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Abstract

A novel non-intrusive reduced order model (ROM) based on a radial basis function
(RBF) method and proper orthogonal decomposition (POD) hasbeen developed for
multiphase flows in porous media. The advantage of this method is that it is generic
and non-intrusive, that is, it does not require modifications to the source code, as it is
independent of the governing equations and discretizationof the system. The novelties
introduced in this work are in (1) the use of the RBF interpolation method to represent
solutions of the time-dependent POD equations; (2) the firstattempt of applying such
a non-intrusive reduced order method to multiphase porous media simulation, and (3)
the first implementation of the non-intrusive ROM under the framework of a complex
unstructured mesh control volume finite element (CVFEM) multiphase model.

The capability of this new POD-RBF ROM has been numerically illustrated in two
multiphase flow simulations in porous media: a two material layer case and a low per-
meability domain embedded in a high permeability domain case. By comparing the
results of the POD-RBF ROM against the solutions obtained from the high fidelity full
model, it is shown that this model can result in a large reduction in the CPU computa-
tion cost (by a factor of 2500) while much of the details of multiphase flow in porous
media are captured.
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1. Introduction

The simulations of multiphase flows in porous media are very important and have a
wide range of applications, from groundwater production toradioactive waster and the
extraction of oil and gas from the subsurface. However, the application of multiphase
modelling in industry is not only computationally intensive, but also often suffers from
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significant uncertainties in the controlling parameters used as inputs when predicting
the performance. In this paper a new non-intrusive reduced order modelling technique
is presented aiming to address this issue by presenting an approach which is capable
of resolving complex multiphase porous media flows while avoiding the high compu-
tational cost.

The reduced order modelling technique has been shown to be a powerful capabil-
ity of representing the large dynamical systems using only afew number of reduced
order basis functions. The multiphase porous media model can be projected into a
reduced space, therefore, the computational efficiency can be enhanced by several or-
ders of magnitude if we use hyper-reduction techniques. Among the model reduction
methods, the POD approach is the most widely used. This method extracts the most
energetic parts of the system through snapshots method, andthen constructs optimal
basis functions. The POD method and its variants have been successfully applied to
numerous research fields. In geophysical fluid dynamics it isreferred to as empiri-
cal orthogonal functions (EOF) [1, 2], in signal analysis and pattern recognition it is
termed as Karhunen-Love method [3] and in statistics it is called the principal compo-
nent analysis (PCA) method [4]. The POD technique has also been applied to ocean
models[5, 6, 7, 8], air pollution modeling [9], mesh optimization [10] and the shallow
water equations. This includes the work of Stefanescu et al.[11, 12], Daescu and Navon
[13], Altaf et al. [14], Chenet al. [15, 16] and Du et al. [17].

POD in combination with the Galerkin projection method is aneffective method
for deriving a reduced order model (ROM). However, this method suffers from nu-
merical instability [18]. Various methods have been proposed to overcome or im-
proving the stability issue of the POD/Galerkin projection method, including non-
linear Petrov−Galerkin [7, 19], regularisation [20], subgrid-scale modelling, calibra-
tion [21, 22] andFourier expansion [23]. Another issue that arises in the ROMs is the
efficient treatment of non-linear terms in the partial differential equations (PDEs). A
number of efficient non-linear treatment methods have been presented, for example,
the empirical interpolation method (EIM)[24] and its discrete version discrete empiri-
cal interpolation method (DEIM) [25], residual DEIM (RDEIM) [6], Petrov−Galerkin
projection method [21], Gauss−Newton with approximated tensors method [26] and
the quadratic expansion method [27, 28].

However, these methods are still dependent on the governingequations of the full
physical system. In most cases the source code describing the full physical system
has to be modified in order to form the reduced order model. These modifications can
be complex, especially in legacy codes, or may not be possible if the source code is
not available (e.g. in some commercial software) [29]. To circumvent these shortcom-
ings, more recently, non-intrusive methods have been introduced into ROMs, which
do not require the knowledge of the governing equations and the original source code
[29]. Chen et al. proposed a non-intrusive model reduction method based on blackbox
stencil interpolation method and machine learning method [29]. Audouze et al. pro-
posed a non-intrusive reduced order modelling approach fornonlinear parametrized
time-dependent PDEs based on a two-level POD method. This method is verified and
validated using Burgers equation and convection-diffusion-reaction problems [30, 31].
Walton et al. proposed a non-intrusive reduced order technique for unsteady fluid flow
using radial basis function interpolation and POD [32].
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Recently, reduced order methods (e.g, POD, POD/DEIM, trajectory piecewise lin-
earisation and bilinear approximation techniques) have been applied to reservoir mod-
elling [33, 34, 35, 36, 37, 38, 39, 40]. Heijn et al. [33] and Cardosoet al. [34, 35] first
developed POD reduced order models for reservoir simulation. Chaturantabutet al.
[36], Yanget al. [37] and Yoonet al. [38] further introduced DEIM into model reduc-
tion for non-linear flows [36]. Again, these reduced order methods are intrusive and
equations/codes dependent. There are very few studies in non-intrusive reduced order
modelling in porous media flow simulation. Klie first proposed a non-intrusive model
reduction approach based on a three-layer neural network combined with POD and
DEIM to predict the production of oil and gas reservoirs [40], where the RBF neural
network is used for developing learning functions from input-output relationships. In
this work, we used RBF as an interpolation method for constructing the time-dependent
POD ROM.

The current paper applies, for the first time, a non-intrusive POD-RBF method to
generate reduced order model for multiphase flows in porous media. This has been
implemented under the framework of a unstructured mesh finite element porous media
flow model. The novelty of this work lies in the use of the RBF interpolation method
combined with POD to represent the solution of the multiphase porous media equations
on the reduced spaces. In this approach, solutions to the full fidelity model are recorded
(as a sequence of snapshots), and from these snapshots POD bases are generated that
optimally represent the porous media flow problem. The RBF interpolation method
is then used to form a hypersurface interpolation function that approximates the time-
dependent ROM. After obtaining the hypersurface, the solution of ROM at the current
time levels can be calculated by inputting POD coefficients of earlier time levels into
this hypersurface. The capabilities of results from the newPOD-RBF multiphase flow
model have been assessed by two multiphase flow test cases in porous media: a two
material layer case and a low permeability domain embedded in a high permeability
domain case. Comparisons between the high fidelity full model and this non-intrusive
ROM are made to investigate the accuracy of the POD-RBF formulation.

The structure of the paper is as follows: section2 presents the governing equa-
tions of the multiphase porous media flows; section3 presents the reduced order mod-
elling method using POD-RBF method; section4 illustrates the methodology derived
by means of two numerical examples. The illustration consists of two test problems
where a two material layer test case and a low permeability domain embedded in a
high permeability domain case are resolved. Finally in section 5, the conclusion is
presented.

2. Governing equations

The governing equations used in the underlying multiphase model are given in this
section. The darcy’s law for immiscible multiphase flow in porous media has the form:

qα = −
Krα

µα
K (∇pα − suα) , (1)
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whereqα is theαth phase Darcy velocity. TheKrα is the relative permeability of the
αth phase, and it is a function that is denoted byKrα (Sα) corresponding to the phase
saturation variableSα. pα is the pressure of theαth phase, which may include capillary
pressure.K is the absolute permeability tensor of the porous medium.µα andsuα are
the phase dynamic viscosity and source term respectively, which may include gravity.

A saturation-weighted Darcy velocity is introduced into the equation (1) and de-
fined as

vα =
qα
Sα
, (2)

then equation (1) can be rewritten as follows:

uα = σ
α
vα = −∇pα + suα, σ

α
= µαSα

(KrαK
)−1 (3)

whereuα denotes the force per unit volume, which is defined asσ
α
vα and used as a

prognostic variable in this approach. Theσ
α

represents the implicit linearisation of the

viscous frictional forces.
The saturation equation can be written as:

φ
∂Sα
∂t
+ ∇ · (vαSα) = scty,α, (4)

whereφ denotes the porosity. Thet is time andscty,α is a source term of theαth phase.
Finally, equation (4) is bounded by the constraint:

Nα
∑

α=1

Sα = 1, (5)

whereNα denotes the number of phases.

2.1. Discretisation of the governing equations

The discretisation of the above equations (1)-(5) at time leveln can be written in a
general form:

An
vvn = sn

v, An
ppn = sn

p, An
SSn = sn

S (6)

wherevn = (vn
1, . . . , v

n
α, . . . , v

n
Nα

)T , andvn
α = (vα,1, . . . , vα,N)T , Sn

α = (Sα,1, . . . ,Sα,N)T ,
pn = (Pα,1, . . . ,Pα,N )T andN is the number of nodes.

3. Non-intrusive reduced order model based on a POD-RBF method

3.1. Proper Orthogonal Decomposition (POD) formulation

POD is a numerical technique used to find a set of optimal basisfunctions from
the snapshots of solutions obtained from the original model. The optimal POD basis
functions are then used to formulate a reduced dynamical system that contains the main
features of the flow. Due to the optimality of convergence in terms of kinetic energy of
the POD basis functions, dominant components of a large dimensional process can be
captured with only a small number of basese.g., 10− 100.
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In POD formulation, the variable vectorsvn, pn andSn at time leveln can be ex-
pressed:

vn = v + ΦT
v vn

r , pn = p + ΦT
ppn

r , Sn = S+ ΦT
SSn

r , (7)

wherev, p andSare the mean of the ensemble of snapshots for the variablesvn, pn and
Sn respectively,Φv = (Φv,1, . . . ,Φv,M), Φp = (Φp,1, . . . ,Φp,M), ΦS = (ΦS,1, . . . ,ΦS,M)
are the POD bases forvn, pn andSn respectively, which are extracted through trun-
cated singular value decomposition, andM is the number of POD bases used in the
POD model,vn

r = (vn
r,1, . . . , v

n
r, j, . . . , v

n
r,M)T , pn

r = (pn
r,1, . . . , p

n
r, j, . . . , p

n
r,M)T andSn

r =

(Sn
r,1, . . . ,S

n
r, j, . . . ,S

n
r,M)T denote the reduced variable vectors (POD coefficients) at time

leveln. Projecting equation (6) onto the reduced space, yields:

ΦT
v An

vΦvvn = sn
v, Φ

T
pAn

pΦppn = sn
p, Φ

T
SAn

SΦSSn = sn
S (8)

The POD ROM for solving the POD coefficientsvn
r, j, pn

r, j and Sn
r, j (where j ∈

{1, 2, . . .M}) at time leveln can be written in the general form:

vn
r, j = fv, j(vn−1

r , p
n−1
r ,S

n−1
r ),

pn
r, j = fp, j(vn−1

r , p
n−1
r ,S

n−1
r ),

Sn
r, j = fS, j(vn−1

r , p
n−1
r ,S

n−1
r ), (9)

subject to the initial condition

v0
r, j = ((v0

j − v),Φ j), p0
r, j = ((p0

j − p),Φ j), S0
r, j = ((S0

j − S),Φ j), (10)

wherevn−1
r , pn−1

r andSn−1
r denotes a complete set of POD coefficients for solution fields

v, p andS at time stepn− 1 (n ∈ {1, 2, . . . ,Nt}), Nt is the number of time levels in the
computational simulation.

3.2. Radial basis functions interpolation

The Radial basis functions interpolation method constructs function approxima-
tions in the form of

f (x) =
N
∑

i=1

wi φ(‖x − xi‖), (11)

where the interpolation functionf (x) is represented as a linear combination ofN radial
basis functions(φ). Each RBF is associated with a different centerxi , and weighted by
a coefficientwi . ‖x − xi‖ is a scalar distance defined by theL2 norm.

In the RBF interpolation problem, the weight coefficientswi are determined by
ensuring that the interpolation function valuesf (x) will match the given data y exactly.
This is achieved by enforcingf (x) = y, which produces a linear equation

Aw= y, (12)
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where
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φ (‖x1 − x1‖2) φ (‖x1 − x2‖2) · · ·φ (‖x1 − xn‖2)
φ (‖x2 − x1‖2) φ (‖x2 − x2‖2) · · ·φ (‖x2 − xn‖2)
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...

...

φ (‖xn − x1‖2) φ (‖xn − x2‖2) · · ·φ (‖xn − xn‖2)



































, (13)

w = [w1,w2, ...,wn]
T , y = [y1, y2, ..., yn]

T (14)

The weight coefficientsw j are then determined by solving the linear system (12) Aw=
y. How to define an appropriate RBFφ is also important, a number of most well-
known choices forφ are listed in table1, wherer > 0 is a radius andσ > 0 is a
shape parameter. The standard RBFs have two major types: Infinitely smooth RBFs

Table 1: some well-known Radial Basis Functions
Type Name of functions Definition

Gaussian (GA) φ(r) = e−(r/σ)2

Type I Multi-Quadratic φ(r) =
√

r2 + σ2

Inverse Multi-Quadratic φ(r) = 1√
r2+σ2

Inverse Quadratic φ(r) = 1
r2+σ2

Type II Thin Plate Spline φ(r) = r2log r

and Infinitely smooth (except at centres) RBFs. [41, 42].
Type I: Infinitely smooth RBFs are infinitely differentiable and dependent on the

shape parameterσ, e.g.Gaussian (GA), Multi-Quadratic (MQ), Inverse Quadratic (IQ)
and Inverse Multi-quadratic (IMQ) in table1.

Type II : Infinitely smooth (except at centres) RBFs are independenton shape pa-
rameter and are not differentiable infinitely,e.g.thin plate spline in table1.

The infinitely smooth RBFs ensure the matrices A in equation12non-singular and
symmetric [43]. The basis functions of Infinitely smooth (except at centres) RBFs are
comparatively less accurate than that of Infinitely smooth RBFs [41].

In the following section, the implementation of POD-RBF method is described. An
advantage of RBF interpolation should be point out here is that this method is meshless,
which means the distribution of sample nodes are not necessarily to be regular.

3.3. Implementation of the non-intrusive POD model based onthe RBF method

In this work, the radial basis function (RBF) interpolationhas been used to con-
struct the POD ROM in (9). The advantage of the POD-RBF method over the tradi-
tional Galerkin projection POD models is its non-intrusiveness, i.e. it does not require
the knowledge of the governing equations and the original code.

By applying the RBF method, a set of multidimensional functions f n
v, j , f n

p, j and f n
S, j

for each POD coefficient vn
r, j, pn

r, j andSn
r, j ( j ∈ {1, 2, . . . ,M}) may be approximately
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represented by the hypersurface interpolation function below:

vn
r, j = fv, j(vn−1

r , p
n−1
r ,S

n−1
r ) =

N
∑

i=1

wv,i, j ∗ φ(r i),

pn
r, j = fp, j(vn−1

r , p
n−1
r ,S

n−1
r ) =

N
∑

i=1

wp,i, j ∗ φ(r i),

Sn
r, j = fS, j(vn−1

r , p
n−1
r ,S

n−1
r ) =

N
∑

i=1

wS,i, j ∗ φ(r i), (15)

whereφ(r i) is the radial basis function whose values depend on the distance from a
collection data point, (̂vr,i, p̂r,i , Ŝr,i) (wherei ∈ 1, 2, . . . ,N) and weighted bywv,i , wv,i

andwv,i . In this work, the multiquadratic functions are chosen:

φ(r i) =
√

r2
i + σ

2 =

√

∥

∥

∥(vn−1
r , pn−1

r ,Sn−1
r ) − (v̂r,i, p̂r,i, Ŝr,i)

∥

∥

∥

2
+ σ2, (16)

wherer i =
∥

∥

∥(vn−1
r , p

n−1
r ,S

n−1
r ) − (v̂r,i, p̂r,i, Ŝr,i)

∥

∥

∥ is a radius or the distance defined by the
L2 norm,σ > 0 is a shape parameter).

The weighting coefficientswv,i , wv,i andwv,i are determined so as to ensure that the
interpolation function values at the collection data point(v̂r,k, p̂r,k, Ŝr,k) match the given
data fv,k, fp,k and fS,k. This can be expressed by,

Awv,i = fv,i, Awp,i = fp,i , AwS,i = fS,i, i ∈ {1, 2, . . . ,N}, (17)

where

• wv,i = (wv,i,k)T
k=1,...,N, wp,i = (wp,i,k)T

k=1,...,N andwS,i = (wS,i,k)T
k=1,...,N,

• fv,i = (wv,i,k)T
k=1,...,N, fp,i = (wp,i,k)T

k=1,...,N andfS,i = (wS,i,k)T
k=1,...,N,

• A is the interpolation matrix of elementsAk,l = φ(
∥

∥

∥(v̂r,k, p̂r,k, Ŝr,k) − (v̂r,l, p̂r,l , Ŝr,l)
∥

∥

∥),

• k, l ∈ {1, 2, . . . ,N}, N is the number of data points.

The coefficientswn−1
v,i = (wv,i, j) j=1,...,N, wn−1

p,i = (wp,i, j) j=1,...,N andwn−1
S,i = (wS,i, j) j=1,...,N

are then determined by solving the linear system (17).

3.4. Summary of POD-RBF reduced order model
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Algorithm 1: POD-RBF reduced order modelling

(1) Offline calculation: Construct the POD-RBF reduced order model

(a) POD bases

i. Generate the snapshots at time leveln = 1, . . . ,Nt by solving the full
model (6);

ii. Construct the POD basesΦv, Φp andΦS using the SVD method;

(b) Construct a set of interpolation functions

i. Calculate the functional valuesfv,i,k, fp,i,k and fS,i,k at the data point
(v̂r,k, p̂r,k, Ŝr,k) through the solution from the full models, where
k ∈ {1, 2, . . .N};

ii. Find the weightswv,i , wp,i andwS,i by solving (17) such that the
interpolation functionsfv,i, fp,i andfS,i pass through through the data
points;

(2) Online calculation: The RBF interpolation function in (15) denotes a
3M-dimensional hyper surface. Once a set of interpolation functionsfv, j , fp, j and
fS, j are constructed, they are then used to estimate thejth POD coefficientvn

r, j, pn
r, j

andSn
r, j at time leveln.

Result: Write here the result
Initializationv0

r, j , p0
r, j andS0

r, j ;

for n = 1 to Nt do
for j = 1 to M do

(i) Inputs: a complete set of POD coefficients for solution fieldsv, p andS at time
stepn− 1:

vn−1
r = (vn−1

r, j )T
j=1,...,M, pn = (pn−1

r, j )T
j=1,...,M , Sn = (Sn−1

r, j )T
j=1,...,M,

(ii) Outputs: Estimate the POD coefficientvn
r, j, pn

r, j andSn
r, j at current time stepn

using the RBF interpolation (15);

vn
r, j = fv, j(vn−1

r , p
n−1
r ,S

n−1
r ),

pn
r, j = fp, j(vn−1

r , p
n−1
r ,S

n−1
r ),

Sn
r, j = fS, j(vn−1

r , p
n−1
r ,S

n−1
r ),

endfor
Obtain the solution of variablesvn, pn andSn in (4) by projectingvn

r, j, pn
r, j

andSn
r, j onto the full space (see (7)).

vn = v + ΦT
v vn

r , pn = p + ΦT
ppn

r , Sn = S+ ΦT
SSn

r ,

endfor
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4. Numerical Examples

4.1. Introduction of an unstructured mesh multiphase fluid model

The POD-RBF reduced order modelling method has been implemented under the
framework of an advanced 3D unstructured mesh multiphase fluid model, the Impe-
rial College Finite Element Reservoir Simulator (IC-FERST). A novel control volume
finite element method (CVFEM) is used to obtain the high-order fluxes on CV bound-
aries which are limited to yield bounded fields (e.g., positive saturations ). This method
is combined with a novel family of FE pairs, originally introduced for geophysical fluid
dynamics applications. In particular, theP2DG − P1DG element pair (quadratic dis-
continuous polynomial FE basis function for velocity (P2DG) and linear discontinu-
ous polynomial FE basis function for pressure,P1DG), is used to accurately represent
sharp saturation changes between heterogeneous domains, see [44, 45].

4.2. General description of test cases

The waterflooding is a widely known technique in oil and gas reservoir engineering.
It increases the production from oil reservoirs through injecting water into the reservoir.
As illustrated in figure1, the water is injected into the reservoir to increase the reservoir
pressure, the oil is then displaced toward the production well. This phenomenon is also
referred to the immiscible displacement in porous media.

In this section, the capability of the POD-RBF ROM has been demonstrated in two
porous media flow problems: the two material layer test case and the low permeability
domain embedded in a high permeability domain case. These test cases are dimension-
less and for simplicity no gravity has been considered. In all cases, the outlet boundary
has a dimensionless pressure of 0, the whole domain is initially saturated with the non-
wetting phase and the wetting phase at the irreducible saturation. The wetting phase
is injected over the inlet boundary with a dimensionless velocity of 1. The viscosity
ratio of the phases is 1. The Brooks-Corey model for the relative permeability, with
an exponent of 2 and an end-point relative permeability of 1,is considered for both
phases. The porosity is homogeneous and equal to 0.2. The immobile fraction of the
wetting phase is set to 0.2 and 0.3 for the non-wetting phase.

4.3. Case 1: two material layer test case

The first case for numerical illustration of the method proposed in this paper is a
two material layer test case. This problem domain is consistof a rectangle of non-
dimensional size 1× 0.2. The domain is divided into two identical areas with a perme-
ability of 4 within the top half part and 1 on the bottom half part.

The problem was resolved with a mesh of 984 nodes during the simulation time
period [0, 0.02]. Fifty snapshots were taken from the pre-computed solution at regu-
larly spaced time intervals∆t = 0.0002 and from these POD bases are generated for
the solution variablesv, p,S.

The first 18 POD bases are presented in figure2. As shown in the figure, the first
four POD bases capture most of flow features while the 5th-18th POD bases capture the
details of small scale flow structures. Figure3 shows the singular eigenvalues in order
of decreasing magnitude. In general, the more POD bases and snapshots are chosen,
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the better the energy is represented. There is a trade-off between the accuracy and the
CPU time. In this work, 18 POD bases with 50 snapshots are chosen resulting in 92%
of ’energy’ being captured.

Figure4 shows the saturation solutions of the two material layer problem at time
instancest = 0.01 andt = 0.02, as calculated using the full and non-intrusive POD-
RBF models. It can be seen that both model solutions are in good agreement with each
other. The POD-RBF model performs well in capturing the saturation shock-front.

Figure5 shows the saturation solution at a particular position (0.026937, 0.16246).
It is noted the results from the POD-RBF model using 6 and 12 POD bases become
oscillatory aftert = 10. By increasing the number of POD bases from 6 to 18, the
POD-RBF modelling becomes stable and exhibits an overall good agreement with the
full modelling.

The ability of the POD-RBF ROM is further highlighted in figure6, which presents
the saturation solution along a line parallel to the x-axies. We can see the POD-RBF
model has a large error near the shock-front when using 6 POD bases. This can be
significantly improved as the number of POD bases increases.Using 18 POD bases,
the error of saturation solutions is decreased by 50%−97% in comparison to that using
only 6 POD bases, and the shock-front is captured well.

To further validate the quality of the POD-RBF ROM, the corresponding error es-
timation of the POD ROM was carried out in this work. The accuracy of POD-RBF
reduced order modelling was assessed. The correlation coefficient of solutions between
the full and POD-RBF models is computed for each time step, and is defined for given
expected valuesSn

full andSn and standard deviationsσSn
f ull

andσSn,

corr(Sn
full ,S

n)n =
cov(Sn

full ,S
n)

σSn
f ull
σSn

=
E(Sn

full − σSn
f ull

)(Sn − σSn)

σSn
f ull
σSn

. (18)

whereE denotes mathematical expectation,covdenotes covariance,σ denotes standard
deviation. The measured error is given by the root mean square error (RMSE) which is
calculated for each time stepn by,

RMS En =

√

∑N
i=1(Sn

full,i − Sn
i )2

N
. (19)

In this expressionSn
full,i andSn

i denote the full and POD-RBF model solutions at the
nodei, respectively, andN represents number of nodes on the full mesh.

The RMSE and correlation coefficient of saturation solutions between the full and
POD-RBF models are presented in figure7. With an increase in the number of POD
bases, the RMSE in the saturation results decreases by about50% while the correlation
increases up to 98%.
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Figure 1: Waterflooding technique for oil production.

(a) The 1st POD bases (b) The 2nd POD bases

(c) The 3rd POD bases (d) The 4th POD bases

(e) The 5th POD bases (f) The 8th POD bases

(g) The 12th POD bases (h) The 18th POD bases

Figure 2: Case 1: the figures displayed the first 18 the POD bases functions of the 2D two material layer
problem.
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Figure 3: Case 1: the figure shows the singular eigenvalues inorder of decreasing magnitude.

(a) full model, t = 0.01 (b) full model, t = 0.02

(c) POD-RBF 6 POD bases,t = 0.01 (d) POD-RBF 6 POD bases,t = 0.02

(e) POD-RBF 12 POD bases,t = 0.01 (f) POD-RBF 12 POD bases,t = 0.02

(g) POD-RBF 18 POD bases,t = 0.01 (h) POD-RBF 18 POD bases,t = 0.02

Figure 4: Case 1: the figures displayed above show the saturation solutions of the two material layer prob-
lem at time instances 0.01 and 0.02 (where 6, 12 and 18 POD bases are chosen with 50 snapshots).The
permeability on the top half part is 4, and the bottom half part is 1.
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Figure 5: Case 1: the graph shows the solution saturations predicted by the full model and the POD-RBF
ROM at a position (0.026937, 0.16246) (where 6, 12 and 18 POD bases are chosen with 50 snapshots)
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Figure 6: Case 1: Saturation along lines parallel to the x axies.
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Figure 7: Case 1: The graph shows the RMSE and correlation coefficient of solutions between the full and
POD-RBF models.
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4.4. Case 2: Low permeability domain embedded in a high permeability domain

The second case is comprised of a low permeability domain embedded in a higher
permeability domain. The domain has a non-dimensional size2 × 0.5. The low per-
meability is 0.001 and the high permeability is 1. The full model simulation with a
mesh of 1386 nodes was run during the simulation period [0, 0.1] with a time step size
of 0.0001. Fifty snapshots of solutions were taken at regularly spaced time intervals
∆t = 0.02 for each solution variable.

Figure8 shows the first 18 leading POD bases functions of saturation.As shown in
the figure, these leading POD bases capture the dominant characteristics of solutions.
The POD bases corresponding to small eigenvalues, for example, the 12th and 18th

POD bases, contain small scale flow features.
Evaluation of accuracy of the POD model was carried out through comparison

of POD solutions with those from the full model. The saturation solutions at time
instances 0.05 and 0.1 obtained from the full and POD-RBF models are presented in
figure9. Again, good agreement is observed between the two models. The POD-RBF
model is able to capture the complex flow patterns around the block. Both the full and
POD-RBF models provide almost identical details of local flows. For example, the
separated flow forms downstream of the block.

To further demonstrate the ability of the POD-RBF model, thesaturation solution
at location (0.58515, 0.43611) is presented in figure10. It can be seen that the accuracy
of solution can be improved by increasing the number of POD bases functions to 18.
This is also be shown in figure11, which illustrates the saturation along lines parallel to
the x axies. Again the POD-RBF model performs very well in capturing the saturation
shock-front when 18 POD bases are used.

To further assess the accuracy of the POD-RBF model, the absolute error in satura-
tion solutions at time instances 0.05 and 0.1 is plotted in figure12. It is shown that the
error in the POD-RBF solution relative to the high fidelity full model decreases as the
number of POD bases is increased.
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(a) The first POD bases (b) The second POD bases

(c) The third POD bases (d) The 4th POD bases

(e) The 6th POD bases (f) The 10th POD bases

(g) The 12th POD bases (h) The 18th POD bases

Figure 8: Case 2: the figures displayed above shows the leading POD bases functions of saturation. They
are the 1st, 2nd, 3rd , 4th, 6th, 10th, 12th and 18th POD bases functions respectively.
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(a) full model, t = 0.05 (b) full model, t = 0.1

(c) POD-RBF (6 POD bases),t = 0.05 (d) POD-RBF (6 POD bases),t = 0.1

(e) POD-RBF (12 POD bases),t = 0.05 (f) POD-RBF (12 POD bases),t = 0.1

(g) POD-RBF (18 POD bases),t = 0.05 (h) POD-RBF (18 POD bases),t = 0.1

Figure 9: Case 2: the figures displayed above show the saturation solutions of the low permeability domain
embedded in a higher permeability domain problem at time instances 0.05 and 0.1. The solutions compare
the predictions from the non-intrusive POD-RBF model with full model using 6, 12 and 18 POD bases
functions. The low permeability is 0.001 and the high permeability is 1.
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Figure 10: Case 2: the graph shows the solution saturations predicted by the full model and the POD-RBF
ROM at a position:x = 0.58515, y = 0.43611 using 6, 12 and 18 POD bases.
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Figure 11: Case 2: Saturation along lines parallel to the x axies.
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(a) error comparison (6 POD bases),t = 0.05 (b) error comparison (6 POD bases),t = 0.1

(c) error comparison (12 POD bases),t = 0.05 (d) error comparison (12 POD bases),t = 0.1

(e) error comparison (18 POD bases),t = 0.05 (f) error comparison (18 POD bases),t = 0.1

Figure 12: Case 2: the figures displayed above show the saturation error between full model and POD-RBF
model of the low permeability domain embedded in a higher permeability domain problem at time instances
0.05 and 0.1 seconds using 6, 12 and 18 POD basis.
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4.5. Efficiency of the POD-RBF model

Table2 shows a comparison of the online CPU time required for running the full
model and non-intrusive POD-RBF ROM. The simulations were performed on 12 cores
machine of an Intel(R) Xeon(R) X5680 processor with 3.3GHz and 48GB RAM. The
test cases were run in serial, which means only one core was used when simulating.
Note that the offline CPU time required for constructing the POD bases and the inter-
polation functionfv,i,k, fp,i,k and fS,i,k (see algorithm 1) is not listed here. The online
CPU time for running the POD-RBF model includes:

• interpolation for calculating the POD coefficientsvn
r, j, pn

r, j andSn
r, j (see equation

(15));

• projecting thevn
r, j, pn

r, j andSn
r, j onto the full space (see equation (7)).

It can be seen that the online CPU time required for running the POD-RBF model
is considerably less than that for the full model and is reduced by a factor of 2500. It is
worth noting that as the number of nodes increases the CPU time required for the full
model increases rapidly while the CPU time for the POD-RBF model almost remains
the same.

Table 2: Comparison of the online CPU time (dimensionless) required for running the full model and POD-
RBF ROMs during one time step.

Cases Model assembling and projection interpolation total
solving

Full model 0.81605 0 0 0.81605
Case 1 POD-RBF 0 0.0003 0.0001 0.00040

Full model 1.15607 0 0 1.15607
Case 2 POD-RBF 0 0.0003 0.0001 0.00040

5. Conclusion

A non-intrusive POD reduced order model has been, for the first time, applied to
porous media flows and developed for an advanced 3D unstructured mesh multiphase
fluid model, the Imperial College Finite Element Reservoir Simulator (IC-FERST),
which has the capabilities of using (1) anisotropic unstructured meshes to resolve fine
scale flow feature; and (2) a novel control volume finite element method to resolve the
high-order flux flows on CV boundaries. A RBF interpolation method is used to form
a multi-dimensional interpolation function (hyper surface) that represents the solution
of the multiphase porous media equations within the reducedspace. The non-intrusive
approach used here to construct the POD-RBF model is genericand does not require
any information of the original source code or the model equations. It can be applied
to any software or commercial codes. In addition, it avoids the instability of existing
Galerkin POD ROMs, the results might be smoothed by RBF [46].

The capabilities of the newly developed POD-RBF multiphaseporous media model
are illustrated in two typical test cases in reservoir engineering. A comparison between
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the full and POD-EBF model results are made. An error analysis was also carried out
for the validation and accuracy assessment of the POD-RBF model. It is shown that the
POD-RBF model exhibits an overall good agreement with the high fidelity full model.
An increase in the number of POD bases leads to an improvementin the accuracy of
the POD-RBF model. The saturation shock-front can be captured with relatively few
POD basis functions, 18 POD basis function(figure (h) of4) in the examples.

In comparison to the full model, without compromising the accuracy of results the
CPU time required for the POD-RBF model can be reduced by a factor of 2500. It is
worth of mentioning that for large scale porous media flow simulation, an increase in
the number of nodes used in the computational domain will result in a large increase of
the CPU time in the full simulation, but has very little effect on that of the POD-RBF
model. Future work will investigate the effects of applying this new approach to more
complex porous media flows.
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