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Abstract

A non-intrusive model reduction computational method gsigpersurfaces represen-
tation has been developed for reservoir simulation andhéurapplied to 3D fluvial
channel problems in this work. This is achieved by a cominatf a radial basis
function (RBF) multi-dimensional interpolation methoddgaroper orthogonal decom-
position (POD). The advantage of the method is that it is geaead non-intrusive, that
is, it does not require modifications to the original commexrce code, for example,
a 3D unstructured mesh control volume finite element (CVFEdErvoir model used
here.

The capability of this non-intrusive reduced order moddlRBGM) based on hy-
persurfaces representation has been numerically ilbgstrim a horizontally layered
porous media case, and then further applied to a 3D complealichannel case. By
comparing the results of the NIROM against the solutionsioled from the high fi-
delity full model, it is shown that this NIROM results in adgr reduction in the CPU
computation cost while much of the details are captured.
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1. Introduction

The simulations of reservoir are very important and havedewange of applica-
tions, from ground-water production to radioactive wastad the extraction of oil and
gas from the subsurface. 3D reservoir modelling provideserdetails for multiphase
flows in porous media. However, the computational cost of &&rvoir simulations
is intensive. The non-intrusive reduced order modellirdnitéque presented here is
capable of resolving 3D reservoir modelling problems whileiding the high compu-
tational cost.
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The reduced order modelling technique has been shown to beverful capabil-
ity of representing the large dynamical systems using orfsmanumber of reduced
order basis functions. Among the model reduction methddsPOD approach is the
most widely used. This method extracts the most energetiis pathe system through
snapshots method, and then constructs optimal basis éumsctlfhe POD method and
its variants have been successfully applied to numerowsress fields. In geophys-
ical fluid dynamics it is referred to as empirical orthogohaictions (EOF) {], in
signal analysis and pattern recognition it is termed as #@eh-Love method? and
in statistics it is called the principal component analyBi€A) method 8]. The POD
technique has also been applied to ocean mo#ldisp, 7, 8], air pollution modeling
[9], data assimilation]0, 11, 12, 13, 14] and mesh optimizationl[].

POD in combination with the Galerkin projection method isfiective method for
deriving a reduced order model (ROM). By projecting the 3Dalyical system onto
a reduced space which is constructed based on the optinialfbhastions, the com-
putational diciency can be enhanced by several orders of magnitude. Huowtéis
method stfers from numerical instabilityl[g]. Various methods have been proposed
to overcome or improving the stability issue of the PGRlerkin projection method,
including non-linear PetrevGalerkin [5, 17], regularisation 18], subgrid-scale mod-
elling, calibration L9, 20] and Fourier expansior2[l]. Another issue that arises in the
ROMs is the éicient treatment of non-linear terms in the partidfefiential equations
(PDEs). A number of fcient non-linear treatment methods have been presented, fo
example, the empirical interpolation method (EIRB] and its discrete version discrete
empirical interpolation method (DEIMRR], residual DEIM ], Petrovw-Galerkin pro-
jection method 19], Gauss-Newton with approximated tensors (GNAT) meth@d][
and the quadratic expansion meth@8,[26]. However, these methods are still depen-
dent on the governing equations of the full physical systeimmost cases the source
code describing the full physical system has to be modifiedder to form the reduced
order model.

To circumvent these shortcomings, more recently, nonusiie methods have been
introduced into ROMs, which do not require the knowledgéefgoverning equations
and the original source cod27]. Chenet al. proposed a non-intrusive model reduction
method based on black-box stencil interpolation methodnaachine learning method
[27]. Waltonet alproposed a non-intrusive reduced order technique for adgtguid
flow using RBF interpolation and POR2§]. Audouzeet alproposed a non-intrusive
reduced order modelling approach for nonlinear parameztrtime-dependent PDEs
based on a two-level POD method. This method is verified atidatad using Burg-
ers equation and convectionfitision-reaction problemg9, 30]. Xiao et alpresented
three non-intrusive reduced order methods for Navier-&t@cquations using hypersur-
faces representation. The hypersurfaces are establig®@db and RBF interpolation,
Smolyak sparse grid and Taylor series expansion metBih@p]. In addition, the hy-
persurface method based on NIROM has been successfulliedpplfluid-structure
interaction problems33].

Recently, reduced order methodsy POD, PODDEIM, trajectory piecewise lin-
earisation and bilinear approximation techniques) haem lapplied to reservoir mod-
elling [34, 35, 36, 37, 38, 39, 40, 41]. Heijn et al. [34] and Cardoset al. [35, 36]
first developed POD reduced order models for reservoir gitimnl. Chaturantabut



al. [37], Yanget al. [38] and Yoonet al. [39] further introduced DEIM into model
reduction for non-linear flows3[7]. Again, these reduced order methods are intrusive
and equationfsodes dependent. There are very few studies in non-ingusluced
order modelling in porous media flows and 3D fluvial channebgms. Klie first pro-
posed a non-intrusive model reduction approach based aee:byer neural network
combined with POD and DEIM to predict the production of oildagas reservoirs
[41], where the RBF neural network is used for developing legyriunctions from
input-output relationships. In this work, we used RBF asrdaarpolation method for
constructing the time-dependent POD ROM.

In this work we extend the hypersurfaces based NIRGY {o 3D reservoir mod-
elling, and applied to a fluvial channel problem. The noveltyhis work lies in the
hypersurfaces representation of 3D reservoir modelling oeduced space under the
framework of the Imperial College Finite Element Resen&imulator (IC-FERST).
In this approach, solutions to the full fidelity 3D reservoiodel are recorded using
the snapshot methods, and from these snapshots POD basgmarated that opti-
mally represent the 3D reservoir simulation. The RBF iméafion method is then
used to form a set of hypersurfaces (interpolation funslidimat approximate the time-
dependent ROM. After obtaining hypersurfaces, the salutbROM at the current
time level can be calculated by inputting POD ffagents of earlier time levels into
the hypersurfaces. The capabilities of results from the NRROM have been as-
sessed by two 3D reservoir simulation test cases.

The structure of the paper is as follows: sectigresents the governing equations
of the 3D reservoir model; secti@presents the reduced order modelling method using
hypersurfaces representation; sectoiflustrates the methodology derived by means
of two numerical examples. The illustration consists of t@st problems where a
horizontally layered porous media test case and a 3D fluki@hoel case are resolved.
Finally in sectionb, the conclusion is presented.

2. Governing equations of 3D reservoir modelling

The governing equations used in the underlying 3D resemoidel are given in
this section. The darcy’s law for immiscible multiphase flimaporous media has the
form: %

Oo = =K (VPy — Sua), (1)
whereq, is thea™ phase Darcy velocity. Thé, is the relative permeability of the
o' phase, and it is a function that is denoted/y (S,) corresponding to the phase
saturation variabl&,. p, is the pressure of theé" phase, which may include capillary
pressureK is the absolute permeability tensor of the porous mediugrands,, are
the phase dynamic viscosity and source term respectiveighamay include gravity.

A saturation-weighted Darcy velocity is introduced int@ thquation 1) and de-
fined as q

V(Y = S_a’ (2)



then equation) can be rewritten as follows:
Uo =& Vo = =VPu +Sups & = HaSa (K, K) ™ 3)

whereu, denotes the force per unit volume, which is definedrag, and used as a
—a
prognostic variable in this approach. Therepresents the implicit linearisation of the
—

viscous frictional forces.
The saturation equation can be written as:

0S,
ot

¢ +V. (Vasa) = S:ty,w, (4)
where¢ denotes the porosity. Thigs time andsyy,, iS a source term of the" phase.
Finally, equation4) is bounded by the constraint:

N,
Sa =1, (5)
a=1

whereN, denotes the number of phases.

2.1. Discretisation of the governing equations

The Discretisation of the above equatiofis(5) at time leveln can be written in a
general form:

ANV =S, A=, AL =g 6)

wherev" = (v”,...,vg,..._,v’,llu)T, p" = (p’l‘,...,pg,..._,p’,LH)T ands = (sn,...,sg,...,ann)T.
Vv, ph and S} are velocity, pressure and saturation vectors of plhasendv) =
(Vats - s Van) s PY = (Pats s Pon)™s S = (Sots---» Sen)', @andA is the num-

ber of nodes.

3. Model reduction for 3D reservoir modelling

In this section, the process of deriving a non-intrusive RONROM) for 3D reser-
voir model is described.

3.1. Proper Orthogonal Decomposition (POD) formulation

POD is a technique used to find a set of optimal basis funcfrons the snapshots
of solutions obtained from the original model. The optim@l®basis functions are
then used to formulate a reduced dynamical system thatiosritee main features of
the flow. Due to the optimality of convergence in terms of kimenergy of the POD
basis functions, dominant components of a large dimenbkppaess can be captured
with only a small number of basesg, 10— 100.

In this work, we find a set of basis functions for each phageof the variables:
velocity v, pressure, and saturatiors,. At time leveln, those variables can be
expressed:

Vi =V, + @ V., ph=Pa+ (Dl,pp?ﬂ, S =S +P, T ae{l,2,...Ny} (7)
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whereV,, p, andS, are the mean of the ensemble of snapshots for the variables
vy, py andS) respectively®qy = (Poy1s-- . Pavm), Pop = (Papts- .. Popm),

Dys = (Pps1,- .., Pesm) are the POD bases fof, p andS) respectively, which are
extracted through truncated singular value decompostiotM is the number of POD
bases used in the POD modet.,, pr, andS., denote phase s POD codficients

of velocity, pressure and saturation respectiva{y, = (Vops sV os Viam) s

pr, = (pp’ml,...,p[‘,ayj_,...,pmM)T ands, = rwl,..._,S?M.,...,S{‘Ym,\,l)T.
Projecting equationg) onto the reduced space, yields:

(DZ,VAE,V(D%VVS = $’ (Dl pAg pra, Ppg = %’ (DZ,SAS,S(DOASSS = % (8)

The ROM forsolvmg the POD cdicientsv?, ;, pr, ; andS}, ; (wherej € {1,2,... M},
a€{1,2,...N,}) attime leveln can be written |n the general form:
1
V?,w,j (YVJ(Vrl prl’S]l"" ra’pra’sja’ rN’prN’SPNQ’)
n n-1 .n-1 -1
pr,a,j (YVJ(Vrl’prl’S?l"' rw’pra’S]a""’Vr,Nn’pr,Nu’ ,Nn’)’

Stes = fow (VT P ST Vg P ST Vi P STR): - (9)

subject to the initial condition

0

Vr,w,j = ((Vg,j - W)’ (Da,j), p?,(y,j = ((pg,] - m)’q)a,j)’ S?,(y,j = ((ng Sa/), (Da,j)’

(10)
where ¢} ,prl ,S?ll,- Al LS LR ,v”N prN , er ) denotes a complete
set of POD coficients for solutlon fields velocities pressurep and saturationsS of
all phases at time stap— 1 (n € {1,2,..., N}), N; is the number of time levels in the
computational simulation.

3.2. Hypersurfaces based on RBF interpolation

The RBF is an flicient method for interpolation problems. In this work, thBRR
interpolation method is used to construct a set of hypeases for reduced order 3D
reservoir model. The theory of RBF interpolation is briefyiewed in this section.
The RBF interpolation method constructs a approximatiocfion using the form of,

N
F00 = > wi (i - xill), (1)
i=1

where the interpolation function (hypersurfadéy) is represented as a linear com-
bination of N RBFs ). N denotes the number of RBFs. Each RBF is associated
with a different centex;, and weighted by a cdigcientw;. x denotes a data point

in multidimensional space and it consists of a complete 8&QD cosficients for
solution fields of all phases such as velocity and pressmteraion In this work
X = (Vi PR S VL PR STt L VG PR ST )- [IX = aill s @ scalar
distance defined by tHe, norm.



The weight co#ficientsw; are determined by ensuring that the interpolation func-
tion valuesf(x) will match the given data y exactly. This is achieved by eciftg
f(x) =y, which produces a linear equation

Bw=y, (12)
where
A (IXe —xall) @ (IIXe —Xall) -+ @ (IIX2 = Xnll2)
d(Ix2 —xall2) o (X2 — Xall) -+ @ (IIX2 — Xnll2)
B= : _ : : (13)
A (IXn —Xall2) @ (IXn = Xall2) -+ @ (IIXn = Xnll2)
W = [wy, W, ---,Wn]T,y = [y, Yo, ---,Yn]T (14)

The weight co#ficientsw; are then determined by solving the linear systé®) Aw =

y. How to define an appropriate RBF-is also important, a number of most well-
known choices for are listed in tablel, wherer > 0 is a radius and- > O is a
shape parameter. The standard RBFs have two major typesitéhffismooth RBFs

Table 1: some well-known RBFs

Type Name of functions Definition
Gaussian (GA) #(r) = e /o
Type | Multi-Quadratic o(r) = Vr2 + g2
Inverse Multi-Quadratid  ¢(r) = ﬁ
Inverse Quadratic o(r) = 7
Type Il Thin Plate Spline #(r) =rlogr

and Infinitely smooth (except at centres) RBF2 43)].

Type I: Infinitely smooth RBFs are infinitely fierentiable and dependent on the
shape parameter.

Type II': Infinitely smooth (except at centres) RBFs are independershape pa-
rameter and are notfiiérentiable infinitely.

The infinitely smooth RBFs ensure the matrices A in equat®non-singular and
symmetric B4]. The basis functions of Infinitely smooth (except at cesitiRBFs are
comparatively less accurate than that of Infinitely smod&[42].

3.3. Hypersurfaces representing the reduced system ofdhesrvoir model

In this section the procedure of forming a set of hypersaddaor 3D reservoir
model in a reduced space is described. This is achieved hg @Gaussian RBF in-
terpolation method to construct the ROM 8).( By applying the RBF method, a set
of hypersurfaceg" ., f" . and f;‘,syj for each POD cdﬁcientv{‘ya’j, Py, andsy

@V, a,p,j i ra,j



(je{l,2,...,MLae{l,2,---,N,}) may be approximately represented by the inter-
polation functions below:

N
-1 n-1 on-1
Vp,a,j = (YVJ(Vrl ’prl ’S?l Vg ’pra ’S]a/ byt ’VRNH’pENH’S‘,NH’) = ZWa,v,i,i * P(ri),
i=1

n

N
-1 -1 -1
pra] = GPJ(Vrl ’prl ’SPl >t ra ’pra ’S]a [ ’VP,N,I’ pp,N,l’ S],Nn’) = Zwaplj * ¢(ri)’

-1 -1 -1 1 -1 1
S:l,a,j: fa,S,](VRl ’p21 ’SP’]_ P VP(Y ’prw’ 3 yrrt L,V rN ’prNQ’SPN ,)_ZWGS|]*¢(r) (15)

where ¢(r;) is the RBF whose values depend on the distance from a dotteof
centre pointsi{’;*, p{",*, S{‘ll,- 0L pr gt 0BG SIN) (wherei €
1,2,....,Nanda € {1.2,.. N, }) and weighted bva,v,i, Wy pi andw(,s. In this work,
the Gau55|an RBF are chosen:

#(ri) = e*(fi/ff)2 — e*(||(VP’1»PP’1,$7’1)*(\7r.iﬁr.iS.i)H/@z (16)

wherev, denotes the POD cficients of velocity including all phases, angd =
(Ve " »Vras+ -+ »VrN,)- This apples to pressure vectpi~! and saturation vector
S-1. r; is a radius or the distance defined by thenorm,o > 0 is a shape pa-
rameter. ¢, Pr. S,i) denotes a center point. The weighting ffmsentsw,.v,, Wo. pi
andw, s; are determined so as to ensure that the interpolation fumetilues at the
collection data point\ k, prk, Srx) match the given daté, vk, f.px andf,sx. This
can be expressed by,

BWov,ij = fowijs  BWapij = fopijy BWesij =fasij 1€{1,2,...,N}, (17)

where

.....

e Bis the interpolation matrix of elemenBx; = ¢(rk),
e kle{l,2,...,N}, Nisthe number of data points.

The weighting cofficientsw, v j, We,p,j andw, s, ; are then determined by solving
the linear systemi(7).

3.4. Summary of constructing the NIROM for the 3D reservaidet

In this section, the algorithm of constructing the hypefiates and obtaining re-
sults using the NIROM is summarized, which includes tfi#ree process and online
process. Theftline process consists of obtaining the basis functions andtaecting
the hypersurfaces.



Algorithm 1: NIROM for 3D reservoir model

(1) Offline calculation:

(a) Obtaining the POD bases for 3D reservoir model

i. Generate the snapshots at time lavel 1, ..., N; by solving the 3D
reservoir modelg);

ii. Constructthe POD basds,, ®, and®s using the SVD method;
(b) Construct a set of hypersurfaces

i. Calculate the functional value; x, fyix andfs; at the data point
(Vrk» Pri St k) through the solution from the full models, where
ke{1,2,...N};

ii. Find the weightswy;, wp; andws; by solving (L7) such that the
hypersurfaceg,;, fp; andfs; pass through the data points;

(2) Online calculation: The hypersurfaces irlp) denotes a3M-dimensional hyper
surface. Once a set of interpolation functidps j, f,.p; andf, s are
constructed, they are then used to estimatgtheOD codficient of phased)
Vi jr Prej@ndSp ; attime leveln.

Initialization vy, p?; andSy; ;
forn=1to N do
for j=1to Mdo

fora=1to N, do

() Inputs: a complete set of POD cfiiients for solution fields, p andS at time
stepn - 1:
n-1 _ —-1\T n _ n-1\T _ n-1\T
Vi = (ai)izt Ma=1..N,» Pa = (Pla)ict Mo=1..N, So = (Stai)i=1. Ma=t..N,>

(i) Outputs: Estimate the POD ccbﬁcientv‘r“ﬂ’j, p{‘m andS"

ro.j @t currenttime step
n using the hypersurface$);

-1 -1 an-1
VP,w,j = fv,a,j(Vp ’pp ’51 )’
—1 -1 —1
Plaj = T PP S,
-1 -1 an-1
lai = TR,
endfor
endfor

Obtain the solution of variabled), p andS] in (4) by projectingv[‘,ayj, p[‘,ayj
andS" . onto the full space (se&)).

ra,)

n _ g T n n _ 71— T n _c T
Va =Vo t+ q)v,av pa =Po t (Dp,apr,a’ S?l - S‘Y + q)S,aS:,a’

ra2

endfor




4. Numerical Examples

4.1. Introduction of an unstructured mesh 3D reservoir nhode

The NIROM has been implemented under the framework of anramhh3D un-
structured mesh reservoir model (IC-FERST). A novel cdntotume finite element
method (CVFEM) is used to obtain the high-order fluxes on Curataries which are
limited to yield bounded fieldse(g, positive saturations ). This method is combined
with a novel family of FE pairs, originally introduced for gghysical fluid dynamics
applications. In particular, thB2DG — P1DG element pair (quadratic discontinuous
polynomial FE basis function for velocit?DG) and linear discontinuous polynomial
FE basis function for pressur@1DG), is used to accurately represent sharp saturation
changes between heterogeneous domains4éecéd.

The water-flooding is a widely known technique in oil and geservoir engineer-
ing. It increases the production from oil reservoirs thrligjecting water into the
reservoir. As illustrated in figurg, the water is injected into the reservoir to increase
the reservoir pressure, the oil is then displaced towargtbhduction well. This phe-
nomenon is also referred to the immiscible displacementoirogs media. In this
section, the capability of the NIROM developed for 3D unstmed mesh reservoir
modelling has been numerically illustrated in a horizdgtalyered porous media case,
and then further applied to a 3D complex fluvial channel case.

4.2. Case 1: horizontally layered porous media case

The first case for numerical illustration of the method pregabin this paper is a
horizontally layered porous media case. This test casanemsionless and for sim-
plicity no gravity has been considered. This problem donmgonsist of a rectangle
of non-dimensional size & 0.2. The domain is divided into two identical areas with
a permeability of 4 within the top half part and 1 on the bottoalf part. The outlet
boundary has a dimensionless pressure of 0, the whole ddmaiitially saturated
with the non-wetting phase and the wetting phase at theunibte saturation. The
wetting phase is injected over the inlet boundary with a disienless velocity of 1.
The viscosity ratio of the phases is 1. The Brooks-Corey rimd¢he relative perme-
ability, with an exponent of 2 and an end-point relative peaility of 1, is considered
for both phases. The porosity is homogeneous and equal.td Be&2immobile fraction
of the wetting phase is set to 0.2 and 0.3 for the non-wettirasp.

The problem was resolved with a mesh of 984 nodes during thelation time
period [Q0.02]. Fifty snapshots were taken from the pre-computed ot regu-
larly spaced time intervalat = 0.0002 and from these POD bases are generated for
the solution variables, p, S.

The first 18 POD bases are presented in figurds shown in the figure, the first
four POD bases capture most of flow features while tRe 8" POD bases capture the
details of small scale flow structures. Fig@eshows the singular eigenvalues in order
of decreasing magnitude. In general, the more POD basesnapdisots are chosen,
the better the energy is represented. There is a trédeetween the accuracy and the
CPU time. In this work, 18 POD bases with 50 snapshots areech@sulting in 92%
of 'energy’ being captured.



Figure4 shows the saturation solutions of the horizontally laygretbus media
problem at time instances= 0.01 andt = 0.02, as calculated using the full and
NIROMs. It can be seen that both model solutions are in goodemgent with each
other. The NIROM performs well in capturing the saturatibnck-front.

Figure5 shows the saturation solution at a particular position6937, 0.16246).
It is noted the results from the NIROM using 6 and 12 POD basesine oscillatory
aftert = 10. By increasing the number of POD bases from 6 to 18, the NMRO
becomes stable and exhibits an overall good agreementhveétfull modelling.

The ability of the NIROM s further highlighted in figur@ which presents the
saturation solution along a line parallel to the x-axis. Ve see the NIROM has a
large error near the shock-front when using 6 POD bases. CHnishe significantly
improved as the number of POD bases increases. Using 18 P&H3,kihe error of
saturation solutions is decreased by 58%7% in comparison to that using only 6
POD bases, and the shock-front is captured well.

To further validate the quality of the NIROM, the corresporderror estimation
of the POD ROM was carried out in this work. The accuracy of G8NRwas assessed.
The correlation coiicient of solutions between the full and NIROMs is computed fo
each time step, and is defined for given expected vaijgs and S" and standard
deviationSfJ-S?m| andogn,

coySh,,. SM _ E(Sfy — s, (S~ O'SH). (18)

O-S?ull Osn O—S?u\l osn

corr(S{,, S"" =

whereE denotes mathematical expectatiooydenotes covariance,denotes standard
deviation. The measured error is given by the root mean sggranr (RMSE) which is
calculated for each time steyby,

N.(Sh, . —SM2
RMSE‘:\/ = fT\';" ) . (19)

In this expressior&i’f‘u”,i andS!" denote the full and NIROM solutions at the node
respectively, andN represents number of nodes on the full mesh.

The RMSE and correlation cfiecient of saturation solutions between the full and
NIROMs are presented in figu®e With an increase in the number of POD bases, the
RMSE in the saturation results decreases by about 50% igledrrelation increases
up to 98%.

10



Water injection well @
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Figure 1: Water-flooding technique for oil production.

PODVolumefraction PODVo\umeﬂccﬂon
0.04

(b) The 2“‘ POD bases

POD\/o\ume'mchon

002 ., 006,

(c) The 3“ POD bases (d) The 4“ POD bases

PODVolumefraction

“0‘02”””_lw“”””o‘osH‘ 002 004 006
(e) The 8" POD bases (f) The 8" POD bases

O‘D2 P?Z\ﬁlmmon o ng o ‘ ion
(g) The 12" POD bases (h) The 18h POD bases

Figure 2: Case 1: the figures displayed the first 18 the PODsbiasetions of the horizontally layered
porous media problem.
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Figure 3: Case 1: the figure shows the singular eigenvaluesdar of decreasing magnitude.
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Figure 4: Case 1: the figures displayed above show the satusatlutions of the horizontally layered porous
media problem at time instance®0 and 002 (where 6, 12 and 18 POD bases are chosen with 50 snapshots).
The permeability on the top half part is 4, and the bottom pait is 1.
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Figure 5: Case 1: the graph shows the solution saturatiedigbed by the full model and the NIROM at a
position (0.026937, 0.16246) (where 6, 12 and 18 POD baseshasen with 50 snapshots)
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Figure 6: Case 1: Saturation along lines parallel to the g.axi
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Figure 7: Case 1: The graph shows the RMSE and correlatiofficieat of solutions between the full and
NIROMs.

14



4.3. Case 2: 3D fluvial channel case

The second case is a 3D fluvial channel case. There is a setohels in the
computational domain which is composed of 31776 nodes-gaesf8. The domain
is initially filled with immovable water and movable oil anldet saturations of oil and
water areSy; = 0.8 andSyater = 0.2 respectively. The water is then injected into
the computational domain from the right side at constansguee. The flow passes
through the channels from right side to the left side. Allestkides are treated as
barriers to flows except for the inlet side (right boundarthi@ computational domain)
with a pressure of 5% 10° and outlet side (left boundary) with a pressure of 20°.
The homogeneous porosity is set togeD.2 and the saturations of the residual oil and
irreducible water are set to be 0.2. The viscosities of tis&al oil and irreducible
water are set to be 0.004 and 0.001 respectively. The siionla@as run during the
simulation period [086400000] with a time step size of 864000. 100 snapshots of
solutions were taken at regularly spaced time intensals 864000 for each solution
variable.

FigurelOshows the first 36 leading POD bases functions of saturatieshown in
the figure, these leading POD bases capture the dominargathestics of solutions.
The POD bases corresponding to small eigenvalues, for dearte 3¢" and 34"
POD bases, contain small scale flow features. Fi§sieows the singular eigenvalues
in order of decreasing magnitude. As shown in the figure, teeGiPOD bases almost
captured all of the total energy (83%).

Evaluation of accuracy of the POD model was carried out thihatomparison of
POD solutions with those from the full model. Figuréshows the saturation solutions
obtained from the high fidelity full model and NIROM with 6 aBf POD bases at time
instances 43200000 and 69120000 seconds. It shows cleatihe results of NIROM
are close to that of high fidelity full model. The solutionssaturation at a particular
point (figurel2 (a)) in the computational domain are presented in figxelhe figure
again shows that the accuracy of solution can be improveddrgasing the number of
POD bases functions to 36 and the NIROM using 36 POD basegisad agreement
with the high fidelity full model.

The error of saturation solutions between the high fidelitirhodel and the NIROMs
with 6 and 36 POD bases are presented in fidixe
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(a) water channel profile (top to bottom) (b) water channel profile (bottom to top)

Figure 8: Case 2: the figures displayed above show the wateneh profile.
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Figure 9: Case 2: the figure shows the singular eigenvaluesier of decreasing magnitude.
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(a) The B POD bases

(e) The 30" POD bases (f) The 38" POD bases

Figure 10: Case 2: the figures displayed the first 36 the POBsbfsctions of the 3D fluvial channel
problem.

17



aturation turation

Lo ot 012 076 078 e o7 o7 g7e oge4 078 o7z o7 078 ofea  o7ss o792 816

(a) full model, t — 43200000 (b) full model, t = 69120000

Saturation Saturation

Lo o7 o072 076 078 o7, 078

(c) NIROM (6 POD bases),= 43200000 (d) NIROM (6 POD bases}, = 69120000
m—

A

L8772, 0776 078 078 o7 072 97%6

-

aturation turation
L0764 o7es o772 0776 | 078 0784 0788 0792 07 PPOTC o UL ORI DU PO e PO PG L
(e) NIROM (36 POD bases},= 43200000 () NIROM (36 POD bases},= 69120000

Figure 11: Case 2: the figures displayed above show the satuwaf full model and NIROM of the 3D
fluvial channel problem at time instances 43200000 and 8%28econds using 6 and 36 POD bases.
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Figure 12: Case 2: the figures displayed above show the valusaturation at a particular point in the
mesh-see figure(a).
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Figure 13: Case 2: the figures displayed above show the efremtoration between the full model and
NIROM of the 3D fluvial channel problem at time instances 48R and 69120000 seconds using 6 and
36 POD bases.
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4.4. Hjiciency of the NIROM

Table2 shows a comparison of the online CPU time required for rumtiie full
model and NIROM. The simulations were performed on 12 corashime of an In-
tel(R) Xeon(R) X5680 processor with 3.3GHz and 48GB RAM. Tést cases were
run in serial, which means only one core was used when singlafNote that the
offline CPU time required for constructing the POD bases andtieepiolation func-
tion fyik, fpix andfs;k (see algorithm 1) is not listed here. The online CPU time for
running the NIROM includes:

e interpolation for calculating the POD cfiieients AT pﬂj andSP,j (see equation
(19);
e projecting the/”

rj» Prj andSt; onto the full space (see equatiof))

It can be seen that the online CPU time required for runniegMtROM is consid-
erably less than that for the full model and is reduced by tofaaf 2500. It is worth
noting that as the number of nodes increases the CPU timé@edduar the full model
increases rapidly while the CPU time for the NIROM almost aéms the same.

Table 2: Comparison of the online CPU time (dimensionlessjuired for running the full model and
NIROMs during one time step.

Cases| Model assembling and projection | interpolation| total
solving
Full model 0.81605 0 0 0.81605
Case 1| NIROM 0 0.0003 0.0001 0.00040
Full model 98.3998 0 0 98.3998
Case 2| NIROM 0 0.0003 0.0001 0.00040

5. Conclusion

A NIROM based on hypersurfaces representation has redeedy developed for
IC-FERST which has the capabilities of using (1) anisottapistructured meshes to
resolve fine scale flow feature; and (2) a novel control voltinite element method to
resolve the high-order flux flows on CV boundaries. In thiskitbe NIROM has been
further applied to a fluvial channel problem.

A RBF interpolation method is used to form a multi-dimensibimterpolation
function (hyper surface) that represents the solution @f3Bb reservoir model within
the reduced space. The non-intrusive approach used heomstract the NIROM is
generic and does not require any information of the origsoairce code or the model
equations. It can be applied to any software or commercigsoln addition, it avoids
the instability of existing Galerkin POD ROM&§], the results might be smoothed by
RBF [47].

The capabilities of the newly developed NIROM are illustchin two test cases:
horizontally layered porous media case and a 3D fluvial cecese. A comparison
between the full and NIROM results are made. An error ansiysis also carried out
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for the validation and accuracy assessment of the NIROM .dhown that the NIROM
exhibits an overall good agreement with the high fidelity fabdel. An increase in
the number of POD bases leads to an improvement in the agcafdbe NIROM.
The saturation shock-front can be captured with relatif@lyPOD basis functions, 18
POD basis function (figure (h) @) in the examples.

In comparison to the full model, without compromising thew@acy of results the
CPU time required for the NIROM can be reduced by a factor @23t is worth of
mentioning that for 3D large scale reservoir simulationjramease in the number of
nodes used in the computational domain will result in a lémgeease of the CPU time
in the full simulation, but has very littlefiect on that of the NIROM. Future work will
investigate the ffects of applying this new approach to more complex 3D regervo
simulation cases.
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