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ABSTRACT: We test the efficiency of three minimization algorithms as applied
to models of peptides and proteins. These include: the limited memory quasi-

Ž . Ž .Newton L-BFGS of Liu and Nocedal; the truncated Newton TN with
Ž .automatic preconditioner of Nash; and the nonlinear conjugate gradients CG of

Shanno and Phua. The molecules are modeled by two energy functions, one is
Ž .the GROMOS87 united atoms force field defining the energy E , which takesGRO

into account the intramolecular interactions only; the second is defined by the
energy E s E q E , where E is an implicit solvation free every termtot GRO solv solv
based on the solvent-accessible surface area of the atoms. The molecules studied

Ž 1 2 3 4 5. Ž . ware cyclo- D-Pro ]Ala ]Ala ]Ala ]Ala 31 atoms , axinastatin 2 cyclo-
Ž 1 2 3 4 5 6 7. xAsn ]Pro ]Phe ]Val ]Leu ]Pro ]Val , 62 atoms , and the protein bovine

Ž .pancreatic trypsin inhibitor 58 residues, 568 atoms . With E , the performanceGRO
of TN with respect to the CPU time is found to be ;1.2 to 2 times better than
that of both L-BFGS and CG, whereas, with E , L-BFGS outperforms TN by atot
factor of 1.5 to 2.5, and CG by a larger factor. Still, the quality of the solution in
terms of the value of the minimized energy and the gradient norm, obtained
with TN, is always equivalent to, or better than, those obtained with L-BFGS
and CG. The performance is analyzed in terms of criteria outlined by Nash and
Nocedal. We find the distribution of the Hessian eigenvalues to be a reliable
predictor of efficiency. Q 1999 John Wiley & Sons, Inc. J Comput Chem 20:
354]364, 1999
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MINIMIZATION ALGORITHMS

Introduction

he interatomic interactions of a protein orT other biomolecules, such as a DNA segment,
are usually described by an empirical potential

Ž .energy function force field , which is structure-
dependent and typically leads to an energy surface
‘‘decorated’’ by a very large quantity of local min-
ima.1 Identifying the lowest energy minima, in
particular the global one, is the goal of protein
folding where the energy, rather than the free
energy, is accepted as an approximate criterion of
stability. A more rigorous criterion is minimum
harmonic free energy, F har, where F har around a
minimum is obtained from the harmonic entropy,
Shar.Shar is proportional to the determinant of the
Hessian, the matrix of second derivatives of the
energy with respect to the molecular coordi-
nates.2 ] 6 Calculation of the Hessian at a minimum
is also an essential part of normal-mode analysis.7

This short discussion already demonstrates the
importance of energy minimization in computa-
tional structural biology and the need for the de-
velopment of efficient minimization algorithms.
The common algorithms, such as conjugate gradi-
ents or Newton methods, are of a local character;
that is, they drive an initial molecular structure to
the closest energy minimum rather than to the
global one. However, in practice, this does not
limit their applicability because of the global opti-
mization procedures, including our LTD method
for cyclic molecules,8, 9 are based on a large num-

Žber of local energy minimizations see, e.g., refs.
.10]14 . Therefore, in attempts to optimize LTD,

we previously tested several minimization algo-
Žrithms and found the limited memory BFGS L-

.15 9BFGS to be the most efficient. The main objec-
tive of the present study is to compare the perfor-
mance of L-BFGS to that of the truncated Newton
Ž . 16 ] 19TN , which was not tested in ref. 9, as ap-
plied to peptide and protein models. Such a study
is necessary because the performance of minimiza-
tion algorithms is known to be problem-dependent
to a large extent.20

The experience gained thus far from treating
various problems, in particular large-scale uncon-
strained minimizations,21 ] 24 is that TN and L-BFGS
are powerful optimization methods that are more

Ž .efficient than other techniques see also refs. 25]27 .
Ž .TN tends to blend the rapid quadratic conver-

gence rate of the classical Newton method with

feasible storage and computational requirements.
The L-BFGS algorithm is simple to implement be-
cause it does not require knowledge of the sparsity
structure of the Hessian, or knowledge of the sepa-
rability of the objective function. Furthermore, the
amount of storage needed can be controlled by the
user. It has been found that, in general, TN per-
forms better than L-BFGS for functions that are
nearly quadratic, whereas, for highly nonlinear
functions, L-BFGS outperforms TN.28

These aspects and others are discussed in an
excellent review on minimization methods by
Schlick,29 who, together with Fogelson, also pro-
grammed their TN algorithm and included it in
the package TNPACK.18, 19 This package enables the
user to supply a sparse preconditioning matrix
that transfers the Hessian into a matrix with more
clustered eigenvalues, which in turn enhances con-
vergence. This implementation of TN differs from
that of Nash,17 which uses automatic precondition-
ing and has been applied to a variety of problems
with considerable success; the latter has the advan-
tage of easy portability, because the preconditioner
does not have to be tailored to the specific prob-
lems at hand. In her review, Schlick presented
systematic efficiency comparisons between several
algorithms applied to the molecule deoxycytine
Ž .87 variables and to clusters of water molecules.
For the former system, TN with preconditioning
was found to be the most efficient requiring ;2
times less CPU time than L-BFGS with precondi-
tioning, whereas, for the water clusters, the picture
is more complex.

Derreumaux et al.30 tested the efficiency of TN
as applied to peptides and proteins modeled by
the CHARMM force field31 using an updated version
of TNPACK. In this implementation, the precondi-

Žtioner is based on the short-range interactions i.e.,
the bond stretching and bending, and the torsional

.potentials . It is shown that for several mole-
cules of sizes n s 12 to 1299 atoms, TNPACK with
preconditioning outperforms the steepest de-
scent, nonlinear conjugate gradient, adapted basis
Newton]Raphson, and Newton]Raphson algo-
rithms installed in the CHARMM package.30 More
recently, Xie and Schlick showed that, for
molecules of sizes n s 22 to 2030 atoms, TNPACK

requires less CPU time than both CG and L-BFGS,
and reaches very low gradient norms.32

In the present work, we study the relative per-
formance of L-BFGS, TN, and, as a reference, also

Ž .of conjugate gradient CG as applied to two cyclic
peptides of 31 and 62 united atoms and to the

Ž .protein bovine pancreatic trypsin inhibitor BPTI
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of 568 united atoms. These molecules are de-
scribed by the GROMOS87 force field,33 rather than
by CHARMM; in addition, the two cyclic peptides
are modeled by the GROMOS energy together with
an implicit free energy solvation term derived pre-
viously for a peptide in DMSO.9 This term, which
is based on the solvent-accessible surface area of
the atoms, is expected to increase the nonlinearity
of the potential energy function and thus consti-
tutes an important test case that has not yet been
studied. We use the TN algorithm of Nash with an
automatic preconditioner, the L-BFGS algorithm of
Liu and Nocedal,15, 34 and the CG algorithm of
Shanno and Phua.35 The performance of the algo-
rithms is compared with respect to the CPU time,
the number of iterations, and the magnitude of the
final energy and gradient. The results are analyzed
in light of theories developed by Nash and
Nocedal28 and Axelsson and Lindskog,36, 37 which
rely on the eigenvalues and other quantities de-
rived from the Hessian. To the best of our knowl-
edge, this is the first study in which such an
analysis has been applied to optimization prob-
lems of biomacromolecules.

Theory and Methods

MOLECULAR MODEL

The intramolecular interactions are described by
the GROMOS 37D4 united atom force field,33 which
defines the molecular energy E . E consistsGRO GRO
of harmonic bond stretching and bending, tor-
sional, and improper torsional potentials, and non-
bonded 6-12 Lennard]Jones and electrostatic inter-
action terms:

N Nb u1 12 2w x w xE s K b yb q K u yuÝ ÝGRO b n 0 u n 0n n n n2 2ns1 ns1

Nj 1 2w xq K j y jÝ j n 0n n2ns1

Nf

w Ž .xq K 1 q cos m f y dÝ f n n nn
ns1

A B Ci j i j i j Ž .q y q 1Ý 12 6 rr r i ji j i ji , j ; jGiq4

b is the bond length, u , f , and j are then n n n
valence, dihedral, and improper dihedral angles,
respectively; the subscript 0 denotes equilibrium

values. N , N , N , and N are the number ofb u f j

bonds and valence, dihedral, and improper dihe-
dral angles in the molecule, respectively; K , K ,b un n

K , and K are the corresponding force con-f jn n

w xstants, m is an integer within the interval 1, 6 ,n

and d s 0 or p . A and B are Lennard]Jonesn i j i j

force constants for the atom pair i and j separated
by distance r . C is the corresponding electro-i j i j

static interaction constant, which is defined for
dielectric constant e s 1. In GROMOS 37D4, the
hydrogen atoms are treated as collapsed on their
first neighboring atoms except for hydrogens
bonded to a nitrogen, oxygen or a sulfur.

Solvent effects can be taken into account implic-
itly by adding to E a free energy solvationGRO
term E :sol

Ž .E s E q E s E q s A 2Ýtot GRO sol GRO i i
i

Ž .where A is the conformation-dependent solvent-i
Ž .accessible surface area SASA of atom i, and s isi

the corresponding atomic solvation parameter
Ž .ASP . As has been pointed out in the Introduc-
tion, we also test the performance of the minimiz-
ers as applied to the two peptides described by
E with the ASPs derived in our previous work9

tot
for a cyclic peptide in DMSO.

The SASA is defined as the surface traced by
the center of a spherical probe as it is rolled over
the surface of the molecule; for DMSO, the probe

˚radius is 3 A. This area is calculated analytically
with the program MSEED,38 which is based on a
modification of the analytical equations presented
by Connolly39 and Richmond.40 Use is made of the
global Gauss]Bonet formula that describes the
closed boundary of a regular region bounded by
simple, piecewise regular curves. The program
provides analytical derivatives of the SASA with
respect to the Cartesian coordinates, which are
required by the present minimizers. One problem
with E is the possible occurrence of discontinu-tot

ities in the gradient of A . This might stop thei

minimization process close to a local minimum,
when the contributions to the gradient from all the
components are small. In fact, gradient norms of

y3 ˚Ž .only up to ;10 kcalr mol A have been found
to be attainable with E . For more information ontot

this problem see ref. 38. Notice also that early
termination of the minimization process might be
a result of flatter minima expected to occur with
the inclusion of E .solv
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DESCRIPTION OF ALGORITHMS

In this work we test implementations of the CG,
L-BFGS, and TN optimization algorithms that are
well documented in the literature. Thus, we use
the nonlinear CG algorithm of Shanno and Phua35

included in CONMIN, and the L-BFGS version
VA1515, 34 in the Harwell library; the TN method is
that described by Nash.17 A brief description of the
major components of each algorithm is given in
what follows. For a molecule of n atoms, we use

Ž .the following notations: f s f x denotes the po-k k
w Ž .x wtential energy function E eq. 1 or E eq.GRO tot

Ž .x2 , where x is the 3n vector of the Cartesiank
Ž .coordinates at the k th iteration. g s g x s =fk k k

is the gradient vector of size 3n, and H s =2 f isk k
the 3n = 3n symmetric Hessian matrix of the sec-
ond partial derivatives of f with respect to the
coordinates. In all three algorithms, the new iterate
is calculated from:

Ž .x s x q a p 3kq1 k k k

where p is the descent direction vector, and a isk k
the step length. Iterations are terminated when:

5 5 < i < y6 Ž < <. Ž .g s max g - 10 1 q f 4`k i k k

where g i is the ith component of vector g ; wek k
made the necessary changes in the programs to
ensure that the three algorithms utilize this termi-
nation criterion. Also, the three algorithms use the
same line search, which is based on a cubic inter-
polation, and is subject to the so-called strong
Wolfe conditions41:

Ž . Ž . Tf x yf x q a p G yma p gk k k k k k k Ž .5
T TŽ . < <g x q a p p F h g pk k k k k k

where 0 - m - h - 1, and the superscript T de-
notes transpose.

Nonlinear conjugate gradient algorithm. CG uses
the analytic derivatives of f , defined by g . A stepk
along the current negative gradient vector is taken
in the first iteration; successive directions are con-
structed so that they form a set of mutually conju-
gate vectors with respect to the Hessian. At each

Ž .step, the new iterate is calculated from eq. 3 and
the search directions are expressed recursively as:

Ž .p s yg q b p 6k k k ky1

Calculation of b with the algorithm incorporatedk
in CONMIN was described by Shanno.42 Automatic
restarting is used to preserve a linear convergence

rate. For restart iterations, the search direction ak
s 1. On the other hand, for non-restart iterations:

a gTpk k k Ž .a s 7kq1 Tg pkq1 kq1

Limited memory BFGS algorithm. The L-BFGS
method is an adaptation of the BFGS method to
large problems, achieved by changing the Hessian

43, 44 Ž .update of the latter. Thus, in BFGS, eq. 3 is
˜used with an approximation, H , to the inversek

Hessian, which is updated by:

˜ T ˜ T Ž .H s V H V q r s s 8kq1 k k k k k k

where V s I y r y sT, s s x y x , y s gk k k k k kq1 k k kq1
Ž T .y g , r s 1r y s , and I is the identity matrix.k k k k

The search direction is given by:

˜ Ž .p s yH g 9kq1 kq1 kq1

˜In L-BFGS, instead of forming the matrices Hk
Žexplicitly which would require a large memory

.for a large problem one only stores the vectors sk
and y obtained in the last m iterations, whichk

˜define H implicitly; a cyclical procedure is usedk
to retain the latest vectors and discard the oldest

Ž .ones. Thus, after the first m iterations, eq. 8
becomes:

˜ T T ˜0Ž . Ž .H s V ??? V H V ??? Vkq1 k kym kq1 kym k

Ž T T . Tq r V ??? V s skym k kymq1 kym kym

Ž .= V ??? Vkymq1 k

Ž T T . Tq r V ??? V s skymq1 k kymq2 kymq1 kymq1

Ž .= V ??? Vkymq2 k
...

T Ž .q r s s 10k k k

˜0with the initial guess H , which is the sparsekq1
matrix:

yT skq1 kq10˜ Ž .H s I 11kq1 Ty ykq1 kq1

Many previous studies have shown that, typically,
3 F m F 7, where taking m ) 7 does not improve
the performance of L-BFGS.

Truncated Newton algorithm. In TN, a search di-
rection is computed by finding an approximate so-
lution to the Newton equations:

Ž .H p s yg 12k k k
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The use of an approximate search direction is
justified because an exact solution of the Newton
equation at a point far from the minimum is un-
necessary and computationally wasteful in the
framework of a basic descent method. Thus, for

w Ž .xeach outer iteration eq. 12 , there is an inner
iteration loop making use of the conjugate gradi-
ent method that computes this approximate direc-
tion, p .k

The conjugate gradient inner algorithm is pre-
conditioned by a scaled two-step limited memory
BFGS method with Powell’s restarting strategy
used to reset the preconditioner periodically. A
detailed description of the preconditioner may be
found in ref. 45. The Hessian vector product, H v,k
for a given v required by the inner conjugate
gradient algorithm is obtained by a finite differ-
ence approximation:

w Ž . Ž .x Ž .H v f g x q hv y g x rh 13k k k

A major issue is how to adequately choose h24 ;
' Ž 5 5.in this work, we use h s e 1 q x , where e isk

5 5the machine precision and ? denotes the Eu-
clidean norm. The inner algorithm is terminated
using the quadratic truncation test, which moni-
tors a sufficient decrease of the quadratic model
q s pT H p r2 q pTg :k k k k k k

Ž iy1 i . Ž .1 y q rq F c ri 14k k q

where i is the counter for the inner iteration and cq
is a constant, 0 - c F 1. The inner algorithm isq
also terminated if an imposed upper limit on the
number of inner iterations, M, is reached, or when
a loss of positive-definiteness is detected in the

Ž T y12 .Hessian i.e., when v H v - 10 . TN methodsk
can be extended to more general problems that are
not convex in much the same way as Newton’s

Ž .method see ref. 46 .

INITIAL TUNING OF ALGORITHMS

The initial tuning of the algorithms was ob-
tained from four randomly selected conformations

Žgenerated for problems 1 and 4 see Table I and
.the beginning of the next section by varying the

parameters over a wide range of permissible val-
ues. In most cases, E and E led to the sameGRO tot

Ž . y4optimal parameters. For eq. 5 , these are m s 10
for the three algorithms, h s 0.25 for L-BFGS, and
h s 0.9 for TN and CG; all of them are default
values.

TABLE I.
List of Test Problems.

a bProblem Molecule Function n

( )1 Cyclo D-Pro]Ala E 314 GRO
2 Axinastatin 2 E 62GRO
3 BPTI E 568GRO

( )4 Cyclo D-Pro]Ala E 314 tot
5 Axinastatin 2 E 62tot

aAlgorithms are tested with potential energy functions, EGRO
[ ( )] [ ( )]eq. 1 or E eq. 2 .to t
bNumber of atoms in each test problem.

L-BFGS was found to be most efficient with
w Ž .xm s 6 eq. 10 , except for BPTI, where the algo-

rithm failed unless m s 1 was used. For larger
values of m, the line search was found to fail in
early stages of the minimization process and
changing the parameters m and h did not remedy
the problem. This suggests that L-BFGS is intrinsi-
cally sensitive to instantaneous losses of positive
definiteness, whereas TN can accommodate them.
Typically such a failure is preceded by a sudden

5 5 5 5increase in the value of g r g . Thus, we havek 0
Ž5 5 5 5.plotted log g r g versus the number of innerk 0

iterations for m s 2 for 16 different minimizations
Ž .see next section . We found in all cases an in-
crease in the gradient ratio prior to the failure of

Ž .the line search data not shown . It should be
pointed out that, using CHARMM, Xie and Schlick
applied L-BFGS successfully to BPTI and the larger
protein lysozyme with m ) 1,32 which suggests
that the present failure of L-BFGS is related to the
GROMOS force field. Investigation of this point is
beyond the scope of the present study.

For TN, the default value, c s 0.5, is the bestq
w Ž .xfor the quadratic truncation test eq. 14 . For this

algorithm we also modified M, the upper limit of
the number of inner iterations, and found that
M G 25 led approximately to the same best perfor-
mance, which is, however, decreased by up to a
factor of 2 for M - 25; hence, the default value

w xM s max Nr2, 50 was used. In the finite differ-
w Ž .xence approximation of TN eq. 13 , we tested

' 5 5 Žseveral choices of h, such as h s e v , h s 2 1 q
' '5 5. 5 5 Ž 5 5. 5 5x e r v , and h s 2 1 q x e r v ; none ofk k

them led to better results than the adopted default,
' Ž 5 5.h s e 1 q x . All calculations were carried outk

in double precision on an SGI O workstation with2

an R10000 processor and 192 Mb of memory. The
machine precision is e s 10y15.

VOL. 20, NO. 3358
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Results and Discussion

NUMERICAL TESTS

Our test systems are listed in Table I together
with the corresponding numbers of atoms, n. The

Ž 1 2two cyclic peptides are cyclo- D-Pro ]Ala ]
3 4 5. Ž .Ala ]Ala ]Ala n s 31 and axinastatin 2, cyclo-

Ž 1 2 3 4 5 6 7. Ž .Asn ]Pro ]Phe ]Val ]Leu ]Pro ]Val n s 62
whose structures were investigated with nuclear
magnetic resonance by Kessler’s group.47, 48 The

Žx-ray atomic coordinates of BPTI 58 resides, n s
.568 were taken from the Brookhaven Protein Data

Ž . Ž 49 .Bank PDB entry 4pti ; the interior water
molecules were omitted in the present calcula-
tions. Usually, in large biological applications in-
clusion of all the nonbonded interactions is not
feasible. On the other hand, when cut-offs are
introduced, the minimization is known to be diffi-
cult and can lead to false minima due to function
discontinuities. In this study, all nonbonded inter-
actions are taken into account for the five prob-
lems studied; however, for BPTI we also tested 8-

˚and 15 A cutoff distances.
After optimizing the parameters, the algorithms

were applied to a variety of initial structures. For
each of problems 1, 2, 4, and 5 a total of 50
conformations were randomly generated; some of
them conformed with the geometrical require-

Žments of the molecule i.e., realistic bond lengths

.and angles, and no excluded volume violations ,
whereas the rest were highly distorted. For BPTI,
16 new conformations were generated in addition
to the PDB structure by selecting at random ;10%
of the dihedral angles of the molecule, and rotat-
ing them randomly within the range "108 around
their PDB structure values.

The general behavior of each algorithm was
found to be similar for most of the conformations.
However, to make the efficiency comparisons as
reliable as possible, for each problem in Table I we
selected only two initial structures for which the
minimized energy values, E , obtained by the threef

algorithms, were approximately the same. Even
when the E results differed significantly, the min-f

imized structures were verified to be very close;
that is, to have small rms deviations. For example,
in problem 5a of Table II, the difference between
E of TN and L-BFGS is ;2 kcalrmol, whereasf

˚the all-atom rms deviation is 0.9 A. Even in prob-
Ž . Ž .lem 3b, where E L-BFGS y E TN f 50 andf f

Ž . Ž .E CG y E TN f 80 kcalrmol, the rms devia-f f
˚tions are relatively small, 0.9 and 1.2 A, respec-

tively. Note that early termination of the mini-
mization process due to the failure of the line
search in problems 4a, 4b, 5a, and 5b occurred at a
tolerance of ;10y2 instead of the specified condi-

y6 w Ž .xtion 10 eq. 4 for all algorithms. This occurred
either due to the discontinuities in the gradient of
E or because of the flatter minima resulting fromsol

TABLE II.
Performance Comparison of L-BFGS, TN, and CG.

L-BFGS TN CG
a b c d e fP E E It f]g Time E It f]g Time E It f]g Time0 f f f

1a 31.49 9.60 1017 1053 1.36 9.60 76 1009 1.15 9.60 889 1789 2.11
1b 24.05 21.47 597 613 0.79 21.47 33 487 0.55 21.47 491 985 1.14
2a 25.73 y38.86 2688 2765 11.7 y38.86 137 2509 10.1 y38.86 2473 4979 19.9
2b y37.52 y43.49 1266 1298 5.58 y43.49 47 1043 4.18 y43.49 933 1874 7.51
3a y824.60 y4032.77 4824 5197 1617.7 y4035.46 125 3481 1100.7 y4032.77 3174 6114 2006.4
3b y2239.13 y4057.97 13152 14108 4430.6 y4106.45 241 6088 1888.9 y4024.90 3228 6546 2012.2
4a 69917.00 y40.68 290 301 5.12 y40.69 50 594 9.80 y40.18 239 502 9.69
4b y44.83 y45.12 72 110 1.92 y45.68 20 288 4.56 y45.09 76 158 8.47
5a y74.04 y80.31 186 211 8.41 y82.19 23 344 13.20 y81.59 244 498 29.68
5b y120.64 121.38 166 174 6.92 y121.38 17 356 13.81 y121.34 115 235 27.84

aProblem number corresponding to that listed in Table I; results for different initial structures are denoted by a or b.
b ( )The potential energy of the initial structure kcal / mol .
c ( )Final minimized energy kcal / mol .
dNumber of conjugate gradient iterations for CG, and number of Newton iterations for L-BFGS and TN.
eTotal number of function / gradient evaluations.
fCPU time in seconds.
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this potential; these issues were discussed in the
Molecular Model subsection. In problem 3b, the
PDB structure of BPTI was minimized.

Let us first discuss the results obtained with the
GROMOS energy, E . Table II shows that, forGRO
problems 1]3, TN is superior to both L-BFGS and

Ž .CG in terms of CPU time up to a factor of 2 , and
the number of functionrgradient evaluations. Note
that, for molecular models based on a force field
like the present one, calculation of the energy and
its gradient is time consuming and therefore the
number of functionrgradient evaluations is a cru-
cial factor for determining CPU time.

A close examination of Table II reveals that the
most reliable assessment of efficiency can be ob-
tained from problems 1a, 1b, 2a, and 2b, where the
same energy minima, E , are attained by the threef
algorithms. Here, TN is faster than L-BFGS by a
factor of ;1.2]1.4, and a factor of ;1.8]2.1 faster

Žthan CG. On the other hand, for BPTI without
.nonbonded energy cutoff , TN usually leads to

Ž .lower E values see problems 3a and 3b . In 3bf
Ž .the initial PDB structure , the minimum found by
TN is considerably lower than the two other min-
ima, which also differ significantly from each other.
This precludes drawing clear-cut conclusions about
the efficiency. In this respect, 3a is a better prob-

Ž .lem because E TN is only 2.7 kcalrmol lowerf
than E obtained by the other algorithms, and thef

˚rms deviations are 0.2 A. Here, TN is about 1.5
and 1.8 times faster than L-BFGS and CG, respec-
tively. As pointed out previously, we also mini-
mized the energy of BPTI using nonbonded cutoffs

˚of 8 and 15 A and different neighbor updates,
which are imposed every k steps, where 1 F k F
20. We have found that TN is faster than CG by an

Ž .average factor of 1.2 data not shown . On the
other hand, minimizations with L-BFGS based on
the 16 starting conformations, the above updates,
and m G 1 have failed. This indicates that han-
dling function discontinuities with L-BFGS is infe-
rior to that of TN and CG.

The relative efficiency of the three algorithms
w Ž .xchanges significantly for E eq. 2 , which in-tot

cludes the solvation energy, E . Thus, as demon-sol
strated by problems 4 and 5 in Table II, L-BFGS
becomes the best performer, and is 1.6]2.4 and
1.9]4.4 times faster than TN and CG, respectively.
However, because of the early termination of the
minimization process, the most reliable compari-
son would be with respect to problems 4a and 5b,
where the E values are the closest. In these cases,f
L-BFGS is almost twice as fast as TN. Problem 5b
is probably more suitable than 4a for judging the

(5 5 5 5.FIGURE 1. The variation log g r g with thek 0
number of iterations k for CG, L-BFGS, and inner

5 5 ( )iterations for TN; g is the norm of the gradient. ak
( )Problem 2a; b problem 4a.

performance of CG because the corresponding CG
minimized energies are 0.04 and 0.51 kcalrmol
above the respective true values. For 5b we find
that CG is four and two times slower than L-BFGS
and TN, respectively.

The quality of the minimized energy can also be
5 5measured by the value of the gradient norm, g ,

Ž5 5 5 5.at the final iteration. The values of log g r gk 0
Ž . Ž .for axinastatin 2 with E 2a and E 4a areGRO tot

displayed in Figure 1. A close examination of this
Ž5 5 5 5.figure shows that the final value of log g r gk 0
Žis slightly lower for TN than for L-BFGS y5.93 vs.

. Ž .y5.85 , which is in turn followed by CG y5.60 .
This is a general observation, characterizing our
large number of minimizations. The gap between
these values is even larger with E , as can betot

w Ž5 5 5 5.seen in Figure 1b log g r g s y5.99, y5.80,k 0
xand y5.32 for TN, L-BFGS, and CG, respectively .

Note that, in problem 4a, the minimized values
increase in the same order for the three algorithms.
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The relative efficiency of TN stems from the rela-
tively small number of outer iterations required to
reach the final solution. Therefore, any improve-
ment in the inner algorithm to reduce the number
of functionrgradient evaluations, while maintain-
ing a similar level of accuracy in the line search
would further enhance the performance of this
method. The other two algorithms tested here lack
this potential.24

COMPUTATIONAL BEHAVIOR
OF ALGORITHMS

Nash and Nocedal prescribe certain criteria that
are relevant to the convergence theory and compu-
tational behavior of algorithms.28 The first crite-
rion is the deviation from quadratic. One defines
the Taylor series approximation of the gradient,
DQ:

Ž .g y g y H x y x0 f f 0 f ` Ž .DQ s 15Ž .x y x0 f `

where x and x are the starting and final struc-0 f
tures, respectively; DQ provides a measure of the
size of the third derivatives.

Another criterion is the Hessian condition num-
ber, K s l rl , where l and l are the largestN 1 N 1
and smallest eigenvalues of the Hessian, respec-
tively. We calculate the condition numbers of the
Hessian at x and x and denote them by K and0 f 0
K , respectively. In general, CG algorithms aref

expected to converge faster as K ª 1. The conver-
gence also depends strongly on the eigenvalue

Žstructure i.e., number and density of eigenvalue
.clusters , which is known to affect the performance

of the inner conjugate gradient procedure of TN.50

An additional criterion used by Nash and
Nocedal28 is the function convexity. In our prob-
lems, the eigenvalues of the Hessian at x and x0 f
were calculated for each of the test problems and
were all found to be positive, which implies that
the Hessians are positive definite and the energy
functions are strictly convex at the initial structure
and near the solution. Hence, it is reasonable to
compute condition numbers at these points.

The characteristics of the test problems are pre-
sented in Table III. For BPTI the results are calcu-

Ž .lated only for the PDB structure problem 3b ,
because computing the Hessian explicitly without
using a cutoff on the nonbonded interactions is

Ž .time-consuming f4 days of CPU time . Note that
the calculation of DQ and K is based on the TNf
results, which are of the highest quality.

w Ž .xThe force field E eq. 1 consists of bothGRO
Žquadratic terms i.e., bond stretching and bending

.potentials of order n and highly nonlinear non-
Ž 2 .bonded terms their number is of order n . DQ,

which is equal to 0 for a quadratic function, is
expected to increase with increasing the molecular
size, due to the dominant number of the non-
bonded terms. The nonlinear implicit solvation free

Ž .energy E in eq. 2 is expected to increase DQ assol
well.

TABLE III.
Problem Characteristics.

ePercent Difference
a b c dP DQ K K Winner f]g Time0 f

7 71a 378 6.3 = 10 5.8 = 10 TN 4 18
9 81b 151 1.4 = 10 7.5 = 10 TN 26 44
8 72a 226 2.9 = 10 5.8 = 10 TN 10 16
7 72b 322 4.5 = 10 4.8 = 10 TN 24 33

3a TN 49 47
5 73b 8518 9.3 = 10 7.5 = 10 TN 8 7
8 84a 7460 3.1 = 10 2.1 = 10 L-BFGS 67 89
7 74b 148 2.2 = 10 4.8 = 10 L-BFGS 162 138
7 75a 316 7.5 = 10 5.2 = 10 L-BFGS 63 57
7 75b 876 5.2 = 10 9.7 = 10 L-BFGS 105 100

aProblem number corresponding to that listed in Table I; different initial structures are denoted by a or b.
b [ ( )]A measure of the deviation of a particular minimum from quadratic eq. 15 .
cCondition number of the initial structure.
dCondition number of the final minimized structure.
eA measure of the amount by which the winner algorithm is better than its closest follower in terms of function / gradient evaluations
( .f]g or CPU time.
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The DQ values fall within the range 102 to 105

for all our large number of test cases, where the
values of 3b and 4a are significantly higher than

Ž .the others. The high value of BPTI 3b probably
reflects its relatively large size. The large nonlin-
earity of 4a may be attributed to the large differ-
ence between the starting and minimized energies
ŽE s 69917.00 vs. E s y40.69 kcalrmol; see0 f

.Table I . However, we also find that 5b has a
Žsmaller energy difference than 5a 0.74 vs. 8.15

.kcalrmol , whereas the corresponding DQ values
are 876 and 317. Therefore, the large DQ value of
4a stems, perhaps, from a highly distorted initial
structure, which exposes a relatively large number
of atoms to the solvent, contributing thereby to the
nonlinearity through E .sol

Nevertheless, it is not possible to infer which
algorithm will perform better by simply compar-
ing the DQ values. Similarly, the condition num-
bers, K and K , which are in the range ;106 to0 f
109, do not indicate a particular preference toward
the winning algorithm and, unlike DQ, they do not
provide information on the nonlinearity. In gen-
eral, there is no obvious correlation between the
values of DQ, K , and K and the performance of0 f
the algorithms.

We also investigated differences between the
spectra of the eigenvalues l , to understand thei
behavior of the algorithms with E and E . WeGRO tot
examined the effect of minimization on the eigen-
value distribution using the spectrum representa-
tion of Axelsson and Lindskog.36 In Figure 2a, the

Ž .eigenvalues are displayed for x upper panel and0
Ž .x lower panel of problem 1a; in Figure 2b, simi-f

lar information is presented for problem 3b. The
figure shows that, in all cases, a small group of the
lowest eigenvalues is separated from the rest, and
the minimization increases their number and
sometimes shifts their location. In fact, in all cases,
there are exactly six isolated lowest eigenvalues in
the minimized structures.

Minimization with E affects the low-endtot
spectra differently. Typical spectra of axinastatin 2
for minimization with E and E are shown inGRO tot
Figure 3. The spectrum with E of the initialtot
structure is similar to those obtained with EGRO
Ž .top panels of Fig. 2a and b , and is therefore not
displayed. Figure 3 shows that there are only three

Ž .isolated eigenvalues with E problem 5b as op-tot
Ž .posed to the six obtained with E problem 2b .GRO

Also, the lowest eigenvalue of the continuous part
of the spectrum is smaller by a factor of ;10 for
E than for E ; this factor increases up to ;100tot GRO
in other test structures.

FIGURE 2. Log-scaled distribution of the Hessian
( )eigenvalues in the iteration upper panel and final

( ) ( ) ( )iteration lower panel of a problem 1a and b problem
3b.

FIGURE 3. Log-scaled distribution of the Hessian
(eigenvalues at the final iteration of problems 2b upper

) ( )panel and 5b lower panel .

The picture provided by Figures 2 and 3 ex-
plains the different behavior of the optimization
algorithms with the two potential energy func-
tions: The convergence rate of a conjugate gradient
algorithm is governed by an effective condition
number K 9 s l rl , where l is the number ofN lq1
small, isolated eigenvalues.37, 50 Therefore, CG and
also TN, which uses the conjugate gradient proce-
dure in its inner iterations, are both expected to
perform better with E than with E , becauseGRO tot

Ž . Ž . Ž . Ž .l E f l E , but l E ) l EN GRO N tot lq1 GRO lq1 tot
at the minimum point; the latter inequality can
range from one to two orders of magnitude, result-
ing in K 9 values that are systematically smaller
with E . On the other hand, the L-BFGS algo-GRO
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rithm seems to be largely unaffected by the eigen-
value distribution.

Notice, however, that this conclusion from Fig-
ure 3 is drawn from two minimizations that are
effectively based on different termination criteria
w Ž .xsee eq. 4 . Therefore, to put the comparison on
an equal footing, we also calculated from E theGRO
spectra of several minimized structures of axina-
statin 2 using a termination criterion of 10y2 ; this
number is close to the actual values observed with
E . The distribution of the eigenvalues has beentot

found to be unaffected by this relatively loose
termination criterion, which verifies the validity of
our analysis.

Finally, it should be pointed out that l valuesi

at E are proportional to v 2, where v values aref i i

the frequencies that would be obtained in a nor-
mal-mode analysis of the present molecular mod-
els, assuming atoms of equal mass. In an exact
solution, the six frequencies of translation and
rotation are zero and they correspond to the six
low eigenvalues of the present models, which are,
however, nonzero due to numerical approxima-
tions.

Conclusions

The relative performance of the minimization
algorithms, L-BFGS, TN, and CG has been investi-
gated as applied to two cyclic peptides and the
protein BPTI described by different potential en-
ergy functions. With the GROMOS force field EGRO

alone, TN was found to be the clear winner. Simi-
lar results were also obtained in a recent study by
Xie and Schlick using the CHARMM force field; for

Ž .example, for the protein lysozyme 2030 atoms , it
was found that TNPACK is three times faster than
L-BFGS and reaches lower gradient norms.32 On
the other hand, L-BFGS is known to be particularly
well-suited to handle highly nonlinear problems.28

The nonlinearity is expected to increase when a
solvation term, which depends on the solvent-
accessible surface area, is added to E . Indeed,GRO

with the corresponding total energy function, E ,tot

L-BFGS becomes the winner with respect to com-
puting time and the number of functionrgradient
calculations; however, notice that TN has provided

Žsolutions of slightly better quality i.e., with lower
.minimized energy and gradient values . Thus, in

these problems the user is faced with a choice of
accuracy versus convergence rate.

The performance of the various algorithms is
explained here in terms of parameters that depend
on the distribution of the eigenvalues of the Hes-
sian, in particular, the effective condition number,
K 9, which is the ratio between the largest eigen-
value and the smallest one after ignoring the small
isolated eigenvalues. K 9 is one to two orders of
magnitude larger for E , where L-BFGS performstot
the best. This, however, does not indicate an im-
provement in L-BFGS, but rather a deterioration in
the efficiency of the CG procedure, which is also
heavily used in TN.

The results obtained here are valid for the GRO-
MOS87 force field, although comparable observa-

Žtions can be expected from other force fields e.g.,
.CHARMM because of the similarity in the energy

w Ž .xterms eq. 1 . This expectation should be verified
in future studies by applying the minimizers to
molecules with extreme sizes.

Finally, it would be of interest to compare the
performance of the present version of TN to that
used in TNPACK, as applied to biomolecules de-
scribed by force fields with and without implicit
solvation terms. The TN procedure of Nash tested
here17 is convenient to use due to its automatic
preconditioner; on the other hand, TNPACK, from
Schlick and Fogelson,18 allows the user to optimize
the preconditioner for the specific problems. It will
be important to determine whether the gain in
efficiency potentially achievable with the latter al-
gorithm justifies the extra amount of work in-
volved.
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