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Abstract-we consider the numerical approximation of a singularly perturbed reaction-diffusion 

problem over a square. Two different. approaches are compared namely: adaptive isotropic mesh 
refinement and anisotropic mesh refinement. Thus, we compare the h-refinement and the Shishkin 

mesh approaches numerically with PLTMG software [l]. It is shown how isotropic elements lead to 
over-refinement. and how anisotropic mesh refinement is much more efficient in thin boundary layers. 
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1. INTRODUCTION 

The numerical solution of singularly perturbed boundary value problems has recently received 

much attention. In fact, problems of this type arise in many areas, such as fluid mechanics and 

heat transfer, as well as problems in structural mechanics posed over thin domains. 

The solution of a singularly perturbed elliptic problem will, id general, contain shape boundary 

layers along the boundary of the domain. If, in addition, the domain contains corners, then the 

solution will also include singularities in the neighborhood of each vertex. 
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The coupling of boundary layers and corner singularities may complicate the numerical ap- 

proximation, and the numerical method must be chosen carefully tailored to account for their 

presence. 

In what follows, we will consider the following singularly perturbed elliptic problem: 

-v (E2VU) + cm = f, in St C R2, (1) 

u = 0, on dR, (2) 

where 0 < E < 1, (r is a constant, and f(s, y) is analytic. Its weak formulation is: find u E Ho((sz) 

such that 

a(u, V) := &2(VU, Vu) + (T(u,‘u) = (f, V), vu E H,‘(R), (3) 

where (., .) denotes the usual L2 inner product. 

The Lax Milgram Lemma ensures that there exists a unique solution of (3) provided that 

0 f E [H;(R)]* = H-i(Q), 

0 a(., .) is elliptic, i.e., o(?J,?J) 2 Pl.II~IIH~(sI), vv E 4#% 

l a(., .) is bounded, i.e., b(v,w)l 5 ~~~.ll~ll~~~~~.ll~ll~~~~~, Vv,w E HA@). 
In addition, we require a stronger smoothness of the right-hand side, namely that 

to ensure that the first assumptions is satisfied. The second and third assumption are automati- 

cally valid with constants ~1 = s2 and /.LZ = (T. 

The finite element approximation of (l),(2) p roceeds as usual: given a subspace VN E H;(0) 

of dimension N, the finite element solution UN E VN satisfies 

‘-$N,v) = (f,v), VU E VN. (4 

The model problem (1) ,(2) is of interest since one can usually expect boundary layers when a 

nonvanishing right-hand side f satisfies homogeneous Dirichlet boundary conditions. In fact, let 

us consider the limit equation 

auo(z) = f(z), Ic E 6. (5) 

One can see that the solution 2~s of the previous equation cannot satisfy the boundary condi- 

tion (2) and/or is possibly nonsmooth. 

Inside R and sufficiently far away from the boundary the solution is usually smooth provided f is 

smooth enough too. Thus, the boundary layers mark the domain of interest, and their resolution 

requires an increased numerical effort. In [2], it was shown (for smooth domains) that if f 

is smooth then the difficulty in approximating u lies entirely within the boundary term. In 

addition, it was shown that the boundary layer effect is essentially one-dimensional, namely in a 

direction normal to the boundary. 

Let hT be the diameter of the finite element 7 and pi the largest inscribed ball in 7. We 

will see how the mesh generation routines of PLTMG software package (piecewise linear finite 

element multigrid developed by Bank and collaborators) [i] allow us to construct either: 

l isotropic meshes, meaning that hT/pl = O(1) for e -+ 0 and h + 0, 
l or anisotropic meshes, implying that hl/pl = co for e + 0 and h + 0. 

Our goal in this paper is to carry out a numerical comparison between the approaches exposed 

previously discussed. First, in order to illustrate the properties of the solution and also to justify 

the use of mesh refinement strategies, computations will be carried out on a uniform mesh. Then 

we will experiment with adaptive h-refinement (isotropic mesh refinement) in Section 2, and 

with a Shishkin mesh (anisotropic mesh refinement) in Section 3. In Section 4, a synthesis of 
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Figure 1. 

the results obtained in the previous sections is carried out. Finally, conclusions are presented in 

Section 5. 

Throughout the paper, numerical implementation will be carried out with the test examples 

experimented in [3], namely the following examples. 

EXAMPLE 1. Where (T = 2 and f = 20(x2 + y2) f4 in (1). In this example, the function f meets 

the Dirichlet boundary conditions on the four sides of the unit square; the sharper boundary 

layers are located on sides z = 1 and y = 1 and a corner layer is observed at (1, l), respectively. 
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EXAMPLE 2. Where o = 2 and f are such that exact solution is 

--1/E + e-(l-“)/E -II/E + ,-(1-d/E 

I+ e-1/E be 
1 + e-l/E 

> ’ (6) 

the exact solution is known and does not have corner singularities; however, exponential boundary 
layers exist on the four sides of the unit square. 

2. PLTMG FEATURES 

This software package was developed by Bank and collaborators [l] for solving general elliptic 
systems of partial differential equations and is available in the public domain. 

In order to solve a particular problem, one has to construct an initial mesh or skeleton, generate 
a mesh from this structure, and solve the equation on the obtained mesh. For adaptive refinement, 
the mesh generator and equation solver have to be used iteratively. 

The software provides a generator of unstructured meshes, moreover h-refinement or unre- 
finement, r-refinement (moving mesh) are also implemented. In addition, the quality of any 
adaptive algorithm ultimately rests on the reliability and robustness of the a poster&n-i error 
control. Thus, one can easily realize the importance of having robust and reliable estimators for 
singularly perturbed problem. The robustness of the implemented estimator for the singularly 
perturbed reaction-diffusion equation was shown in [4,5]. 

The solver deals with boundary value problems using a piecewise linear finite element method, 
the adaptive mesh refinement, and a multi-level iterative method to solve the resulting sets of 
linear equations. 

As our problem does not invoke continuation, equation (l),(2) can be written as follows: 

F(u) = 0. (7) 

In addition, if the Jacobian of the previous optimization problem is not self-adjoint (for convec- 
tion-diffusion equation for example) some upwinding terms from [6] are added. A damped Newton 
Method (see [7]) is used to solve problem (7). As part of Newton’s Method, various large sparse 
systems of linear equations have to be solved. 

Highly refined meshes will be required in some regions of the domain in order to resolve the 
boundary layers. Thus, one could assume that the resulting linear system of equations will 
be ill conditioned, leading to slow convergence of iterative methods and even of direct methods. 
However, in [8] Bank and Scott prove that the condition number of the linear systems representing 
the finite element discretization need not degenerate as the mesh is refined locally, provided 
certain restrictions on the mesh size are met and a natural scaling of the basis functions is used. 

The PLTMG package allows the user to process to adaptive refinement based on the interpola- 
tion error of a given function. Thus, using these tools will permit us to obtain the interpolation 
error of the exact solution on a given grid. 

In addition, a “global weighted root mean-square norm” (weighted RMS) was implemented in 
order to carry out a comparison between different methods. 

In fact, let u be the exact solution, uh the computed solution, NVF the current number of 
vertices; and let ei be 

ea = u(vi) - uh(~li), i = l,NVF, (8) 

the difference between the exact and computed solution at one of the NVF vertices vi of the 
triangulation created by PLTMG. Thus, the norm implemented is given by 

/ _ NVF \ w 

lb- Uhll = (9) 
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Figure 2. Influence of the perturbation parameter on the boundary layers. 

Here the weight wi corresponds to the area of all the triangles which contain the vertex vi. This 

combination of weighted and root-min square error allows us to carry out a pertinent comparison 

between different type of meshes (uniform, nonuniform, isotropic, anisotropic) for several number 

of vertices. 

3. UNIFORM MESH COMPUTATIONS 

In this section, we will try to underline the limitations of using a uniform mesh for the solution of 

singularly perturbed reaction-diffusion equations and also to verify the properties of the solution 

of our model problem. 
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Figure 2. (cont.) Influence of the perturbation parameter on the boundary layers. 

Previously, Xenophontos has shown in [9] that the solution of our model problem over a nons- 

mooth domain (square) can be decomposed into a smooth part, a corner layer part and a smooth 

remainder. In addition, in [lo] it was shown that the boundary layer part of the solution is 

essentially of the form 

WL(&Y) = C(S>exP (-:) (IO) 

with C(z) smooth. This indicates that the boundary layer effect is essentially one dimensional. 

Let us take Test Example 1 and solve the equation on the unit square on a uniform grid. It 

is obvious from Figure la that the sharp boundary layers could not be easily resolved by the 
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Figure 3. 

uniform mesh. In Figure lb, the different shades of black correspond to different directions in 

the vector Vuh, and different intensities of black correspond to the magnitude of the vector. 
Thus, one can see that near the boundaries the direction of the gradient vector roughly changes 

and has higher magnitudes. Moreover, one can see that on each boundary, the direction of the 

gradient vector is constant. This is an illustration of the typical one-dimensional boundary layer 

mentioned previously. 

In addition, the perturbation parameter E has an important influence on the structure of 
boundary layers. In fact, as E -+ 0 the boundary layer becomes sharper (for E 5 10m4 there is 
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Figure 4. 

no distinction from the case E = 10W4). Figures 2a-2d were obtained with different values of 

perturbation parameter E, namely, 

(a) E = l.OE - 01, 

(b) E = l.OE - 02, 

(c) & = l.OE - 03, 

(d) E = l.OE - 07. 
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As shown in [ll], global estimates uniformly in E can be derived in the Lz norm 

(11) 

so that uniform convergence of order l/2 occurs. Moreover, the infinity norm is of interest since 

one needs to consider the error in the very small domains in which the boundary layers occur. In 

fact, use of other usual norms, such as the root mean square, involve averages of the error which 

smooth out rapid changes in the solutions, and therefore, fail to capture the local behavior of the 

error in these layers. Considering the form of the boundary layer term in (11) and key results 

from [ll], we can guess that for this Dirichlet problem the finite element method on a uniform 

mesh cannot converge uniformly in E in the global norm /] ]]L_(~). The error in L, as well as 

“weighted RMS norm” were computed for Test Example 2 (where the exact solution is known). 

In Figure 3a, one can notice that the finite element method on uniform meshes converges 

but when E decreases, the accuracy of the solution is altered. However, the results displayed in 

Figure 3b which exhibit uniform convergence in E cannot be obtained using the standard finite 

element method on a uniform mesh. 

As an alternative approach, we are going to focus on the use of standard finite element methods 

on highly nonuniform meshes. 

4. ISOTROPIC ADAPTIVE MESH REFINEMENT 

As a result of using the mesh generations routines of PLTMG software, we can fully implement 

an adaptive h-refinement. In this adaptive mesh refinement process the quality of the triangu- 

lation is optimized. In fact, for a given triangle 7 of area a and side length hl, h2, and h3 the 

quality is measured using the formula 

(12) 

The function q(7) is normalized to equal one for an equilateral triangle and to approach zero for 

triangles with small angles. In order to compute a high quality triangulation, the criteria used 

by PLTMG package is 

q(7) 2 0.6. (13) 

This feature renders the adaptive refinement process isotropic. 

We have already emphasized the importance of robust a posteriori error estimates for our 

problem. Thus, in order to provide a numerical illustration of its robustness, adaptive mesh 

refinement is carried out for an example where knowledge of the exact solution is available and 

with error estimates. In fact, let en be the interpolation error for the grid obtained by mesh 

refinement with a posteriori error estimates and En the interpolation error resulting for the grid 

from refinement with knowledge of exact solution. Let dn be 

so that this coefficient is equal to one for grids with the same interpolation error. A similar 

coefficient could be also computed for the global weighted root mean square error so that 

Table 1 provides the obtained coefficient for a h-refinement computation carried out with 2401 

vertices. One can see that the performance of the a posterior-i error estimates appears to be 

independent from the perturbation parameter E. 
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initial shi: Ikin mesh 

(a) Starting triangulation. 

shishkin mesh 

(b) Uniform refinement irefn = 2. 

Figure 5. Shishkin mesh construction. 

Table 1. Computed coefficients for E = 10-j, j = 2.. .7. 

1 h-Refinement Comoutation 1 

l.OD-04 1.0914 1.1999 

l.OD-05 1 1.0669 1 1.0369 

l.OD-06 1.0512 0.9894 

l.OD-07 1 1.0873 / 1.0791 

Within the range of values expressed previously, positive constants Cl and Cz can be found 

that are &-independent such that either of the following inequalities: 

Glen 5 lll-&lll I Czen 
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or 

holds. Computation with other target values for the number of vertices were also carried out in 

order to illustrate the h-independence of the estimator. In [9], it was shown that the h-adaptive 

version of the finite element method (i.e., the degree p of the approximating polynomial being 

fixed at a low level, here p = 1) limits the rate of convergence to an algebraic one. As in the 

previous section, error in Loo as well as the “weighted RMS norm” were computed for Test 
Example 2. In Figure 4a, the results displayed in Figure 4a show that as for the uniform mesh, 

nonuniformity in E is observed when E 2 lo- 3. A nonuniform rate of convergence is obvious by 
considering Figure 4b. 
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Figure 7. Example 2. Computation on uniform mesh with N = 2401 vertices. 

As a conclusion, the adaptive h-refinement process is E-dependant and an accurate solution 

requires a highly refined mesh near the boundaries. 

An alternative way to carry out mesh refinement is to refine the mesh anisotropically based 

on a priori knowledge. This approach will be experimented with for our model problem in the 

following section. 

5. ANISOTROPIC MESH REFINEMENT: SHISHKIN MESH 

An a priori specified mesh may be either graded [2] or piecewise uniform [3]. Similar to the 

implementation carried out in [12] for convection-diffusion problems, will experiment with the 
implementation of piecewise uniform meshes with the PLTMG package. 
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The solutions of model problem (l),(2) are characterized by the presence of a boundary layer of 

width CJ(~ln(l/&)) (see [13]). Shishkin [14] introduced a piecewise uniform mesh (no attempt to 
change the mesh smoothly) that is designed to yield convergence inside boundary layers. Thus, 

the resulting meshes are isotropic away from the boundary layers as well as in the corners and 

anisopically refined close to the boundary manifold. 

The Shishkin mesh generation does not require a sizable coding effort due to the uniform 

mesh refinement routine provided within PLTMG package. In fact, one has to specify the initial 

mesh filling the triangulation data structures, then the uniform mesh refinement controlled by 
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Figure 9. Example 2. Computation Shishkin mesh with N = 2401 vertices. 

parameter irefn (each triangle is divided in irefn2 subtriangles) will generate the desired mesh 

preserving the geometry imposed by the starting grid. 

The process for Shishkin mesh type generation with PLTMG package is illustrated in Figure 5 

were the thickness of the layer is intentionally kept to be of important size (in order to allow an 

easily visible process). 

Let the thickness of the boundary subdomains be 

X = C&In i, (16) 
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where C is a scalar. First, in order to investigate the influence of anisotropic mesh refinement on 

the approximation, we varied the thickness of the boundary subdomains (where the anisotropic 

refinement takes place) and computed the solution for an increasing number for degrees of freedom 

and for a variable perturbation parameter E. Computed results are provided in Tables 2-4. 

One can see that in agreement with results obtained by Ape1 and Lube for another test example 

(see [13]) that if C is chosen too large or too small then the interpolation error increases. It was 

conjectured from this test that an optimal C is dependent on E in a nonlinear manner. In addition, 

Figure 6a allows us to validate one of the most important theoretical statement of [13] the one 
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Figure 10. Example 2. Computation with E = 10d2 (N = 2401 vertices). 
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Figure 11. Example 2. Computation with 8 = lob3 (N = 2401 vertices). 

asserting that the Lz error is diminishing with decreasing E (see Table 5) even in the infinity 

norm (see Figure 6b). 

6. NUMERICAL COMPARISON OF 

THE DIFFERENT STRATEGIES 

It is obvious that the three methods described and experimented with in the previous sections 

do not posses an identical behavior when applied to our singularly perturbed reaction-diffusion 

model. 
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Table 2. Computation for C = 1. 

Interpolation Error in L2 Norm for C = 1 

Table 3. Computation for C = 2. 

Interpolation Error in L2 Norm for C = 2 

Table 4. Computation for C = 3. 

Interpolation Error in L2 Norm for C = 3 

Table 5. Complete results for C = 2. 

Shishkin Mesh Computation with C = 2 

Il’1L - Wu)llL*(n) 

E\N 625 I 2401 I 5329 I 

l.OD-02 5.87630693D-03 3.07237814D-03 1.97890281D-03 

l.OD-03 2.33211103D-03 7.420058101)-04 4.57839801D-04 

l.OD-04 1.21986926D-03 3.24387770D-04 L51636927D-04 

l.OD-05 5.82216718D-04 1.55938954D-04 7.04701725D-05 

l.OD-06 2.55452412D-04 7.01785449D-05 3.17941372D-05 

l.OD-07 l.O5492244D-04 2.98420605D-05 1.36042865D-05 

In this section, numerical experiments are carried out for both of the test examples studied 
by Li and Navon (see [3]) in order to carry out a comparison between the previously discussed 

methods. 

First, let us compute the solution for a number of 2401 vertices and for a perturbation parameter 
of E = lo-*. In Figures 7-9, one can see that the Shishkin mesh approach is by far superior to 
the other approaches. In fact, the boundary layers are not resolved (for this target value of 2401 
vertices) by either the uniform mesh or by the adaptively refined mesh. The pointwise error 
graphics ((b) f or each figure) permit us to provide a numerical illustration of the efficiency of 
anisotropic meshes in the manifolds where the layers are located. In fact one can see that the 
error is much larger on the boundaries with the uniform and adaptively refined mesh but also in 
the corners of the Shishkin meshes. All the previously mentioned areas correspond to subdomains 
of the mesh where the finite elements are isotropic. 

We confirmed previously that the adaptive mesh refinement method does not converge uni- 
formly in E for the infinity norm while the Shishkin approach converges in this norm. Figures lo- 
12 show how the accuracy of the solution is altered when E -+ 0 and how the Shishkin mesh 
performs satisfactory even in the limit case. 
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(b) Shishkin mesh. 

Figure 12. Example 2. Computation with E = 10e4 (N = 2401 vertices). 

Last, the results obtained for each of the approaches were plotted together (see Figure 13 a-c). 

For larger values of the perturbation parameter, the Shishkin mesh does not yield better results 

(in the weighted RMS norm) than the adaptively refined mesh (cf., Figure 6a). However, one 

can notice that as E decreases, Shishkin method becomes the more efficient. 

7. CONCLUSIONS 

In this paper, numerical experiments were carried out aiming at comparing results obtained 

for solving singularly perturbed reaction-diffusion equations for both adaptively refined mesh and 
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special anisotropic mesh of Shishkin type. The results obtained in [12] for convection-diffusion 

problems were extended to reaction-diffusion problems while those obtained by Ape1 and Lube 

(see [13]) were confirmed. 

For a comparable number of nodes, the Shishkin type meshes yield much better results and 

do not degrade for limit values of the perturbation parameter. The efficiency of anisotropic 

finite elements for boundary layers was emphasized. In order to deal with problems with interior 

layers (straight or curved) similar to those treated by Madden and Stynes in [12] or with general 

problems without a priori knowledge available, it would be interesting to apply error estimates in 

conjunction with anisotropic meshes. Thus, anisotropic interpolation estimates and anisotropic 

residual error estimator could be implemented with PLTMG package. 

In addition, implementation of piecewise uniform meshes with a nonuniform order of approxi- 

mation as well as full hpadaptively refined meshes is also an area where further research should 

be conducted. 

1. 

2. 
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