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This article presents a new reduced order model based upon proper orthogonal decomposi-
tion (POD) for solving the Navier–Stokes equations. The novelty of the method lies in its
treatment of the equation’s non-linear operator, for which a new method is proposed that
provides accurate simulations within an efficient framework. The method itself is a hybrid
of two existing approaches, namely the quadratic expansion method and the Discrete
Empirical Interpolation Method (DEIM), that have already been developed to treat non-
linear operators within reduced order models. The method proposed applies the quadratic
expansion to provide a first approximation of the non-linear operator, and DEIM is then
used as a corrector to improve its representation. In addition to the treatment of the non-
linear operator the POD model is stabilized using a Petrov–Galerkin method. This adds
artificial dissipation to the solution of the reduced order model which is necessary to avoid
spurious oscillations and unstable solutions.
A demonstration of the capabilities of this new approach is provided by solving the
incompressible Navier–Stokes equations for simulating a flow past a cylinder and gyre
problems. Comparisons are made with other treatments of non-linear operators, and these
show the new method to provide significant improvements in the solution’s accuracy.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Reduced order models (ROMs) have become important to many fields of physics as they offer the potential to simulate
dynamical systems with substantially increased computation efficiency in comparison to traditional techniques. Among the
model reduction techniques, the proper orthogonal decomposition (POD) method has proven to be an efficient means of
deriving the reduced basis for high-dimensional non-linear flow systems. The POD method and variants of it have been
successfully applied to a number of research fields. In signal analysis and pattern recognition it is known as the Karhunen–
Loève method [1], in statistics it is referred to as principal component analysis (PCA) [2], and in geophysical fluid dynamics
and meteorology it is termed empirical orthogonal functions (EOF) [3,4]. The POD method has since been applied to ocean
models in Cao et al. [5], Vermeulen and Heemink [6] and also shallow water equations, this includes the work of Daescu
and Navon [7], Chen et al. [8,9], Altaf et al. [10], Du et al. [11], as well as Fang et al. [12].
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In this paper we develop a reduced order model for the incompressible Navier–Stokes equations using the POD ap-
proach. The full Navier–Stokes equations are first discretized via a finite element Bubnov Galerkin discretization method
[13] and the POD model is generated through the method of snapshots. In this approach, solutions of the full model are
recorded (as a sequence of snapshots), and from this data appropriate basis functions are formed that optimally represent
the problem. This method is quite standard and has been applied successfully throughout the literature. However, due to
the high non-linearities of the 3-D Bubnov–Galerkin Navier–Stokes equation, the computational complexity of the reduced
model still depends on dimension of the full Navier–Stokes discretization [14]. To mitigate this problem, one approach is to
apply the discrete empirical interpolation method (DEIM) to address the reduction of the non-linear components and reduce
the computational complexity by implementing it with the POD/DEIM method. DEIM is a discrete variant of the empirical
interpolation method (EIM) [15] proposed by Barrault et al. for constructing approximation of a non-affine parameterized
function, which was proposed in the context of reduced-basis model order reduction. DEIM methods have been demon-
strated to be able to obtain factors of 10–100 speed up in CPU time over the original non-reduced model. The economy in
CPU time is proportional to the dimension of the reduced order model (see for instance Stefanescu and Navon, 2013 [16])
and therefore to the number of mesh points. The application was suggested and analyzed by Chaturantabut and Sorensen
[17–19] for application to POD in the framework of Discrete Empirical Interpolation Method (DEIM). Other important contri-
butions to the Empirical Interpolation Method (EIM) include that by Barrault et al. [15] and Patera related to another model
reduction approach namely the reduced basis approach [20–26].

Regarding the use of hyper-reduced order models i.e. DEIM like approaches, they presented a strategy for choosing the
optimal set of sampling points at the discrete level. The algorithm consists of selecting the sampling components that
minimize the distance between the recovered reduced basis coefficients and the optimal coefficients (which are obtained by
projecting the snapshots onto the reduced order subspace). The main advantage of their algorithm is that only values at the
nodes of the finite element mesh are required for the gappy reconstruction [27–29], but these sampling components can
be guaranteed to be optimal. This results in a strategy very convenient for the reconstruction of non-smooth functions, like
the right-hand-side of the system of equations arising from the reduced order strategy for the incompressible Navier–Stokes
equations with the formulation used herein.

An alternative treatment of the non-linear terms of PDEs is through the quadratic expansion method [11]. This method is
suitable for the treatment of discretized quadratic non-linear operators as the method represents them through expansions
of precomputed matrices. Critically, as these matrices are precomputed they can easily be transformed into reduced equation
sets. However the method’s drawback is that its accuracy will decay with higher order non-linear operators which may arise
through Petrov–Galerkin projections and/or additional stabilizing terms.

Both the novel quadratic expansion method and the DEIM have been developed in order to maintain the ROM’s efficiency.
In this article a new method is proposed which is a new hybrid of both schemes that refer to as residual DEIM. It is based
on initially applying the quadratic expansion method to the non-linear terms and then applying the DEIM approach to
resolve the residual between it and the full model. That is, the DEIM is used to absorb the remaining errors left over
from the quadratic expansion approach. This approach means that the method can still exactly represent discrete quadratic
non-linearities – unlike DEIM – but can also be used for highly non-linear discrete systems – unlike the quadratic expansion
approach. In addition to this a non-linear Petrov–Galerkin discretization [30,12] is used to form the ROM and stabilize the
reduced system of equations, which would otherwise become unstable especially for moderate/high Reynolds number flows.
Both the stabilization term and the Petrov–Galerkin projection introduce additional high order non-linearities, and this
makes the residual DEIM method well suited to dealing with the resulting discrete systems of equations, see, for example,
Baiges [31] for similar approaches. This paper demonstrates the improved accuracy of residual DEIM over the quadratic
expansion method when simulating problems involving high order non-linear operators.

The structure of the paper is as follows. Section 2 presents the governing equations, followed by the description of
the finite element Bubnov–Galerkin discretization of the Navier–Stokes equations. Section 3 presents the derivation of the
POD model reduction and re-formulation of the Navier–Stokes equations using the method of snapshots. The section con-
cludes with the stabilization of the POD model reduction by the introduction of an adequately chosen dissipation term.
Section 4 focuses on the non-linear operator treatment of the Navier–Stokes equations and describes the methods of DEIM
and quadratic expansion. This section then presents the mixed residual DEIM formulation. This is based on a DEIM rep-
resentation of a residual term that is left over from first applying a quadratic representation of the non-linear operator.
Section 5 illustrates the methodology derived via two numerical examples. This is based on two test problems where the
flow past a cylinder and flow within a gyre are resolved. Finally in Section 6 conclusions are presented and the novelty of
the present manuscript is duly summarized and illuminated.

2. Governing equations

This article considers the non-hydrostatic Navier–Stokes equations describing the conservation of mass and momentum
of a fluid,

∇ · u = 0, (1)
∂u + u · ∇u + f k × u = −∇p + ∇ · τ . (2)

∂t
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In these equations the terms u ≡ (ux, u y, uz)
T denote the velocity vector, p the perturbation pressure (p := p/ρ0, ρ0 is the

constant reference density) and f the Coriolis inertial force. The stress tensor τ included in the diffusion term represents
the viscous forces, and this is defined in terms of a deformation rate tensor S which is given as,

τi j = 2μi j Si j, Sij = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 1

3

3∑
k=1

∂uk

∂xk
, i, j = {x, y, z}. (3)

In this expression μ denotes the kinematic viscosity and it is assumed that there is no summation over repeated indices.
The horizontal (μxx,μyy) and vertical (μzz) kinematic viscosities are assumed to take constant values and define the off
diagonal components of τ in Eq. (3) by μi j = (μiiμ j j)

1/2. For barotropic flow, the pressure p consists of hydrostatic ph(z)
and non-hydrostatic pnh(x, y, z, t) components. The hydrostatic component of pressure balances the constant buoyancy force
exactly, and so both terms are neglected at this stage. The momentum equation can be expressed more fully as,

At
∂u

∂t
+ Ax(u)

∂u

∂x
+ A y(u)

∂u

∂ y
+ Az(u)

∂u

∂z
+ f k × u + ∇p − ∇ · τ = 0, (4)

where the time term At and streaming operators Ax , A y and Az denote diagonal matrices that are given by,

At =
(1 0 0

0 1 0
0 0 1

)
, (5)

and

Ax =
(ux 0 0

0 ux 0
0 0 ux

)
, A y =

(u y 0 0
0 u y 0
0 0 u y

)
, Az =

(uz 0 0
0 uz 0
0 0 uz

)
, (6)

respectively.
In this article a finite element Bubnov–Galerkin discretization of the Navier–Stokes equations [13] is employed. In this

formulation the velocity components and pressure terms of the solution are represented by the expansions,

ux =
Fu∑
j

N juxj, u y =
Fu∑
j

N ju yj, uz =
Fu∑
j

N juzj, (7)

and

p =
F p∑
j

M j p j, (8)

respectively, where N j and M j denote the finite element basis functions. To solve for the coefficients u. j and p j the dis-
cretized equations are formed by weighting equations (1) and (2) by Mi and Ni , respectively, and integrating over space,∫

v

Mi(∇ · u)dv = 0, (9)

∫
v

Ni

(
∂u

∂t
+ u · ∇u + f k × u

)
dv = −∇p + ∇ · τ . (10)

When the approximations (7) and (8) are inserted into these equations the following systems are formed,

Ct u = 0,

N
∂u

∂t
+ A(u)u + K u + Cp = s. (11)

In these equations the matrix C denotes the pressure gradient matrix, N is the mass matrix involving the finite element
basis functions Ni , A(u) is the solution dependent discretized streaming operator, K is the matrix related to the rest of the
linear terms of velocity, and s is the vector accounting for the forces acting upon the solution. In the momentum equation
the time term is treated using the θ -method to yield,

N
un+1 − un

�t
+ A

(
un)un+θ + K un+θ + Cpn+1 = 0, (12)

where θ ∈ [0,1] and the term un+θ is given by,
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Table 1
The table lists the variables and their definition as used in the present article.

Variable Definition

S Total number of arbitrary snapshot set.
Su Total number of snapshot for velocity components.
S p Total number of snapshot for pressure components.
F Total number of nodes on arbitrary finite element discretization.
Fu Total number of nodes on finite element discretization of the velocity.
F p Total number of nodes on finite element discretization of the pressure.
P Total function in an arbitrary POD basis set.
Pu Total number of functions in the velocity POD basis set.
P p Total number of functions in the pressure POD basis set.
Φ General POD basis functions.
Φp Standard POD basis functions.
Φd DEIM POD basis functions.

un+θ = θun+1 + (1 − θ)un. (13)

The full system of equations can now be grouped together to form a single combined linear system for each time step,[
B C

C T 0

][
un+1

pn+1

]
=

[
B ′ 0
0 0

][
un

pn

]
+

[
s
0

]
, (14)

where B and B ′ are matrices of similar form but differ through the choice of θ . In this system the matrix B is non-linear
as it depends on the solution u. On the RHS, the vector [s,0]T contains the discretized sources and the terms within the
matrix system account for the solution from the previous time step.

Alternative but identical expressions of the above system of equations can be written in order to help develop the
methods derived in the following sections. One expression is derived by condensing the expression into the single system
of equations given by,

P (y)yn+1 = Q (y)yn + s, (15)

where yn denotes the full solution vector at time step n, i.e. the concatenation of all velocity and pressure components.
Another representation of this equation is to re-write system (15) with separated linear (L superscript) and non-linear
(N superscript) terms,(

P L + P N)yn+1 = (
Q L + Q N)yn + s. (16)

The following theory will be built upon one of these identical expressions of the discretized Navier–Stokes equations.

3. POD method for the Navier–Stokes equations

In the following subsections the POD method is described together with its application to the modeling of the Navier–
Stokes equation and its stabilization. In the theory that follows in this and the next section the notation becomes quite
involved and so Table 1 has been included in order to make clear the variable definition.

3.1. The POD model

In the POD formulation a new set of basis functions are constructed from a collection of snapshots that are taken at a
number of time instances of the full model solution. That is, the model described in Eq. (14) is solved and snapshots of
the solution are taken as it evolves through time. In the formulation presented here snapshots of each component of the
velocity vector (ux, u y, uz) and pressure p are recorded individually. Each snapshot is a vector of size Fu or F p (depending
on whether it is of a velocity component of pressure term) and holds the values of the respective solution component
at the nodes of the finite element mesh. For each direction or pressure component, these snapshots are collated together
over all time instances to form four separate matrices U x , U y , U z and U p (where the superscripts denote direction or
pressure). From here on each snapshot matrix will be treated separately but in an identical manner, and so the superscripts
are omitted and the details are given for a general snapshot matrix U .

The dimensions of U is F × S , where F denotes the general number of nodes on the finite element mesh and S the
total number of snapshots (this will be of value Su and S p for the velocity and pressure, respectively). Once the full set of
snapshots has been collated, it is then customary to remove from each snapshot the mean value of all snapshots. That is,
a modified snapshot matrix U is generated by,

Uk, j = Uk, j − Φ j, j ∈ {1,2, . . . , S}, (17)

where the vector Φ (of size F ) holds the average value of all snapshot on each node i:
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Φ i = 1

Nk

Nk∑
j=1

U j,i, i ∈ {1,2, . . . , F }. (18)

A reduced-order basis set of functions {Φu} are now obtained by means of the Proper Orthogonal Decomposition method.
This involves performing a Singular Value Decomposition (SVD) of the snapshot matrix U given by the form,

U = UΣ V T . (19)

The terms U and V are unitary matrices of dimension F × F and S × S , respectively, and Σ is a diagonal matrix of size
F × S . The nonzero values of Σ are the singular values of U , and these are assumed to be listed in increasing or decreasing
order of their magnitude. It can be shown [17] that the POD functions can be defined as the column vectors of the matrix U ,

Φ j = U :, j, for j ∈ {1,2, . . . , S}, (20)

and the optimal basis set of size P are the functions corresponding to the largest P singular values (i.e. the first P columns
of U ). These functions are optimal in the sense that no other rank P set of basis functions can be closer to the snapshot
matrix U in the Frobenius norm. That is, if one used only the first P dominant singular values in Eq. (20) (and so the first P
vectors in U ), the resulting matrix is the closest possible (in the relevant norm) to the matrix U . Another relevant property
is that due to U being unitary, the POD vectors are orthonormal.

To efficiently construct the POD vectors defined by U one of two approaches may be taken. Depending on the dimensions
of U a reduced symmetric linear system can be formed by the pre or post multiplication of U by its transpose. If the number
of finite element nodes is smaller than the number of snapshots (F � S), then post multiplying by U T results in an F × F
system with the property,

UU T = UΛ2U T . (21)

This enables one to perform an eigenvalue decomposition on the system (21) to obtain U directly. Alternatively, if the
number of snapshots is smaller than the number of finite element functions (S � F ), the pre multiplication of U by U T

results in,

U T U = V T Λ2 V . (22)

In this case one can perform the eigenvalue decomposition of system (22) to obtain the matrix V and singular values Λ.
Once these are available, the vectors of U can be formed by substituting into system (19).

As mentioned previously, only a small number of P POD functions are used in the reduced order model. Although these
POD functions provide an optimal representation of the snapshot matrix, some information is inevitably lost. This loss of
information can be quantified by the following ratio, which is usually termed energy, of the squared singular values,

I =
∑P

i=1 Λ2
i,i∑S

i=1 Λ2
i,i

. (23)

The value of I will tend to 1 as P is increased to the value S , and so this value can be used to provide an appropriate
truncation point of the POD expansion set. Having set the size P , the P POD functions can now be used to form a basis
that represents the snapshot data set. That is, a vector u of size F can be represented by the expansion,

u = Φ +
P∑
j

α jΦ j, (24)

where α j denote the expansion coefficients.

3.2. Forming the POD formulation of the Navier–Stokes equations

To form the reduced order system of the Navier–Stokes equations, the velocity and pressure components are expanded
over their respective POD basis functions. Their finite element solution variables (Eq. (14)) are re-written in the form of
Eq. (24) to give,

un
x = Φx +

Pu∑
j

αx,n
j Φx

j , un
y = Φ y +

Pu∑
j

α
y,n
j Φ

y
j , un

z = Φ z +
Pu∑
j

αz,n
j Φ z

j , (25)

for the velocities and,

pn = Φ p +
P p∑

α
p,n
j Φ

p
j , (26)
j
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for the pressure. The POD expansion sizes of the velocity and pressure terms are denoted by Pu and P p respectively, and
the α terms denote the expansion coefficients. These expansions can be represented in the following matrix vector form,

un = Φx + Φxαx,n, vn = Φ y + Φ yα y,n, wn = Φ z + Φ zαz,n, pn = Φ p + Φ pαp,n, (27)

where Φx , Φ y and Φ z denote matrices of size Fu × Pu , Φ p is a matrix of size F p × P p , Φx , Φ y and Φ z are vectors of size
Fu and Φ p is a vector of size F p .

If the solution variables are also represented by a single vector, as in Eq. (15), then the reduced order representation can
also read as,

yn =
⎡
⎢⎣

ux

u y

uz

p

⎤
⎥⎦

n

= Φ y + Φ yα y,n =
⎡
⎢⎣

Φx

Φ y

Φ z

Φ p

⎤
⎥⎦+

⎡
⎢⎣

Φx 0 0 0
0 Φ y 0 0
0 0 Φ z 0
0 0 0 Φ p

⎤
⎥⎦
⎡
⎢⎣

αx,n

α y,n

αz,n

αp,n

⎤
⎥⎦ . (28)

This is an identical expression to those of Eq. (27) since the terms Φ y and Φ y are formed from the combination of all
the POD matrices and vectors. The coefficients in the discretized system (14) (or (15)) are then replaced by their POD
representation of Eq. (27) (or (28)), and the resulting system is pre-multiplied by the transpose of the POD matrices in
order to form the reduced system. For now we work on the equation in the form of (14) and the reduced system reads as,[

BPOD CPOD

(CPOD)T 0

][
αu,n+1

αp,n+1

]
=

[
B ′ POD 0

0 0

][
αu,n

αp,t

]
−

[
su

sp

]
+

[
sPOD

0

]
. (29)

It can be seen that the system retains the same structure of the original full system in Eq. (14). The reduced matrix BPOD is
of size 3Pu × 3Pu and can be written as BPOD = (Φu)T BΦu (with a similar expression of B ′ POD) where,

Φu =
[

Φx 0 0
0 Φ y 0
0 0 Φ z

]
. (30)

Similarly the matrix CPOD is a reduced system of size 3Pu × P p and this is given by CPOD = (Φu)T CΦ p . The reduced
source terms is a vector of size Pu and is formulated as sPOD = (Φu)T s. The additional source terms in Eq. (29) result from
contribution of the average snapshot vectors, and these are given by,[

su

sp

]
=

[
(Φu)T BΦu + (Φu)T CΦ p

(Φ p)T CΦu

]
. (31)

3.3. Stabilization of the POD model

The POD model described in Eq. (29) will often require an additional stabilization term to ensure its solutions remain
bounded by it correctly modeling the proper amount of physical dissipation. Without this most POD models of high-
Reynolds shear flow are liable to explode. Typically the ROMs are augmented with eddy viscosities [32] and this approach
is adopted here. The details of this stabilization are described in full in [30], and so only the main concepts are presented
in this article. The stabilization terms are added to the model through an additional diffusion operator which has the same
effect as adding an additional viscous term. It is included into the LHS matrix of Eq. (29) by adding to it the block diagonal
diffusion matrix,

D =
⎛
⎜⎝

Dx 0 0 0
0 Dy 0 0
0 0 Dz 0
0 0 0 Dp

⎞
⎟⎠ . (32)

This matrix has size (3Pu + P p) × (3Pu + P p) and is composed of the three sub-matrices,

Dxi j =
∫
V

∇Φx
i μx∇Φx

j dV , (33)

Dy i j =
∫
V

∇Φ
y
i μy∇Φ

y
j dV , (34)

Dzi j =
∫
V

∇Φz
i μz∇Φz

j dV , (35)

that are of size Pu × Pu and the matrix,
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Dp i j =
∫
V

∇Φ
p
i μp∇Φ

p
j dV , (36)

which is of size P p × P p . Each matrix places diffusion in their respective velocity or pressure terms, and the amount of
diffusion is governed by the coefficients μ. The diffusion terms ensure the ROMs have more stable solutions. However it is
important to stress that its inclusion introduces strong non-quadratic non-linearities to the formulation. This in turn must
be resolved efficiently and accurately by the reduced order schemes. In this work it was not necessary to stabilize the
pressure and so the diffusion coefficient relating to it has been set to zero.

4. Efficient treatments of the non-linear operators

In the following sections a review of the current approaches to resolving the non-linear operators are presented. This is
then followed by the details of the proposed residual DEIM method.

4.1. DEIM treatment of the non-linear operator

This section presents the application of DEIM which will be used in the following sections to resolve the non-linear terms
of the Navier–Stokes equations within an efficient reduced order model. For now the method is described in the general
sense for an arbitrary differential equation that is expressed in terms of its linear (L) and non-linear (N) components. When
discretized through a finite element representation the following model is formed,

dy

dt
(t) = Ly(t) + N

(
y(t)

)
, A ∈R

F×F . (37)

In this equation the new solution variables y(t) = [y1(t), y2(t), . . . , yF (t)] ∈ R
F define the solution’s values over the F nodes

of the finite element mesh. As the term N is a non-linear function it requires y(t) to be evaluated component wise at each
time instance t , i.e. N = [N(y1(t)), . . . , N(yF (t))]. It is this re-evaluation that makes the reduced order modeling inefficient
if the standard POD approach (as described in the previous section) is applied. This is because if the non-linear term is
represented through a POD model, i.e. it is pre and post multiplied by ΦT

p and Φp respectively (the subscript p denotes
standard POD functions), the resulting reduced space formulation will read as,

Ñ( ỹ) = ΦT
p︸︷︷︸

P×F

N
(
Φp ỹ(t)

)︸ ︷︷ ︸
F×1

= ΦT
p︸︷︷︸

P×F

f (t)︸︷︷︸
F×1

. (38)

This expression shows that even in the reduced space, the model requires an operation with complexity of order F at each
time step. The model is therefore no longer efficient to compute, i.e. it is the same order of the high-fidelity full model, and
so an alternative approach must be applied.

The DEIM approach is one such method used to treat the non-linear terms of PDEs within a reduced order framework.
The approach is to use a separate POD model to construct a basis of the space spanned by the non-linear components of
the equation. That is, a snapshot matrix Ud of the non-linear terms is constructed by,

Ud = {
N(y1), N(y2), . . . , N(yn)

}
, (39)

from which a POD model is built using the approach described in the previous section. Using Φd to denote this POD basis
set, which is analogous to that in Eq. (20), the term f (t) in Eq. (38) can be represented by,

f (t) = Φdc(t). (40)

The dimension of Φd is of F × D , where D denotes the size of the reduced representation of the non-linear terms (D � F )

and c(t) is a coefficient vector of size D that has yet to be determined. If one now inserts (40) into (38) the following
results,

Ñ( ỹ) = ΦT
p Φd︸ ︷︷ ︸

P×D

c(t)︸︷︷︸
D×1

, (41)

for which the matrix in this expression is time independent. The matrix can therefore be precomputed, which in turn means
that once c(t) is known, the non-linear expression can be computed with order of complexity D .

The vector c(t) is constructed by solving a reduced form of the over determined system (40), and this is given by,

Φdρ︸︷︷︸
RD×D

c(t)︸︷︷︸
RD

= fρ(t)︸ ︷︷ ︸
RD

, (42)

where the c(t) vector remains the same as that in the original system. The new system in Eq. (42) is of size D × D , and
this is formed by extracting D rows from the original F × D system. The selection of which rows (or interpolation points)
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to use is discussed in [17,33], but once determined the selected row indices are indicated by the indexing vector ρ̂ , which
is of size D (i.e. if the kth selected point corresponds to row i then ρ̂k = i). Using this vector the elements of the system
(42) are given as,

{Φdρ}i j = {Φd}ρ̂i ρ̂ j
, and fρ(t)i = f (t)ρ̂i

, (43)

respectively. Provided that the matrix is invertible, or that a pseudo-inverse is used instead, the system (42) can be solved
to obtain c(t),

c(t) = Φ−1
dρ fρ(t). (44)

One can now generate the matrix P = [eρ1 , . . . , eρm ] ∈ R
F×D , which is formed from the vectors ei which have the value 1

in their component ρi and zero elsewhere, that is eρi = [0,0, . . . , 1︸︷︷︸
ρi

, . . . ,0,0]T ∈ R
F . This matrix can be used to represent

the reduced components in Eq. (44) through their original matrices and vectors by,

Φdρ = P T Φd, (45)

and

fρ(t) = P T f (t), (46)

respectively. Expressions (44), (45) and (46) can now be combined and used within (40) to give the following formulation,

f (t) = Φd
(

P T Φd
)−1

P T f (t). (47)

The final form of the reduced model of the non-linear component can now be formed by inspecting Eq. (38) and noting
that,

fρ(t) = P T f (t) = P T F
(
Φp ỹ(t)

) = F
(

P T Φp ỹ(t)
)
. (48)

Replacing this expression inside (48) gives,

f (t) = Φd
(

P T Φd
)−1

F
(

P T Φp ỹ(t)
)
, (49)

which is then substituted within (38) to give the final form of the non-linear reduced order model,

Ñ( ỹ) ≈ ΦT
p Φd

(
P T Φd

)−1︸ ︷︷ ︸
precomputed P×D

F
(

P T Φp ỹ(t)
)︸ ︷︷ ︸

D×1

. (50)

As indicated, the computationally expensive matrix can be precomputed due to its time independence. Therefore, at each
time instance of the reduced order model, only a matrix vector multiplication involving a system of size P × D is required.

4.2. Quadratic expansion of the non-linear operator

An alternative approach for efficiently treating the non-linear terms within a reduced order model is through the
quadratic expansion method proposed in [11]. The approach is reviewed here by considering the matrix operator B in
Eq. (14), for which the non-linear components arise from the streaming operator in the Navier–Stokes equation. The matrix
is re-written by the following summation involving the Pu + 1 sub-matrices,

B = B +
Pu∑

i=1

B̂ i . (51)

In this expression the matrix B is of size 3Fu × 3Fu , and this is dependent on the average velocity components u, i.e.
B = B(u). The matrices B̂ i in the summation are also of size 3Fu × 3Fu and these are decomposed further into the following
form,

B̂ i =
⎡
⎣α1

i B̂x
i 0 0

0 α2
i B̂ y

i 0

0 0 α3
i B̂ z

i

⎤
⎦ . (52)

Here the sub-matrices B̂ j
i are of size Fu × Fu and these are dependent on the ith POD basis function that is associated with

direction component j. In this expression the expansion multiplies the matrices by their respective POD coefficients α
j
i ,

however the sub-matrices themselves are fixed and so can be precomputed. The precomputing can be accomplished by
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considering a perturbation to the average vector u. The perturbations are defined in the POD space, and so three vectors of
size Pu are created that relate to all POD basis functions for each of the three velocity components. Their values are all set
to zero except for a small perturbation ε in one element of a vector. For example, in the vector relating to the direction x,
the ith perturbation is given by,

εx
i = {0, . . . ,0, ε︸︷︷︸

i

,0 . . . ,0}, ε
y
i = {0, . . . ,0, . . . ,0}, εz

i = {0, . . . ,0, . . . ,0}. (53)

These perturbed POD coefficients provide a perturbed velocity solution given as,

ũ =
[ ux

u y

uz

]
= u +

[
εΦx

0
0

]
, (54)

which can be used in expression (51) to give the expression of B̂ j
i ,

B̂ j
i = 1

ε

(
B(ũ) − B(u)

)
. (55)

The same approach can be applied to obtain all matrices in the summation (51), and once computed they can be represented
in the reduced space by their projection with the POD functions. That is,

B̂POD
i = (

Φu)T
B̂iΦ

u, (56)

which are in turn used to define the reduced B matrix,

BPOD = BPOD +
Pu∑
i

B̂POD
i , (57)

where BPOD = (Φu)T BΦu is the projection of B onto the reduced space.

4.3. The residual DEIM method

A mixed DEIM-quadratic expansion formulation of the non-linear reduced order operator is now derived. It is based on
a DEIM representation of a residual term that is left over from first applying a quadratic representation of the non-linear
operator. The method is derived from Eq. (16) which represents the full model discretized into its linear and non-linear
components. The system is now rewritten as,(

P L + P N
f + P N

q − P N
q

)
yn+1 = (

Q L + Q N
f + Q N

q − Q N
q

)
yn + s, (58)

where the subscripts f and q denote the full and quadratic operators, respectively. This is then re-arranged into the form of(
P L + P N

q

)
yn+1 = (

Q L + Q N
q

)
yn + s + {(−Q N

f + Q N
q

)
yn + (−P N

f + P N
q

)
yn+1}. (59)

The system on the left hand side now only contains a linear and a non-linear component that is represented by the quadratic
expansion. This and the first two terms on the RHS (which also contain only quadratic representations of the non-linear
terms) are therefore re-cast into an efficient reduced order model using the method described in Sections 3.2 and 4.2. These
reduced systems (denoted with a .̃) are given by,

P̃ L = ΦT
p P LΦp, Q̃ L = ΦT

p Q LΦp and b̃ = ΦT
p b (60)

for the linear terms and

P̃ N = ΦT
p P NΦp and Q̃ L = ΦT

p Q LΦp, (61)

for the non-linear quadratic terms (note that the terms P N and Q N have representations as given in Eq. (51)).
The remaining term on the RHS of (59) (closed within the brackets) is the residual that is formed from applying the

quadratic approximation of the non-linear operator. These operators are highly non-linear, and so in this work they are
represented by the DEIM method. That is, the non-linear operator relating to Eq. (37) in the DEIM formulation is expressed
as,

N
(

y(t)
) = (−Q N

f + Q N
q

)
yn + (−P N

f + P N
q

)
yn, (62)

which in turn has the reduced order formulation,

Ñ( ỹ) = ΦT
p Φd

(
P T Φd

)−1
P T F

(
Φp ỹ(t)

)
. (63)

The new reduced order model, which has been named the residual DEIM model, now reads as,(
P̃ L + P̃ N) ỹn+1 = (

Q̃ L + Q̃ L) ỹn + b̃ + Ñ( ỹ). (64)



10 D. Xiao et al. / Journal of Computational Physics 263 (2014) 1–18
5. Numerical examples

A demonstration of the use of the reduced order modeling scheme is presented in this section. This is based on solving
the incompressible Navier–Stokes equations for two test problems where the flow past a cylinder and flow within a gyre
are resolved. To obtain the full solutions, both problems were solved using the fluidity model [13]. This applied linear
Discontinuous Galerkin (DG) finite elements to the velocity and quadratic continuous finite elements to the pressure terms.
In both test cases unstructured triangular meshes were used with sufficient resolution to ensure an accurate solution was
obtained. From these full model simulations the snapshots of both the solution variables and the non-linear terms were
taken. Using this snapshot data the reduced order models were then formed and used to re-solve the problems.

In this demonstration a comparison between the quadratic treatment of the non-linear terms and the residual DEIM
approach has been made. A comparison with DEIM alone has not been included as the method was found to be unstable
with the problems presented. This is due to DEIM being formed explicitly, however for incompressibility the constraints
need to be treated implicitly. In addition to comparing solution profiles the analysis compares the solution errors as well
as correlation coefficients. The measured error is given by the root mean square error (RMSE) which is calculated for each
time step n by,

RMSEn =
√∑F

i=1(ψ
n
i − ψn

o,i)
2

F
. (65)

In this expression ψn
i and ψn

o,i denote the POD (mapped onto the full mesh) and full model solution at the node i, respec-
tively, and F represents the number of nodes on the full mesh. The correlation coefficient is computed for each time step,
and is defined for given expected values μψn and μψn

o
and standard deviations σψn and σψn

o
,

corr
(
ψn,ψn

o

)n = cov(ψn,ψn
o )

σψnσψn
o

= E(ψn − σψn)(ψn
o − σψn

o
)

σψnσψn
o

. (66)

5.1. Case 1: Flow past a cylinder

In the first numerical example a 2 dimensional flow past a cylinder is simulated. The problem domain is 50 units in
length and 10 units in width, and it possesses a cylinder of radius 3 units positioned over the point (5,5). The dynamics of
the fluid flow is driven by an in-flowing liquid, and this enters the domain through the left boundary. The fluid is allowed
to flow past the cylinder and out the domain through the right boundary. No slip and zero outward flow conditions are
applied to the upper and lower edges of the problem whilst Dirichlet boundary conditions are applied to the cylinder’s wall.
The properties of the fluid are such that the Reynolds number for this problem is calculated to be Re = 3200.

The problem was simulated for a period of 10 time units, and for all models a time step size of �t = 0.01 units was
used. From the full model simulation, with a mesh of 3213 nodes, 375 snapshots were obtained at equal time intervals
for each of the u, v and p solution variables. Similarly, 375 snapshots of the corresponding non-linear residual profiles,
as described in Eq. (62), were also taken. Fig. 1 presents the distribution of the interpolation points when using DEIM to
represent the residual terms. These points can be thought as providing an indication as to where the quadratic expansion
method provides the least accurate reconstruction of the non-linear operators. The stabilizing diffusion term discussed in
Section 3.3 was also used in this example, and this added an equivalent viscosity of up to 6.6−4.

Figs. 2–4 present the simulated flow patterns at time instances 3.52 and 10.0. They compare the full solution against
reduced order model using both the quadratic expansion and the residual DEIM methods. In each of the figures the number
of POD functions used in the simulation increases from 12 to 48 and then 96 functions. In the residual DEIM calculations the
number of interpolation points was set to the same number of POD functions used (Table 2). From these flow patterns it is
shown that both the quadratic expansion and residual DEIM methods are capable of capturing the solution’s main structural
details. It is also shown that the residual DEIM performs very well using as few as 12 POD basis functions. In addition, the
magnitude of the residual DEIM profiles appears to be in closer agreement to the full model solutions. This is highlighted
in the graphs presented in Fig. 5 which show the solution velocities at 3 points in the domain. The results highlight how
the residual DEIM method improves the quadratic expansion method by suppressing the over and under shoots that form
in its solution.

The graphs in Figs. 6 and 7 show the two reduced order method’s errors and correlation coefficients. These show a
noticeable improvement in accuracy is gained when using the residual DEIM method, whereby the errors are reduced by
approximately 80% in comparison to quadratic expansion. The correlation graphs show the quadratic expansion’s coefficient
to vary about the values 0.6–0.8 whereas for residual DEIM the values remain around 0.9–0.98. This again illustrates the
improved accuracy gained by using this new approach. The errors between the two reduced models and the full solutions
are presented in Fig. 8. These show the residual DEIM method to be more accurate than the quadratic expansion method.

Fig. 9 presents the CPU times required to compute a single time step with varying mesh size. It shows the cost of the
ROM models to remain static with increased resolution, and that significant efficiencies are gained using meshes with over
3000 nodes. For the largest mesh the CPU costs were reduced by 98%.

Fig. 10 shows the CPU times to compute a single time step with varying POD basis in reduced order model.
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Fig. 1. DEIM point distributions in the x–y plane (horizontal–vertical axis respectively) for the flow past the cylinder problem (Re = 3200).

Fig. 2. Velocities of the flow past a cylinder problem at time instances 3.52 and 10.0 with 12 POD basis functions.

Table 2
CPU (unit: s) required for running the full model and 2 ROMS for a time step.

Nodes Full
model

Quadratic POD
12 POD basis

Residual DEIM
12 points

Quadratic POD
6 POD basis

Residual DEIM
6 points

1243 0.188 0.044 0.044 0.008 0.008
1842 0.240 0.044 0.044 0.008 0.008
2346 0.316 0.044 0.044 0.008 0.008
3213 0.440 0.044 0.044 0.008 0.008
7266 1.048 0.048 0.048 0.008 0.008
8117 1.180 0.048 0.048 0.008 0.008

10 195 1.548 0.048 0.048 0.008 0.008
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Fig. 3. Velocities of the flow past a cylinder problem at time instances 3.52 and 10.0 with 48 POD basis functions.

Fig. 4. Velocities of the flow past a cylinder problem at time instances 3.52 and 10.0 with 96 POD basis functions.

5.2. Case 2: The gyre problem

The second numerical example involves the simulation of a gyre for which a circulating fluid moves across a domain
that is 1000 × 1000 km across and 500 m in depth. The solution’s free surface is driven by a wind with a force strength
given by the expression,

τy = τ0 cos(π y/L) and τx = 0.0, (67)

where L is the problem’s length scale given by L = 1000 km. The terms τx and τy are the wind stresses on the free
surface that act along the x and y directions, respectively. In this example the maximum zonal wind stress was set to
τ0 = 0.1 N m−1 in the latitude (y) direction. The Coriolis terms are taken into account with the beta-plane approximation
( f = β y) where β = 1.8 × 10−11 and the reference density of the fluid set to ρ0 = 1000 kg m−1. With this setup the
Reynolds number of the problem was calculated to be Re = 250.
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Fig. 5. Velocities predicted by the full model, the quadratic model and the residual DEIM model at positions (a) (0.5,0.3), (b) (1.158,0.315) and
(c) (0.574,0.107). These results were obtained using a reduced order model with 48 POD functions and, in the case of residual DEIM, 48 interpolation
points.
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Fig. 6. RMSE errors calculated for the quadratic expansion and residual DEIM methods.

Fig. 7. Correlation coefficient calculated for the quadratic expansion and residual DEIM methods.

Fig. 8. Velocity errors of the flow past a cylinder problem at time instance 3.52 and 10.0. The solutions compare the errors in the residual DEIM model
(left) and the quadratic expansion model (right). Both reduced order models used 12 POD functions.

The gyre was simulated through the full finite element model for a period of 194 days using a time step size of �t =
0.3311 days. From this simulation 120 snapshots of the solution and non-linear terms were recorded and from this data 12
POD basis functions were generated. It was found that the POD basis set of this size captured over 99% of the energy of the
u, v and p snapshot data. The problem was then re-simulated using the reduced order models with their non-linear terms
represented through the quadratic expansion and the residual DEIM methods. Fig. 11 presents the velocity profiles obtained
through the full model at time instances 91 and 149 days, and these show that the problem has formed several complex
flow patterns involving a number of eddies. Included in the figures are the respective solutions obtained through the two
reduced order models. Whilst the quadratic expansion method has performed well by resolving the general profile of the
solution at these two time instances, some of the finer detail and smaller eddies were not completely captured. These finer
solution details were however resolved through application of the residual DEIM approach. In fact the solutions between
the residual DEIM and full model are almost visually identical. The errors between the two reduced models and the full
solutions are presented in Fig. 12. Again these show the residual DEIM method to be more accurate than the quadratic
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Fig. 9. Computational times to compute each time step as a function of mesh size (number of nodes) in the full model. Comparisons are made between the
full model and the two ROMS.

Fig. 10. Computational times to compute each time step as different number of POD basis in the ROM.
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Fig. 11. Solutions of the gyre problem at time instance 91 (left) and 149 days (right). The solutions compare the predictions from the full model (top), the
residual DEIM model (middle) and the quadratic expansion model (bottom). Both reduced order models used 12 POD functions.

expansion method. It is shown that the main gyre is more accurately resolved using residual DEIM, but in addition the
eddies around the central top region of the problem contain less errors.

6. Conclusions

In this article a new reduced order model based upon Proper Orthogonal Decomposition (POD) has been presented.
The method is centered on resolving the incompressible Navier–Stokes equation and the novelty of the approach is in how
the non-linear terms of the equations are resolved. The treatment of the non-linear terms within a reduced order model
requires special attention since the computational costs still depend on the number of variables in the full system. Instead
additional techniques such as the quadratic expansion method and DEIM have been developed in order to maintain the
ROM’s efficiency. In this article a new hybrid scheme has been developed that mixes these two approaches. This is based on
initially applying the quadratic expansion method to the non-linear terms and then applying the DEIM approach to resolve
the residual between it and the full model. That is, the DEIM is used to mop up the remaining errors left over from the
quadratic expansion approach.

This new method, named residual DEIM, has been applied to two 2D fluid flow problems and compared to the ROM
approach using a quadratic expansion. The two problems were based on the simulation of flow past a cylinder and wind
driven gyres, both of which were of sufficient difficulty with Reynolds numbers large enough to form complex flow patterns
and eddies. In these demonstrations the residual DEIM approach showed strong capabilities in resolving the complex flows
efficiently. It was also shown to improve the solution obtained from the ROM model using only quadratic expansions of
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Fig. 12. Solution errors of the gyre problem at time instance 91 (top) and 149 (bottom) days. The solutions compare the errors in the residual DEIM model
(left) and the quadratic expansion model (right). Both reduced order models used 12 POD functions.

the non-linear terms. In addition, the reduced order models were developed from full models involving unstructured finite
element meshes. It has been previously observed that unstructured meshes can cause stability issues for reduced order
models, but this was not the case for the residual DEIM approach.

Finally, it has been shown that the computational costs of the residual DEIM method is similar to that of DEIM and the
quadratic expansion method. In addition, in the examples presented the computational times were reduced in comparison
to the full model calculations, where for the larger number of mesh points tested the CPU costs were reduced by up to 98%.
Future work will monitor an a-posteriori error estimate of this approach.
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