal control is used to steer
the system from ti to tiþ1. This method was recently applied to the control of Karman vortex
shedding behind a circular cylinder by optimizing the blowing and suction on the surface of the
cylinder [35]. The second type projects relevant variables to a lower dimensional space, thus re-
ducing the dimension of the control problem, and the optimization is performed with the reduced
system [14,42].

Another strategy to circumvent the problem of computational complexity is to transform the
problem into an unconstrained minimization problem by solving for the state variables in terms of
the control parameters, thereby eliminating the constraints. It is well known that all efficient
minimization algorithms require computation of the gradient of the objective functional with
respect to the control parameters. This gradient information can be directly utilized for efficient
unconstrained minimization based on, for example, quasi-Newton types of algorithms. The de-
rivative of the functional can be directly and efficiently computed with respect to the control
parameters in an adjoint formulation. This is true for both boundary and distributed controls (see
Section 2).

Some of the early works on control of flow past obstacles/cylinder were conducted by Park
et al. [40], Sritharan [47], Ou [39] and Sritharan et al. [46]. Such an adjoint technique has been
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implemented in idealized distributed controls in [23], boundary controls in [3], and cylinder ro-
tation controls in [28]. See also a basic study of the wake control problem in [43].

The main difficulty in implementing the adjoint technique is the derivation of the adjoint
models [19]. In the literature on flow control, the adjoint equation is derived by applying the
method of integration by parts to the discrete Navier–Stokes equations as described in [3].
However, integration by parts is difficult to implement for complex boundary geometries and
sophisticated time-stepping schemes. In such cases, it is inevitably necessary to approximate the
method of integration by parts, which may lead to inconsistency between the original model and
its adjoint. Due to this limitation, previous investigations based on adjoint models are basically
confined to simple rectangular boundaries and relatively simple time-stepping schemes [3,23].

In the present paper, a flexible and efficient approach for constructing adjoint models is pro-
posed, which does not suffer from the aforementioned limitation. In this approach, the adjoint is
constructed directly from the source code of the original discrete nonlinear model, thereby en-
suring consistency between the discrete nonlinear model and its adjoint. The adjoint model does
not introduce any additional error beyond that associated with nonlinear discretized model.
Boundary conditions at complex geometries and sophisticated time-stepping schemes do not
present any particular difficulties in this approach.

Rigorous results for optimal control problems for incompressible viscous flows are available for
the derivation of optimality systems [11,24], for the convergence of the finite-element discretiza-
tion of the optimality systems as well as for the convergence of gradient type methods for im-
plementing the optimization [1,23].

Based on the proposed approach, an optimal control algorithm was developed for controlling
the Karman vortex street behind a circular cylinder in a uniform stream. Injection and suction at
the surface of the cylinder were the control mechanisms to suppress vortex shedding. This optimal
control algorithm yielded the optimal distribution of injection/suction that suppressed vortex
shedding in a robust way for Reynolds numbers up to at least 110. (Vortex shedding can occur
starting at Reynolds number of 40.) Note that vortex shedding is completely suppressed only for
lower values of the Reynolds number when other control methods are used [41,44].

Suppression of Karman vortex shedding in the wake of the cylinder by controlling the angular
velocity of the rotating cylinder, which can be either constant in time or time dependent was
conducted in [27]. That study employed an empirical logarithmic law for obtaining the regular-
ization coefficient relating the regularization coefficient to the Reynolds number.

In the present study the objective functional was defined as the space–time integral of some
physical quantity. The minimization of the objective functional was carried out over a time in-
terval sufficiently large to cover the evolution of a flow pattern (in an uncontrolled situation) that
involves all possible unstable wavelengths. It was observed that the time window should be longer
than the vortex shedding period in order to attain a robust control, but a complete suppression of
vortex shedding is possible even if the time window is only half as large as the vortex shedding
period. The dependence of optimal parameters on the initial conditions was examined. It was
noticed that these were rather insensitive to initial conditions if the length of the time window is
longer than that of the vortex shedding period. Optimal flow control problems could be ill-posed
in the sense of Tikhonov and Arsenin [49]. The minimization process for the vortex shedding
control problem was found to be ill-posed. To deal with the ill-posedness, the objective functional
was regularized in a manner similar to that employed by many investigators (e.g., [1,3,8]).
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This paper is organized as follows. After a general introduction in Section 1, a basic derivation
of the general expressions for the gradient of the objective functional in terms of the adjoint
models is presented in Section 2. The two-dimensional incompressible Navier–Stokes equations
and their discretized analogs are described in Section 3. The choice of adequate cost functionals is
discussed in Section 4. In Section 5 a quasi-Newton minimization algorithm is presented aimed at
minimizing the chosen objective functional in the optimal flow control problems under consid-
eration. Numerical experiments are then presented in Section 6. Ill-posedness of vortex shedding
control problems and regularization approaches to alleviate this ill-posedness are discussed in
Section 7. Finally, Section 8 discusses and summarizes major results obtained in this work.

2. Adjoint: a general technique for optimal control

2.1. Basic assumptions

In the following, boldface letters denote vectors or matrices. We can write a model (the state
equation) governing the unsteady fluid flow as

xðtÞ ¼Mlðt; t0Þxðt0Þ; ð1Þ
where Mlðt; t0Þ is a nonlinear operator that depends on the control parameter l. We focus on a
space discretized model such as is obtained by finite difference, finite element or spectral dis-
cretization methods. In this case,Mlðt; t0Þ is a matrix, say, of finite order K, and correspondingly
xðtÞ is a K-dimensional state vector at time t. In the fluid dynamics context, xðtÞmay consist of the
discretized flow velocity components and pressure (see Section 3).

By introducing a time discretization, Eq. (1) may be written as

xnþ1 ¼Mlðtnþ1; tnÞxn; n ¼ 0; . . . ;N � 1; ð2Þ
where N is the total number of time steps in the interval of the model integration and
xnþ1 ¼ xðtnþ1Þ. Ml is dependent on the model parameters and boundary parameters, and from a
purely mathematical point of view, it is not necessary to distinguish the boundary parameters
from the model parameters (e.g., [5]). However, in boundary control problems, the boundary
conditions assume particular importance. It is computationally expedient to rewrite (2) as

~xxnþ1 ¼Mlðtnþ1; tnÞxn; n ¼ 0; . . . ;N � 1; ð3Þ

xnþ1 ¼ Cnþ1~xxnþ1 þ Bnþ1b; ð4Þ
where (4) may represents the Dirichlet, Neumann and Robin boundary conditions. Cnþ1 and Bnþ1

are linear operators. Here the parameter b specifies the boundary condition. The entries of Bnþ1

are either 0 or 1 for all three cases. The entries of Cnþ1 are also either 0 or 1 for the Dirichlet and
Neumann conditions, but some entries of Cnþ1 depend on the parameter that specifies the Robin
condition.

For simplicity, we first define an objective functional of the form

JðxNÞ: ð5Þ
In fact, this objective functional is a function of the initial condition x0, the model parameters l

and the boundary parameter b, all of which are control parameters. With these assumptions, the
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optimal flow control consists in finding a set of parameters, x0, l, and b, such that they minimize
JðxNÞ subject to the state equation. This problem is a distributed control problem if it involves x0
and l (which may be distributed over the whole fluid domain) and a boundary control problem if
it involves only b.

2.2. Formulation of gradients

Taking the first variation of the objective function, we obtain

dJðxNÞ ¼ ðJ 0ðxNÞÞTdxN ; ð6Þ

where dJðxNÞ is the first variation of JðxNÞ, and J 0ðxNÞ the first order derivative of JðxNÞ with
respect to xN . Since xN depends on x0, l, and b, the dxN are naturally functions of dx0, dl, and db.
The first variation of (3) and the boundary condition yields

d~xxnþ1 ¼ Lðtnþ1; tnÞdxn þ Cnþ1dl; n ¼ 0; . . . ;N � 1; ð7Þ

dxnþ1 ¼ Cnþ1d~xxnþ1 þ Bnþ1db: ð8Þ

Here Lðtnþ1; tnÞ and Cnþ1 are the Jacobians associated with Mðtnþ1; tnÞ with respect to x and l

respectively. Eq. (7) is generally called the tangent linear model of the nonlinear state equation (2).
Let us denote the propagator or resolvent of the linearized equation as

Gðtj; tiÞ ¼ ðCjLðtj; tj�1ÞÞðCj�1Lðtj�1; tj�2ÞÞ � � � ðCiLðtiþ1; tiÞÞ; ð9Þ

Gðtj; tjÞ ¼ I; ð10Þ

j > i; 06 i6N � 1; 16 j6N ; ð11Þ
where I is the identity matrix. The boundary condition (8) has been taken into account in (10).

We then obtain by time integration of the linearized equation

dxN ¼ GðtN ; t0Þdx0 þ
XN
j¼1

GðtN ; tjÞCjdl þ
XN
j¼1

GðtN ; tjÞBjdb: ð12Þ

The substitution of (12) into (6) yields

dJðxNÞ ¼ ½GTðtN ; t0ÞJ 0ðxNÞ	Tdx0 þ
XN
j¼1

½CT
j G

TðtN ; tjÞJ 0ðxNÞ	Tdl

þ
XN
j¼1

½BT
j G

TðtN ; tjÞJ 0ðxNÞ	Tdb: ð13Þ

The basic principle of variational analysis requires that

dJðxNÞ ¼ rx0JðxNÞdx0 þrlJðxNÞdl þrbJðxNÞdb; ð14Þ

where rx0JðxNÞ, rlJðxNÞ and rbJðxNÞ are the gradients of JðxNÞ with respect to x0, l and b,
respectively.
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The comparison between (13) and (14) yields the desired formulations of the derivatives

rx0JðxNÞ ¼ G
TðtN ; t0ÞJ 0ðxNÞ; ð15Þ

rlJðxNÞ ¼
XN
j¼1

CT
j G

TðtN ; tjÞJ 0ðxNÞ; ð16Þ

rbJðxNÞ ¼
XN
j¼1

BT
j G

TðtN ; tjÞJ 0ðxNÞ: ð17Þ

2.3. Objective functional with a time integration

It is straightforward to extend the previous formulations to cases where the objective functional
involves time integration. In the time discretization case, the objective functional assumes the
form

J ¼
XN
j¼1

JjðxjÞ: ð18Þ

Using manipulations similar to those in the derivation of (15)–(17), we obtain

rx0J ¼
XN
j¼1

GTðtj; t0ÞJ 0
jðxjÞ; ð19Þ

rlJ ¼
XN
j¼1

Xj
m¼1

CT
mG

Tðtj; tmÞJ 0
jðxjÞ; ð20Þ

rbJðxNÞ ¼
XN
j¼1

Xj
m¼1

BT
mG

Tðtj; tmÞJ 0
jðxjÞ: ð21Þ

From the rule of linear superposition of solutions of linear equations, we can compute (19)–(21)
by the same procedure as that for computing (15)–(17). The only extra operation required is that
J 0
jðxjÞ be added to the result when the adjoint model is integrated to time tj. We notice that
changing objective functionals does not alter the adjoint model. That is, once the adjoint model is
derived, it can be applied to various objective functionals with different J 0ðxjÞ, while J 0ðxjÞ can be
provided in an analytical form.

In the above derivation, the model parameter and boundary values have been purposely treated
as being time dependent. The first purpose is to introduce a flexible method for developing adjoint
models in the context of optimal flow control; the second is to explore the possibility of finding the
optimal open-loop control over a limited time window, which leads to the desired control effect
when the optimal control is extended beyond the time window. While a similar derivation pro-
cedure can be used to obtain formulations of the derivative of the objective functional with respect
to time varying model parameters and boundary values, the algebraic manipulations become
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more involved. All derivatives can still be calculated by a single integration of the adjoint
equation.

For a large dimensional model and long time integration, appropriate storage strategies are
crucial for rendering this methodology feasible. A simple way to by-pass this problem is to store
the solution of the state equation on a disk outside the computer main memory. The totality of
the solution of the state equation is written out when the nonlinear model is integrated for-
ward in time, and it is read in when running the adjoint model backward in time. When the
dimension of the problem under question is extremely large, checkpointing strategies can be
used [3,16,17].

The impact of discretization errors on the accuracy of the computed control is discussed in
Hager [25]. We also emphasize here that coding the adjoint model at the source code level fa-
cilitates the handling of both sophisticated time-stepping schemes and boundary conditions with
complex geometries, while this task constitutes a challenge for other adjoint coding methods such
as the one employed in [3].

3. The Navier–Stokes equations

3.1. Mathematical model

Let X denote the flow domain. The flow field is described by the velocity vector ðu; vÞ and the
scalar pressure p and is obtained by solving the following momentum and mass conservation
equations (in dimensionless form):

ou
ot

þ op
ot

¼ 1

Re

o2u
ox2

�
þ o2u

oy2

�
� ou2

ox
� ouv

oy
in X; ð22Þ

ov
ot

þ op
oy

¼ 1

Re

o2v
ox2

�
þ o2v
oy2

�
� ouv

ox
� ov2

oy
in X; ð23Þ

ou
ox

þ ov
oy

¼ 0 in X; ð24Þ

subject to the initial condition

ðu; vÞjt¼0 ¼ ðu0; v0Þ in X: ð25Þ

The above equations are nondimensionalized using the cylinder diameter d, the free stream ve-
locity U, Re ¼ Ud=m is the Reynolds number.

We consider optimal control problems for two-dimensional flow around a circular cylinder in a
channel. The geometry is represented in Fig. 1. The boundary conditions are specified as follows:
In the upper and lower boundary (C1) no-slip conditions are applied. The inflow condition at
x ¼ 0 (C2) is

u ¼ uin and v ¼ 0; on C2 ð26Þ
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and the outflow (C3) condition is

ou
ox

and
ov
ox

¼ 0; on C3: ð27Þ

On the surface of the cylinder (C4), injection and suction normal to the surface are allowed. The
injection and suction are the control parameters in the present study. In this case, the boundary
condition on the cylinder surface is

u ¼ ug and v ¼ vg on C4: ð28Þ
For the uncontrolled flow we use the no-slip boundary condition on the cylinder surface

u ¼ 0 and v ¼ 0 on C4: ð29Þ

3.2. Discretization scheme

The discretized analog of the Navier–Stokes equation has been described in [15]. For example,
for the boundary cell marked in Fig. 2, we need to specify ui;j, vi;j, ui�1;j, and vi;j�1. We set

ui;j ¼ ya; vi;j ¼ yb; on C4: ð30Þ
These boundary control parameters consist in a vector y, representing suction/injection at the
boundary. When the injection/suction on this cell is not used as control parameters, we simply
have

ui;j ¼ 0; vi;j ¼ 0; on C4: ð31Þ

inflow outflow
x=0

y=h

o
y=0

3
cylinder

Ω

y

x

Γ1

Γ 1

Γ2 Γ4
Γ

Fig. 1. The geometry of the computational domain X. Only the left half part is shown.

Fig. 2. A schematic illustration of boundary cells and boundary values.
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To guarantee that the tangential velocity component at the surface is zero, we then specify

ui�1;j ¼ �ui�1;jþ1; vi;j�1 ¼ �viþ1;j�1; on C4: ð32Þ

A semi-implicit method is employed for the discretization in time, which is explicit in the con-
vective terms and implicit in the pressure term. The time step is calculated as

dt ¼ smin
Re

2

1

dx2

� 
þ 1

dy2

��1

;
dx
umax

;
dy
vmax

!
: ð33Þ

The factor s 2 ½0; 1	 is set here to 0.6.

3.3. Basic experiments

In the following experiments, the model parameters are specified as follows: the channel is 22.0
units in length and 4.1 units in width, with discretization step 0.1 unit; the cylinder measures 1.0
unit in diameter and is situated at a distance of 1.5 units from the left boundary and 1.6 units from
the upper boundary (note that the center of the cylinder is not exactly at the middle of the
channel); at the inflow boundary, the velocity is set to have a uniform value, i.e., u ¼ 2 and v ¼ 0.
For this set of parameters and without boundary control, the flow pattern displays the expected
evolution as the Reynolds number increases. For highly viscous fluids (Re < 40:0), the flow
practically remains attached. Fig. 3 presents the stream function contours of the steady state at
Re ¼ 4:0. At lower viscosities (Re > 40:0), the flow becomes unsteady, and typical Karman vortex
streets emerge. Fig. 4 shows the evolution of the streaklines roughly over one period for Re ¼ 80.

Fig. 3. Streamfunction of the uncontrolled steady state for Re ¼ 4:0.

Z. Li et al. / Computers & Fluids 32 (2003) 149–171 157



Fig. 4. Evolution of streaklines during one vortex shedding period about 2.0 time units starting at the time of 17.8 time

units. The Reynolds number is 80.0. The flow displays well developed Karman vortex street at the time 16.0 time units

with the intial condition depicted in Fig. 3.
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4. Choice of objective functionals

4.1. Flow tracking

If the controlled flow is required to be a steady laminar flow then the objective functional can be
of tracking type. Let ðud ; vdÞ be a prescribed desired velocity field. We want to control the flow so
that ðu; vÞ is ‘‘close’’ to ðud ; vdÞ. It is then natural to minimize the energy norm

JF ¼ 1

2

Z t2

t1

Z
X
ðju� ud j2 þ jv� vd j2 dXdt: ð34Þ

4.2. Enstrophy minimization

We can expect to control the Karman vortex street by minimizing the enstrophy. The objective
functional can be written as

JZ ¼ 1

2

Z t2

t1

Z
X

f2 dXdt; ð35Þ

where f is the vorticity defined by

fðx; yÞ ¼ ou
oy

� ov
ox

: ð36Þ

4.3. Viscous drag minimization

An important objective in many applications is the minimization of drag [18]. For the in-
compressible flow, the drag on a body can be computed from the integral of the dissipation
function

JE ¼ m
2

Z t2

t1

Z
X
jðrUÞ þ ðrUÞTj2 dXdt; ð37Þ

where U is the velocity vector with components u and v, and m is the kinematic viscosity of the
fluid.

These objective functionals depend on variables including initial conditions, boundary condi-
tion parameters, and other model parameters, relevant to the problems being considered. At this
stage, the optimal control problem can be mathematically described as that of minimizing one of
these objective functionals, subject to the Navier–Stokes equations. Intuitively, minimizing these
objective functionals requires certain constrained minimization algorithms. Thus, many optimal
flow control studies have solved this optimization problem by applying the Lagrange multiplier
rule. Then, one obtains an optimality system of partial differential equations whose solution
provides optimal states and controls. We know that nonlinear constrained minimization algo-
rithms are computationally more expensive relative to unconstrained ones as explained in the
introduction. Also, unconstrained minimization algorithms are relatively well established and
robust.
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5. A quasi-Newton minimization method

Optimal flow control problems solved as unconstrained minimization problems require, in
addition to the gradient of the objective functionals, the Hessian matrix that consists of the second
order derivatives of the objective functionals. For problems associated with the time-dependent
Navier–Stokes equations, the direct computation of the Hessian would be prohibitively expensive
both in terms of storage and CPU time. Therefore, the present minimization algorithm employs a
quasi-Newton (or secant Newton) method. In this algorithm, the approximated Hessian is
computed and updated by using the updated information of descent directions gathered from
minimization iterations. The Hessian is constructed by the Davidon–Fletcher–Powell (DFP)
quasi-Newton formulation [50]. After obtaining the Newton step p, we update the solution

ynew ¼ yold þ kp; 0 < k6 1: ð38Þ
The aim of the line search is to find a step size k so that Jðyold þ kpÞ has decreased sufficiently.

Here, y consists of control parameters and JðyÞ is any objective functional. The basic criterion for
acceptance is

JðynewÞ6 JðyoldÞ þ arJðynew � yoldÞ; 0 < a < 1: ð39Þ
A value of a ¼ 10�4 is usually used. Since the Newton direction is a descent direction, we are
guaranteed to decrease JðyÞ for a sufficiently small k. A proper choice of k is based on the norm of
the gradients and the permissible range of parameters.

Since quasi-Newton algorithms still require storing the Hessian matrix, this algorithm is not
computationally feasible if the dimension of control problem exceeds a few hundred parameters.
In such a case, limited-memory quasi-Newton algorithms [34,38] and truncated Newton algo-
rithms (e.g., [37,45]) are suitable. These algorithms require only the storage of a few additional
vectors consisting of control parameters, but they constitute only an approximation to quasi-
Newton algorithms.

6. Numerical experiments on vortex shedding control

We conducted various control experiments within the framework of the unsteady Navier–
Stokes equations to control vortex shedding in flows past circular cylinders. By optimizing
boundary control parameters of suction and blocking, we were able to suppress vortex shedding
by open-loop control. We employed a regularized objective functional

JFR ¼ JF þ g
2
jyj2 ¼ JF þ gR; ð40Þ

where JF is defined by (34) for the tracking problem, and g is the regularization parameter (a
dimensionless constant), y is an M-dimensional control-parameter vector (which corresponds to
boundary parameters), and R is a stabilizing function (which is discussed in a following section).
The desired flow is an unseparated flow similar to the steady flow at low Reynolds number. Here,
the time interval is taken to be 1.0 (Case I) and 3.0 (Case II) units, and g is set to 50.0 and 150.0
respectively. The unconstrained minimization process uses the quasi-Newton algorithm described
in Section 5. The minimization convergence criterion requires that the norm of the gradient scaled
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by its initial norm should be smaller than 10�5. Fig. 5 displays the distribution of the optimal
amount of suction/injection on the surface of the cylinder for Case I. For both cases, the optimal
control methodology yields suction on the major portion of the rear side of the cylinder. That
these optimal boundary parameters do suppress the Karman vortex shedding is evident in Fig. 6,
which presents the time evolution of the streak lines for the controlled flow.

6.1. Sensitivity to initial conditions

We consider two initial conditions: IC1, the steady state at Re ¼ 4 as depicted in Fig. 3; and IC2,
the Karman vortex street (the uncontrolled flow evolved over a time of 20 units). Table 1 lists the
values of all the 18 optimal parameters for these two initial conditions, when the time window is 3.0
units. The distribution of boundary parameters is qualitatively and quantitatively similar. This
indicates that the optimal boundary parameters is basically insensitive to the initial conditions.

Table 2 lists the 18 optimal parameters for the same initial conditions, but for a time window of
1 unit. Substantial differences may be noted between the two sets of parameters, implying thereby
sensitivity to initial condition when the time window is relatively small.

6.2. Time window for open-loop optimal control

We conducted several experiments to determine further the effect of the length of time interval.
For the case of Re ¼ 80 and initial condition IC2, we set the regularization parameter g to 50 for
the time window of 1.0 unit, 100 for the time window of 2.0 units, 150 for the time window of 3.0
units, and 200 for the time window of 4.0 units, respectively. Table 3 presents the optimal
boundary parameters for these cases. It is found that larger regularization parameters tend to
yield smaller values for a given control window. The values of the optimal parameters basically
become larger as the length of the time window increases. The above-mentioned four cases evolve
into a laminar steady flow. However, we have observed differences among these cases when in-
tegrating the controlled model starting from various initial conditions. When the initial condition
is the steady state for Re ¼ 4, the evolution to the final steady state varies. For the larger time

Fig. 5. Distribution of optimal injection and suction for the time windows of 1.0. The optimizing flow vector is re-

stricted to be only in the rear half of the cylinder and normal to the surface. Reynolds number is 80.0. The initial

condition is the same as depicted in Fig. 4.
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Fig. 6. Evolution of streak lines for the controlled flow. The optimization time windows are 1.0 units (upper) and 3.0

units (lower).
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window cases, the evolution time is usually shorter. It is interesting to note that some initial
conditions do not evolve to a steady state for the optimized parameters for the time window of 1
or 2 units. As an example, Fig. 7 illustrates the streak lines at time 18 units, where the optimized

Table 1

Comparison of optimal boundary parameters

Paramaters IC1 IC2

1 0.000 0.104

2 �0.514 �0.491

3 �0.401 �0.512

4 �0.446 �0.456

5 �0.658 �0.668

6 0.552 0.506

7 �0.938 �1.102

8 �0.772 �0.911

9 �0.773 �0.850

10 �0.049 0.002

11 1.242 1.381

12 2.208 2.602

13 �0.801 �0.893

14 �0.569 �0.546

15 �0.429 �0.409

16 �0.352 �0.316

17 0.116 �0.008

18 �0.326 �0.209

Table 2

Comparison of optimal boundary parametersa

Parameters IC1 IC3

1 0.265 �0.295

2 �0.829 �0.563

3 �0.172 0.165

4 0.042 �0.335

5 �0.857 �0.622

6 0.056 0.366

7 �1.188 �0.720

8 �0.759 �0.134

9 �0.508 �0.086

10 �0.139 �0.178

11 1.051 0.900

12 1.942 1.545

13 �0.516 �0.214

14 �0.158 0.858

15 �0.172 �0.013

16 �0.126 �0.045

17 0.327 0.228

18 0.245 0.065
aThe time interval is 1 time unit.

Z. Li et al. / Computers & Fluids 32 (2003) 149–171 163



parameters are from the time window of 1.0 unit, and the initial condition is the uncontrolled flow
at the time of 20 time units as depicted in Fig. 4. Although no strong vortex shedding occurs, we
can observe wave oscillations. On the contrary, irrespective of the initial conditions, the flow
evolved to a steady state for optimized parameters corresponding to the cases of time windows of
length 3.0 and 4.0 units. Further, the optimal boundary parameters suppress Karman vortex
shedding even if the prescribed model parameters are slightly altered. We changed the inflow from
a uniform profile with velocity of 2 units to a parabolic profile with the maximum velocity 2.5
located at the center of the channel. The Reynolds number also was increased from 80 to 100.
When we apply the optimal boundary parameters as obtained above, vortex shedding does not
occur. It is observed that for Re ¼ 80 vortex shedding occurs at 2.2 units starting from initial
condition as provided in Fig. 4. The result suggests that for a time window longer than the
Karman vortex shedding period, we can expect the vortex shedding to be controlled in a robust
fashion. When the time window is smaller than the shedding period, it is also possible to suppress
Karman vortex shedding for some initial conditions, but the robustness is not guaranteed.

6.3. Convergence of minimizations and computational expense

The computational expense of solving optimal flow control problems is essentially determined
by the length of the time window and the convergence rate of the minimization process. We
address here these issues. The quasi-Newton algorithm based on the PDF formulation performs
well in most cases when the objective functionals are appropriately regularized. Usually, we can
obtain a satisfactory optimal solution after about 60 iterations. Fig. 8 displays the evolution of the
objective functional and the norm of its gradient scaled by its initial value versus the number of

Table 3

Optimal parameters for the time windows of 1.0, 2.0, 3.0 and 4.0 time units respectivelya

T ¼ 1 g ¼ 50 T ¼ 2 g ¼ 100 T ¼ 3 g ¼ 150 T ¼ 4 g ¼ 200

1 �0.295 �0.001 0.104 0.325

2 �0.563 �0.658 �0.491 �0.442

3 0.165 �0.522 �0.512 �0.449

4 �0.335 �0.516 �0.456 �0.571

5 �0.622 �0.807 �0.668 �0.636

6 0.366 0.502 0.506 0.629

7 �0.720 �1.058 �1.102 �1.117

8 �0.134 �0.528 �0.911 �1.240

9 �0.086 �0.607 �0.850 �1.017

10 �0.179 �0.100 0.023 0.124

11 0.900 1.119 1.381 1.488

12 1.545 2.610 2.602 2.924

13 �0.214 �0.716 �0.893 �1.045

14 0.858 �0.167 �0.546 �0.663

15 �0.013 �0.229 �0.409 �0.528

16 �0.045 �0.296 �0.316 �0.302

17 0.228 0.141 0.084 �0.235

18 0.065 �0.084 �0.209 0.056
a g is the regularization parameter.
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iterations for the time windows of 1.0 and 3.0 units, the regularization parameter being 50 and 150
respectively. For the case of the time window of 3.0 units, the minimization satisfies the con-
vergence criterion at iteration 67 (after 70 objective function computations). The CPU time re-
quired on a workstation (SGI/INDIGO) is about 15.0 h. The case of the time window of 1.0 units
requires 61 iterations (62 objective function computations) and the CPU time required is 5.0 h.
The number of iterations required for attaining full convergence depends on the value of the
regularization parameter. Generally, the larger the regularization parameter, the fewer iterations
are required. When the regularization parameter is too small, the minimization may not even
converge. In all the experiments, the major decrease in the cost functional occurs in less than 10
iterations, independent of the value of the regularization parameter. A similar performance of the
minimization has also been observed by Berggren [3]. We take the optimal boundary parameters
which are obtained after 10 iterations, and employ them to control the flow successfully (Fig. 9).

7. Ill-posedness and regularization

Let us consider any objective functional J, which represents one of the three objective func-
tionals defined in (34), (35), and (37) respectively. We minimize J with respect to, say, the

Fig. 7. Evolution of streak lines for the controlled flow. The optimized injection and suction at the surface of the

cylinder are obtained by minimizing JF , with the time window starting at t ¼ 0 with the state depicted in Fig. 4. Then the

model is integrated with the initial condition at t ¼ 20 depicted in Fig. 4.
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boundary values y (see Section 3). y is a K-dimensional vector with range in an K-dimensional
metric space Y. We seek a y from an admissible class Ya in the space Y, such that it minimizes J.
The ill-posedness of the minimization can then be mathematically defined as follows. For any
� > 0, we assume there exists y1 such that

Jy1 6 Jy0 þ �: ð41Þ

For a given � sufficiently small, the difference y1 � y0 may assume arbitrarily large values. The
minimization in such a case is said to be ill-posed [49].

We investigate the behavior of the minimization process of the objective functional without the
regularization term. The control window is 3 units. Fig. 10 presents the evolution of the objective
functional versus the number of iterations. The minimization process stops at iteration 47 when it
cannot find a step size that satisfies (39). The objective functional undergoes rapid decrease during
the first 10 iterations, and in fact it has decreased by 47% of its initial value. Beyond the initial 10

Fig. 8. Evolution of both the objective functional and its gradient norm with minimization iteration numbers. The

objective functional JF is used. The time windows are 1.0 units (upper) and 3.0 units (lower).
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iterations, the total further decrease is less than 3%. However, the relevant solution undergoes
tremendous changes. For example, while the objective functional JF decreases by only 0.5% after
20 iterations from iteration 21 to 40, the change in the relevant solution is arbitrarily large (Table
4). All three objective functionals are found to behave similarly.

This is an example of ill-posedness as defined by Tikhonov and Arsenin [49]. A regularization
term is introduced following [49].

JR ¼ J þ gR; ð42Þ

Fig. 9. Steady states of streak lines of the controlled flow with the optimal injection/suction obtained after 10 mini-

mization iterations.

Fig. 10. Same as in Fig. 8, but without regularization. The minimization stops after 47 iterations since the minimization

cannot find a sufficient descent step leading to a sufficient decrease.
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where g > 0 is a regularization parameter. R is called a stabilizing functional. In Tikhonov and
Arsenin [49], the exact definition and required properties of a stabilizing functional are given. The
stabilizing functional is not unique, and can assume various forms [26]. Also, the determination of
the regularization parameter g is not necessarily straightforward. For approaches allowing explicit
determination of regularization parameters see Alekseev and Navon [2]. An excellent discussion
on regularization is provided by Gunzburger [22].

8. Conclusions

The optimal control technique is attractive for flow control problems as it does not require ‘a
priori’ knowledge of the flow characteristics. However, it is complex and is very demanding
computationally. The approach proposed in this paper addresses these issues to some degree. The
numerous experiments for controlling vortex shedding in the wake of a circular cylinder, con-
ducted in the present investigation, bring out the particular merits of the approach. We plan to
apply this approach to more sophisticated optimal flow control problems in future.

Questions regarding controllability and the existence of solutions are not discussed in this
paper. These issues remain essentially open for the Navier–Stokes equations, particularly in three-
dimensions, although some advances have been made recently (e.g., [10,11,23,24]). Due to the
nonlinearity of the state equation, uniqueness of solutions may not be guaranteed even when the
optimal solution exists. From the results presented above, we argue that optimal flow control is
feasible and provides solutions of practical usefulness when used in conjunction with regularized
objective functionals even prior to addressing the basic questions of controllability, existence and
uniqueness of solutions.

Table 4

The difference between the ‘optimal’ solutions at iteration 21 and 40; control window 3 units

Parameters Difference

1 0.329

2 0.099

3 1.509

4 1.092

5 �0.178

6 0.678

7 �0.637

8 �0.340

9 �0.182

10 0.121

11 1.120

12 0.012

13 �0.116

14 0.430

15 0.626

16 0.54

17 �0.075

18 0.529
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We observe that computing the solution of optimal control problems to full optimality is not
necessary in practical applications. The numerical experiments presented above indicate that a
substantial reduction of the objective functional may be obtained after performing only a modest
number of iterations. The optimal boundary values thus obtained, providing size and location of
blowing and suction on the boundary of the cylinder, a feature that appears to be novel, com-
pletely suppress vortex shedding after 10 iterations. The minimization process is therefore ter-
minated after 10 iterations, and the CPU time required is just a few hours on a SGI/INDIGO
workstation.

A key result of the current study is that an open-loop control can suppress vortex shedding in
the wake of a circular cylinder in a robust way. The optimal control applied over a limited time
window can provide the desired control parameters whose effect extends beyond the extent of the
control window.

We also obtained that in order to have robust control the time window of control should be
larger than the vortex shedding period, the inverse of the Strouhal frequency but a complete
suppression of vortex shedding is possible even if the time window is only half as large as the
vortex shedding period. This result appears to be novel for this type of application and implies
that feedback control may not be necessary for this class of problems. From dynamical system
theory (e.g., see [48]), this may possibly apply to other optimal control problems. It is known that
a dissipative and forced dynamical system associated with the Navier–Stokes equations possesses
a limited number of attractors [48,33]. Each attractor has its attracting basin in phase space. When
the major attractor of the system under the optimal control is the desired flow, any initial con-
ditions in its attracting basin will evolve to the desired flow. In such a case, we need only find the
optimal control associated with the desired attractor, and the control problem is thus independent
of the initial conditions.
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