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Abstract

A novel non-intrusive reduced order model (ROM) based ondatdasis function
(RBF) method and proper orthogonal decomposition (POD)deesn developed for
multiphase flows in porous media. The advantage of this nadeiththat it is generic
and non-intrusive, that is, it does not require modificatitmthe source code, as it is
independent of the governing equations and discretizafitime system. The novelties
introduced in this work are in (1) the use of the RBF interfiolamethod to represent
solutions of the time-dependent POD equations; (2) thedttempt of applying such
a non-intrusive reduced order method to multiphase poradiarsimulation, and (3)
the first implementation of the non-intrusive ROM under ttarfework of a complex
unstructured mesh control volume finite element (CVFEM)tipbhse model.

The capability of this new POD-RBF ROM has been numericéligtrated in two
multiphase flow simulations in porous media: a two mateagél case and a low per-
meability domain embedded in a high permeability domairecd®y comparing the
results of the POD-RBF ROM against the solutions obtainechfthe high fidelity full
model, it is shown that this model can result in a large reédadh the CPU computa-
tion cost (by a factor of 2500) while much of the details of tipilase flow in porous
media are captured.
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1. Introduction

The simulations of multiphase flows in porous media are vapartant and have a
wide range of applications, from groundwater productiorattioactive waster and the
extraction of oil and gas from the subsurface. However, fiieation of multiphase
modelling in industry is not only computationally intensj\but also often sters from
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significant uncertainties in the controlling parametemsduas inputs when predicting
the performance. In this paper a new non-intrusive reducgeranodelling technique
is presented aiming to address this issue by presenting@oagh which is capable
of resolving complex multiphase porous media flows whileiding the high compu-

tational cost.

The reduced order modelling technique has been shown to beverful capabil-
ity of representing the large dynamical systems using orfsmanumber of reduced
order basis functions. The multiphase porous media modebeaprojected into a
reduced space, therefore, the computatioffatiency can be enhanced by several or-
ders of magnitude if we use hyper-reduction techniques. #grtbe model reduction
methods, the POD approach is the most widely used. This rdetkivacts the most
energetic parts of the system through snapshots methodhandconstructs optimal
basis functions. The POD method and its variants have bemessfully applied to
numerous research fields. In geophysical fluid dynamicsrigfisrred to as empiri-
cal orthogonal functions (EOFL] 2], in signal analysis and pattern recognition it is
termed as Karhunen-Love methd] &nd in statistics it is called the principal compo-
nent analysis (PCA) method][ The POD technique has also been applied to ocean
modelsp, 6, 7, 8], air pollution modeling 9], mesh optimization10] and the shallow
water equations. This includes the work of Stefanesculdtlall 7], Daescu and Navon
[13], Altaf et al. [14], Chenet al. [15, 16] and Du et al. 17].

POD in combination with the Galerkin projection method isefliective method
for deriving a reduced order model (ROM). However, this métisufers from nu-
merical instability [L8]. Various methods have been proposed to overcome or im-
proving the stability issue of the PQGalerkin projection method, including non-
linear PetrovGalerkin [7, 19, regularisation 20, subgrid-scale modelling, calibra-
tion [21, 22] and Fourier expansiond3]. Another issue that arises in the ROMs is the
efficient treatment of non-linear terms in the partidtetiential equations (PDES). A
number of #ficient non-linear treatment methods have been presentedxémple,
the empirical interpolation method (EIM)] and its discrete version discrete empiri-
cal interpolation method (DEIM)Z5], residual DEIM (RDEIM) E], PetrowGalerkin
projection method41], Gauss-Newton with approximated tensors meth@s|[and
the quadratic expansion meth@v| 2g].

However, these methods are still dependent on the goveeujagtions of the full
physical system. In most cases the source code descrikenfylthphysical system
has to be modified in order to form the reduced order modelsd Ingodifications can
be complex, especially in legacy codes, or may not be pes#itihe source code is
not available €.g.in some commercial software9|. To circumvent these shortcom-
ings, more recently, non-intrusive methods have beendntrted into ROMs, which
do not require the knowledge of the governing equations heatiginal source code
[29). Chen et al. proposed a non-intrusive model reduction otebased on blackbox
stencil interpolation method and machine learning metta8il [Audouze et al. pro-
posed a non-intrusive reduced order modelling approacimdaiinear parametrized
time-dependent PDEs based on a two-level POD method. Thisoghés verified and
validated using Burgers equation and convectidiiidion-reaction problem80, 31].
Walton et al. proposed a non-intrusive reduced order tegkafor unsteady fluid flow
using radial basis function interpolation and PCE][



Recently, reduced order methodsy POD, PODDEIM, trajectory piecewise lin-
earisation and bilinear approximation techniques) haemlapplied to reservoir mod-
elling [33, 34, 35, 36, 37, 38, 39, 40]. Heijn et al.[33] and Cardoset al. [34, 39| first
developed POD reduced order models for reservoir simulati@haturantabugt al.
[3€], Yanget al. [37] and Yoonet al. [38] further introduced DEIM into model reduc-
tion for non-linear flows 36]. Again, these reduced order methods are intrusive and
equationgodes dependent. There are very few studies in non-ingusduced order
modelling in porous media flow simulation. Klie first propdsenon-intrusive model
reduction approach based on a three-layer neural networbiced with POD and
DEIM to predict the production of oil and gas reservo§][ where the RBF neural
network is used for developing learning functions from iaputput relationships. In
this work, we used RBF as an interpolation method for coustrg the time-dependent
POD ROM.

The current paper applies, for the first time, a non-intrei$d©D-RBF method to
generate reduced order model for multiphase flows in porcedian This has been
implemented under the framework of a unstructured mesle faiément porous media
flow model. The novelty of this work lies in the use of the RBEempolation method
combined with POD to represent the solution of the multigh@srous media equations
on the reduced spaces. In this approach, solutions to tHedklity model are recorded
(as a sequence of snapshots), and from these snapshots Bé&daba generated that
optimally represent the porous media flow problem. The RBErpolation method
is then used to form a hypersurface interpolation functi@t approximates the time-
dependent ROM. After obtaining the hypersurface, the soiuif ROM at the current
time levels can be calculated by inputting POD féiegents of earlier time levels into
this hypersurface. The capabilities of results from the R&D-RBF multiphase flow
model have been assessed by two multiphase flow test casesoinspmedia: a two
material layer case and a low permeability domain embeduedhigh permeability
domain case. Comparisons between the high fidelity full rhade this non-intrusive
ROM are made to investigate the accuracy of the POD-RBF ftation.

The structure of the paper is as follows: sectibpresents the governing equa-
tions of the multiphase porous media flows; secB@resents the reduced order mod-
elling method using POD-RBF method; sectibillustrates the methodology derived
by means of two numerical examples. The illustration cassé two test problems
where a two material layer test case and a low permeabilityaiio embedded in a
high permeability domain case are resolved. Finally inieads, the conclusion is
presented.

2. Governing equations

The governing equations used in the underlying multiphaséetare given in this
section. The darcy’s law for immiscible multiphase flow irrgas media has the form:

y,¢
Qo = _/l_ruK(Vpa_SJa)’ (1)
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whereq, is thea™ phase Darcy velocity. Thé;_ is the relative permeability of the
o' phase, and it is a function that is denoted/y (S,) corresponding to the phase
saturation variabl§,. p, is the pressure of thé" phase, which may include capillary
pressureK is the absolute permeability tensor of the porous mediugrands,, are
the phase dynamic viscosity and source term respectivaighamay include gravity.
A saturation-weighted Darcy velocity is introduced int@ thquation {) and de-
fined as q
Vo = Sa, (2)

then equation) can be rewritten as follows:

—a

Uy =0 Vo = —VPo + Suer & = HaSe (K, K) ! (3)

whereu, denotes the force per unit volume, which is definedrag, and used as a
—
prognostic variable in this approach. Therepresents the implicit linearisation of the
—

viscous frictional forces.
The saturation equation can be written as:

0S,
ot

¢ +V. (Vasa) = S:ty,w, (4)
where¢ denotes the porosity. Thids time andsyy,, iS a source term of the" phase.
Finally, equation4) is bounded by the constraint:

N,
Sa =1, (5)
a=1

whereN, denotes the number of phases.

2.1. Discretisation of the governing equations

The discretisation of the above equatiohs(5) at time leveln can be written in a
general form:

ANV =S, A=, AL =g 6)

wherev" = (v“,...,vg,...,v',llay)T, andv? = (Va1 -+ >Van) s S = (Sets---> San)’s
p" = (Po1, ..., Pax)" andN is the number of nodes.

3. Non-intrusive reduced order model based on a POD-RBF metid

3.1. Proper Orthogonal Decomposition (POD) formulation

POD is a numerical technique used to find a set of optimal Haaigions from
the snapshots of solutions obtained from the original modie optimal POD basis
functions are then used to formulate a reduced dynamictdmsyphat contains the main
features of the flow. Due to the optimality of convergencemmts of kinetic energy of
the POD basis functions, dominant components of a largertiioral process can be
captured with only a small number of bageg, 10— 100.



In POD formulation, the variable vectov8, p" andS" at time leveln can be ex-
pressed: _
Vi=V+ 00V, p"=p+@ipy, S'=S+d:S, (1)

wherev, p andS are the mean of the ensemble of snapshots for the varighlpsand

S" respectively®, = (Oy1, ..., Dym), D, = ((Dpyl, e, q)p,M), ®s = (Os1,...,DPsm)

are the POD bases fof', p" andS" respectively, which are extracted through trun-
cated singular value decomposition, avidis the number of POD bases used in the
POD model ! = (vrl,...,vpj,...,v”,\,l)T pr = (p[‘l,...,ppj,...,ppM)T ands =
(ST rj,..., rM)T denote the reduced variable vectors (PODfEtoients) at time
leveln. Projecting equatiorf onto the reduced space, yields:

DIATDN" =), OLATD" =), DIALDSS" = S (8)

The POD ROM for solving the POD céiiientsv; , pﬂj and Sﬂj (wherej €
{1,2,...M}) at time leveln can be written in the generaf form:

-1 -1 an-1
vrj = fu (v e S,

prj = fos(vi . P S,

S = fsi(vhpr L S, (9)

subject to the initial condition
VSJ = ((V? - V), (DJ)’ p(r),] = ((p? - ﬁ)’ q)l)’ g)J = ((S(]) - §)$ (DJ)’ (10)

wherev™1, pi-1 andS™* denotes a complete set of POD fiogents for solution fields
v,pandSattimestem—-1(ne{1,2...,N}), N is the number of time levels in the
computational simulation.

3.2. Radial basis functions interpolation

The Radial basis functions interpolation method conssrfighction approxima-
tions in the form of

N
F00 = D wie(lix - xill), (11)
i=1

where the interpolation functiof(x) is represented as a linear combinatiomMNafadial
basis functionsf). Each RBF is associated with afdirent centek;, and weighted by
a codficientw;. ||x — X;|| is a scalar distance defined by thenorm.

In the RBF interpolation problem, the weight ¢beientsw; are determined by
ensuring that the interpolation function valuigg) will match the given data y exactly.
This is achieved by enforcinf(x) =y, which produces a linear equation

Aw=y, (12)



where

HIxe—xall2) @ (Ixe—Xll2) - & (X1 — Xall2)
dxe —xall2) @ (% —Xll2) - (X — Xall2)

A= : : : , (13)
S(I% —Xall2) (1% —Xll2) - & (1% — Xall2)

W= [Wi, Wo, .. Wl T,y = [y, Y2, oo Vo] T (14)

The weight cofficientsw; are then determined by solving the linear systé®) Aw =

y. How to define an appropriate RBF-is also important, a number of most well-
known choices fow are listed in tablel, wherer > 0 is a radius and- > O is a
shape parameter. The standard RBFs have two major typesitéhffismooth RBFs

Table 1: some well-known Radial Basis Functions

Type Name of functions Definition
Gaussian (GA) #(r) = e /o
Type | Multi-Quadratic o(r) = Vr2 + g2
Inverse Multi-Quadratiq  ¢(r) = ﬁ
Inverse Quadratic o) = 7
Type Il Thin Plate Spline #(r) =rlogr

and Infinitely smooth (except at centres) RBF&L, [42).

Type I: Infinitely smooth RBFs are infinitely fiierentiable and dependent on the
shape parameter, e.g.Gaussian (GA), Multi-Quadratic (MQ), Inverse Quadrati@)|
and Inverse Multi-quadratic (IMQ) in table

Type II: Infinitely smooth (except at centres) RBFs are independershape pa-
rameter and are notfiiérentiable infinitelyg.g.thin plate spline in tablé.

The infinitely smooth RBFs ensure the matrices A in equat®non-singular and
symmetric #3]. The basis functions of Infinitely smooth (except at cesitiRBFs are
comparatively less accurate than that of Infinitely smodBi&[41].

In the following section, the implementation of POD-RBF had is described. An
advantage of RBF interpolation should be point out hereasttlis method is meshless,
which means the distribution of sample nodes are not nedlgstsabe regular.

3.3. Implementation of the non-intrusive POD model basetherRBF method

In this work, the radial basis function (RBF) interpolatibas been used to con-
struct the POD ROM in9). The advantage of the POD-RBF method over the tradi-
tional Galerkin projection POD models is its non-intrusiess, i.e. it does not require
the knowledge of the governing equations and the origindéco

By applying the RBF method, a set of multidimensional ftmmif\fj, f,gj andfg’j
for each POD caicientV" pﬂj andS?,j (j € {1,2,...,M}) may be approximately

)’



represented by the hypersurface interpolation functidovne

N
prj = fv,j(Vpil’ pp*l’ S]*l) - Z WV,i,j * ¢(ri),
i=1

N
P = LT ST = ) Wi x (),
i=1
N
ST o= fe (PPl = ) weyj +6(r), (15)
=

where¢(ri) is the radial basis function whose values depend on thartistfrom a
collection data point,% i, pri, S.i) (wherei € 1,2,...,N) and weighted byw,;, wy;
andw,;. In this work, the multiquadratic functions are chosen:

o) = 2+ 02 = | pr L S - @b B0 o (16)

wherer; = [|(vP-%, pf~t, S*1) — (014, pri, Si)|| is a radius or the distance defined by the
L, norm,o > 0 is a shape parameter).

The weighting cofficientsw,;, wy; andw,; are determined so as to ensure that the
interpolation function values at the collection data p@k, Pr S,k) match the given
datafyy, fox andfsyk. This can be expressed by,

AWV,i = fv,i, AWpyi = fp,i, AWs,i = fS,i, i€ {1, 2, ey N}, (17)
where

o Wyi = (Wyik)y n Woi = (Wpik)y  y @ndwsi = (Wsike_y s

..........

o fyi= (WVIk)k 1 Nafpl (Wplk)k 1..N andfs; = (WS|k)k 1...N"

o Aisthe interpolation matrix of elememtg; = ¢(||(Vr.. Pri. Sk) = (Tr.1. Prs. S|,

e kle{l,2,...,N}, Nisthe number of data points.

..........

are then determlned by solvmg the I|near systdﬁ‘) (

.....

3.4. Summary of POD-RBF reduced order model



Algorithm 1: POD-RBF reduced order modelling

(1) Offline calculation: Construct the POD-RBF reduced order model

(a) POD bases

i. Generate the snapshots at time lavel 1, ..., N; by solving the full
model @);

ii. Construct the POD basds,, @, and®s using the SVD method,;
(b) Construct a set of interpolation functions

i. Calculate the functional valuds; , fpik andfs;y at the data point
(Vv ko Prks ASf,k) through the solution from the full models, where
ke{1,2,...N};

ii. Find the weightswy;, wp; andws; by solving (L7) such that the
interpolation functions$,;, f,; andfs; pass through through the data
points;

(2) Online calculation: The RBF interpolation function inl6) denotes a
3M-dimensional hyper surface. Once a set of interpolatimcfionsf, j, fy; and
fsj are constructed, they are then used to estimatgtiROD coéﬁcientvﬂj, pﬂj
andS["j at time leveln.

Result Write here the result
Initialization v, p?; andSy; ;

forn=1to N do
for j=1to Mdo

() Inputs: a complete set of POD cfiieients for solution fields, p andS at time
stepn - 1:
-1 -1\T -1\T -1\T
AR (V?,j j=1,...M> p" = (p?,j j=1....M> S'= (S?,j j=1....M>

(i) Outputs: Estimate the POD cdigcientv!

rj» Prj andSy; at current time step
using the RBF interpolatiorlf);

A TCARN AR )
Py = vt Sh,
Sto= fsi(vitprh e,

endfor
Obtain the solution of variabled', p" andS" in (4) by projectingx/ﬂj, pﬂj
andS["j onto the full space (sef)).

VI=V+ o0V, p"=p+0ip), S'=S+0LS,

endfor




4. Numerical Examples

4.1. Introduction of an unstructured mesh multiphase fluidieh

The POD-RBF reduced order modelling method has been implesdeinder the
framework of an advanced 3D unstructured mesh multiphage rfiedel, the Impe-
rial College Finite Element Reservoir Simulator (IC-FERSA novel control volume
finite element method (CVFEM) is used to obtain the high-ofilxes on CV bound-
aries which are limited to yield bounded fiel@sd, positive saturations ). This method
is combined with a novel family of FE pairs, originally intteced for geophysical fluid
dynamics applications. In particular, tR2DG — P1DG element pair (quadratic dis-
continuous polynomial FE basis function for veloci®20DG) and linear discontinu-
ous polynomial FE basis function for pressuP&DG), is used to accurately represent
sharp saturation changes between heterogeneous doneais4,15].

4.2. General description of test cases

The waterflooding is a widely known technique in oil and gagreoir engineering.
Itincreases the production from oil reservoirs throughéting water into the reservoir.
As illustrated in figurel, the water is injected into the reservoir to increase theresr
pressure, the oil is then displaced toward the productidh Weis phenomenoniis also
referred to the immiscible displacement in porous media.

In this section, the capability of the POD-RBF ROM has beenalestrated in two
porous media flow problems: the two material layer test cagdlze low permeability
domain embedded in a high permeability domain case. Theseases are dimension-
less and for simplicity no gravity has been considered. lloades, the outlet boundary
has a dimensionless pressure of 0, the whole domain islipgaturated with the non-
wetting phase and the wetting phase at the irreducibleat&nr The wetting phase
is injected over the inlet boundary with a dimensionles®ei¢y of 1. The viscosity
ratio of the phases is 1. The Brooks-Corey model for the ivglgtermeability, with
an exponent of 2 and an end-point relative permeability aé Tonsidered for both
phases. The porosity is homogeneous and equal to 0.2. Thehitenfraction of the
wetting phase is set to 0.2 and 0.3 for the non-wetting phase.

4.3. Case 1: two material layer test case

The first case for numerical illustration of the method pregabin this paper is a
two material layer test case. This problem domain is comdist rectangle of non-
dimensional size ¥ 0.2. The domain is divided into two identical areas with anper
ability of 4 within the top half part and 1 on the bottom halfpa

The problem was resolved with a mesh of 984 nodes during thelation time
period [0 0.02]. Fifty snapshots were taken from the pre-computed ot regu-
larly spaced time intervalat = 0.0002 and from these POD bases are generated for
the solution variables, p, S.

The first 18 POD bases are presented in figurds shown in the figure, the first
four POD bases capture most of flow features while tRe 8" POD bases capture the
details of small scale flow structures. Fig@eshows the singular eigenvalues in order
of decreasing magnitude. In general, the more POD basesnapdisots are chosen,



the better the energy is represented. There is a trédeetween the accuracy and the
CPU time. In this work, 18 POD bases with 50 snapshots areech@sulting in 92%
of 'energy’ being captured.

Figure4 shows the saturation solutions of the two material layeblemm at time
instanceg = 0.01 andt = 0.02, as calculated using the full and non-intrusive POD-
RBF models. It can be seen that both model solutions are id ggeeement with each
other. The POD-RBF model performs well in capturing the isditon shock-front.

Figure5 shows the saturation solution at a particular position6937, 0.16246).
It is noted the results from the POD-RBF model using 6 and 1P P@ses become
oscillatory aftert = 10. By increasing the number of POD bases from 6 to 18, the
POD-RBF modelling becomes stable and exhibits an overall ggreement with the
full modelling.

The ability of the POD-RBF ROM is further highlighted in figa, which presents
the saturation solution along a line parallel to the x-axM#& can see the POD-RBF
model has a large error near the shock-front when using 6 P&s This can be
significantly improved as the number of POD bases increddsimg 18 POD bases,
the error of saturation solutions is decreased by 5@%% in comparison to that using
only 6 POD bases, and the shock-front is captured well.

To further validate the quality of the POD-RBF ROM, the cepending error es-
timation of the POD ROM was carried out in this work. The aecyrof POD-RBF
reduced order modelling was assessed. The correlatidfiaert of solutions between
the fulland POD-RBF models is computed for each time steghjsdefined for given
expected valueS?  andS" and standard deviatiora&?u” andogn,

COV(S?UII’ Sn) _ E(S?ull - O-S?un)(sn - O—Sn). (18)

n n
O-Sfull s O—Sfu\l osn

corr(St,, SN" =

whereE denotes mathematical expectatiooydenotes covariance,denotes standard
deviation. The measured error is given by the root mean saqranr (RMSE) which is
calculated for each time steyby,

N(Sh .. —SM?2
RMSE = \/Z"l( f?\':" L (19)

In this expressiors} , ; andS[' denote the full and POD-RBF model solutions at the
nodei, respectively, antl represents number of nodes on the full mesh.

The RMSE and correlation cfiecient of saturation solutions between the full and
POD-RBF models are presented in figateWith an increase in the number of POD
bases, the RMSE in the saturation results decreases byzWurhile the correlation
increases up to 98%.

10
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Figure 1: Waterflooding technique for oil production.
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Figure 2: Case 1: the figures displayed the first 18 the PODsHfasetions of the 2D two material layer
problem.
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Figure 4: Case 1: the figures displayed above show the satuiailutions of the two material layer prob-
lem at time instances.@1 and 002 (where 6, 12 and 18 POD bases are chosen with 50 snapshbts).
permeability on the top half part is 4, and the bottom half zat.
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Figure 6: Case 1: Saturation along lines parallel to the gsaxi
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4.4. Case 2: Low permeability domain embedded in a high paitity domain

The second case is comprised of a low permeability domairedadds in a higher
permeability domain. The domain has a non-dimensionalize).5. The low per-
meability is 0.001 and the high permeability is 1. The fulldebsimulation with a
mesh of 1386 nodes was run during the simulation period. 1§ with a time step size
of 0.0001. Fifty snapshots of solutions were taken at regulgrfced time intervals
At = 0.02 for each solution variable.

Figure8 shows the first 18 leading POD bases functions of saturafisishown in
the figure, these leading POD bases capture the dominargatbestics of solutions.
The POD bases corresponding to small eigenvalues, for dearhe 12" and 14"
POD bases, contain small scale flow features.

Evaluation of accuracy of the POD model was carried out thinocomparison
of POD solutions with those from the full model. The satwatsolutions at time
instances @5 and 01 obtained from the full and POD-RBF models are presented in
figure9. Again, good agreement is observed between the two modetsPDD-RBF
model is able to capture the complex flow patterns aroundltiekbBoth the full and
POD-RBF models provide almost identical details of localvBo For example, the
separated flow forms downstream of the block.

To further demonstrate the ability of the POD-RBF model,ghturation solution
atlocation (0685150.43611) is presented in figuld. It can be seen that the accuracy
of solution can be improved by increasing the number of POfebdunctions to 18.
This is also be shown in figutil, which illustrates the saturation along lines parallel to
the x axies. Again the POD-RBF model performs very well intadpg the saturation
shock-front when 18 POD bases are used.

To further assess the accuracy of the POD-RBF model, théuabsaror in satura-
tion solutions at time instances 0.05 and 0.1 is plotted uwr&d2. It is shown that the
error in the POD-RBF solution relative to the high fidelityl finodel decreases as the
number of POD bases is increased.
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Figure 8: Case 2: the figures displayed above shows the p&iDD bases functions of saturation. They
are the &, 20 3d 4th gh 1¢h 120 and 18" POD bases functions respectively.
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Figure 9: Case 2: the figures displayed above show the satusailutions of the low permeability domain
embedded in a higher permeability domain problem at time@ites M5 and O1. The solutions compare
the predictions from the non-intrusive POD-RBF model witfl model using 6, 12 and 18 POD bases
functions. The low permeability is 0.001 and the high perilep is 1.
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Figure 10: Case 2: the graph shows the solution saturati@digied by the full model and the POD-RBF
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Figure 11: Case 2: Saturation along lines parallel to thelesax

18



phase::PhaseVolumeFraction
ODZ (] Fé (].08
" = v b

phaselPhaseVolumefracion
002 ... 0.4 006 008

(a) error comparlson (6 POD basets): 0.05

phase 1:PhaseVolumeFraction

002 004 L 006 008
(c) error comparison (12 POD bases); 0.05

Yy
2

v

phuse'l :PhaseVolumefraction
0.02 F 006 008
U . SIS -.c RS SRS s SR .

i

(e)error companson (18 POD bases), 0.05

i

(b) error comparlson (6 POD bases} 0.1

phase1:PhaseVolumeFraction
0.02 0.04 0.06 0.08
_0.04 0.06

(d) error comparison (12 POD basets): 0.1

phase 1:PhaseVolumeFraction
0.02 0.04 006 008

(f) error comparison (18 POD bases); 0.1
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0.05 and 0.1 seconds using 6, 12 and 18 POD basis.
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4.5. Hficiency of the POD-RBF model

Table2 shows a comparison of the online CPU time required for rumtiie full
model and non-intrusive POD-RBF ROM. The simulations wenégrmed on 12 cores
machine of an Intel(R) Xeon(R) X5680 processor with 3.3GHa 48GB RAM. The
test cases were run in serial, which means only one core veaswisen simulating.
Note that the @iline CPU time required for constructing the POD bases andhtiee-i
polation functionfy;, fpix andfs;k (see algorithm 1) is not listed here. The online
CPU time for running the POD-RBF model includes:

e interpolation for calculating the POD cteientsvy ;, p’; andSP,j (see equation

r)’ J
(19));
e projecting the/”

rj» Prj andSt; onto the full space (see equatiof))

It can be seen that the online CPU time required for runnieg?®D-RBF model
is considerably less than that for the full model and is redilzy a factor of 2500. Itis
worth noting that as the number of nodes increases the CR&Jréguired for the full
model increases rapidly while the CPU time for the POD-RBHRet@imost remains
the same.

Table 2: Comparison of the online CPU time (dimensionlesgired for running the full model and POD-
RBF ROMs during one time step.

Cases| Model assembling and projection | interpolation| total
solving
Full model 0.81605 0 0 0.81605
Case 1| POD-RBF 0 0.0003 0.0001 0.00040
Full model 1.15607 0 0 1.15607
Case 2| POD-RBF 0 0.0003 0.0001 0.00040

5. Conclusion

A non-intrusive POD reduced order model has been, for thetiine, applied to
porous media flows and developed for an advanced 3D unstegctiesh multiphase
fluid model, the Imperial College Finite Element Reservamdator (IC-FERST),
which has the capabilities of using (1) anisotropic undtreexd meshes to resolve fine
scale flow feature; and (2) a novel control volume finite eletmeethod to resolve the
high-order flux flows on CV boundaries. A RBF interpolationthoal is used to form
a multi-dimensional interpolation function (hyper sudathat represents the solution
of the multiphase porous media equations within the redapade. The non-intrusive
approach used here to construct the POD-RBF model is gegredicloes not require
any information of the original source code or the model &igua. It can be applied
to any software or commercial codes. In addition, it avolasinstability of existing
Galerkin POD ROMs, the results might be smoothed by RBF. |

The capabilities of the newly developed POD-RBF multiphas®us media model
are illustrated in two typical test cases in reservoir eagiing. A comparison between
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the full and POD-EBF model results are made. An error anglkysis also carried out
for the validation and accuracy assessment of the POD-RBfemti is shown that the
POD-RBF model exhibits an overall good agreement with tigé Fidelity full model.
An increase in the number of POD bases leads to an improveémém accuracy of
the POD-RBF model. The saturation shock-front can be cagtwith relatively few
POD basis functions, 18 POD basis function(figure (h)dh the examples.

In comparison to the full model, without compromising thew@acy of results the
CPU time required for the POD-RBF model can be reduced bytarfa 2500. It is
worth of mentioning that for large scale porous media flowdation, an increase in
the number of nodes used in the computational domain willlt@sa large increase of
the CPU time in the full simulation, but has very littléect on that of the POD-RBF
model. Future work will investigate thefects of applying this new approach to more
complex porous media flows.
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