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SUMMARY

The approach for designing an error measure to guide an adaptive meshing algorithm proposed in Power
et al. (Ocean Modell. 2006; 15:3–38) is extended to use a POD adjoint-based method, thus facilitating
efficient primal and adjoint integration in time. The aim is to obtain a new mesh that can adequately
resolve all the fields at all time levels, with optimal (w.r.t. the functional) efficiency. The goal-based
method solves both the primal and adjoint equations to form the overall error norms, in the form of a
metric tensor. The tetrahedral elements are then optimized so that they have unit size in Riemannian space
defined with respect to the metric tensor.

This is the first attempt to use POD to estimate an anisotropic error measure. The metric tensor field
can be used to direct anisotropic mesh adaptivity. The resulting mesh is optimized to efficiently represent
the solution fields over a given time period. The calculation of the error measures is carried out in
the reduced space. The POD approach facilitates efficient integration backwards in time and yields the
sensitivity analysis necessary for the goal-based error estimates. The accuracy of both the primal and
adjoint-reduced models is thus optimized (through the use of anisotropic mesh adaptivity). In addition, the
functional for optimizing meshes has been designed to be consistent with that for 4D Var data assimilation.
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1. INTRODUCTION

Simultaneous resolution of a wide range of spatial scales in ocean/atmospheric modelling and
diverse CFD problems is clearly desirable. It is often the case that flow in a region of interest is
influenced by flow elsewhere at a different scale. When modelling, this issue can be overcome by
increasing overall resolution or by separately modelling subregions. Although these approaches
can be successful they do incur computational expense. Unstructured and adaptive meshes can
potentially avoid these problems as they allow computational effort to resolve important ocean
dynamics at diverse scales. The key objective of using adaptive mesh methods is to reduce the
overall computational cost in achieving an error goal, thus ensuring that areas of fine resolution
are used only when and where they are required.

Mesh adaptivity requires the derivation of an appropriate error measure algorithm. This error
measure guides how the mesh is to be adapted. Previous approaches have included: methods
developed to measure error with respect to a given energy norm [1–3], interpolation-based methods
calculated as an a priori measure [4–7] of the error based on both the local mesh size and some
high-order derivative of the exact solution, and various types of explicit and implicit a priori error
measures [8, 9] as well as the implicit equation residual approaches [10–16] in which the same set
of equations is solved for the errors, with sources given by the residuals of the governing equations.

An alternate approach for adapting meshes uses an adjoint (or sensitivity)-based error indicator
[17–21]. The advantage of this approach is that the error in a functional can be directly related to
local residual errors of the primal solution through the adjoint variables. This allows to devise an
optimal adaptive mesh for maximizing the accuracy of the functional being chosen [21]. Venditti
and Darmofal [21–23] have proposed an anisotropic adaptive procedure for functional outputs of
compressible Navier–Stokes simulations for both the finite volume and finite element methods.
Balasubramanian [24] has compared the adaptive strategies by Venditti and Darmofal [21–23]
and Müller and Giles [25]. Park [26, 27] has further applied the adjoint-based adaptive approach
to 3D inviscid and turbulent flows. Formaggia and coworkers [28] have independently developed
output-based, anisotropic adaptive procedures for advection–diffusion–reaction and Stokes flows
within a finite element framework that also combine adjoint or duality arguments with anisotropic
interpolation error estimates.

Power et al. [29] has extended the practical utility of the adjoint-based error indicators for
adaptive meshes to transient ocean problems. In his work, the adjoint goal-based error indicators
have been used to adapt the mesh to optimize specific measures of the dynamics of fluid flow.
The goal-based error measure aims to construct a measure of what is deemed important in a
problem and design an error measure to optimize the accuracy of this quantity. A limit on the
required accuracy for this quantity (goal) can be set and a mesh is optimized to achieve this level
of accuracy with minimal computational resources. An adjoint (or sensitivity)-based error measure
is formulated that measures the error contribution of each solution variable to an overall goal. The
goal is typically embodied in an integral functional, for example, the solution in a small region
of the domain of interest. The resulting a posteriori error measures involve the solution of both
primal and adjoint problems. Mesh adaptivity is achieved with a series of optimization heuristics
of the landscape defined by the mesh quality. Mesh quality is gauged with respect to a metric
tensor embodying an a posteriori error measure, such that an ideal element has sides of unit length
when measured with respect to this metric tensor [29]. This results in meshes in which each finite
element node has approximately equal (subject to certain boundary conforming constraints and
the performance of the mesh optimization heuristics) error contribution to the functional.
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The use of a variable resolution unstructured mesh facilitates the faithful representation of
isolated local features and diverse scales. However, the adjoint-based error mesh adaptation involves
the solution to primal and adjoint problems. The solution of the adjoint system of equations for
realistic problems has proven to be a formidable task [30]. The approach is often hampered in
large-scale flow problems by the difficulty of the implementation of the adjoint model, the high
computational cost and large memory requirements. This motivates the development of low-order
models.

POD provides an efficient method for deriving low-order models of dynamical systems. This
technique essentially identifies the most energetic modes in a time-dependent system thus providing
a means of obtaining a low-dimensional description of the systems dynamics. To improve the
accuracy of reduced models, the goal-oriented approach has been used to optimize the POD bases
[31–35]. POD has been used successfully in a wide range of applications [32, 35–49].

The overall objective of this work is to develop an efficient error measure for optimizing meshes
that can ensure that areas of fine mesh resolution are used only where they are required over a given
time period. In this study, the reduced-order primal and adjoint models using POD are first applied
to the error indicator for optimizing meshes. The POD approach facilitates efficient integration
backwards in time and delivers the sensitivity analysis necessary for the goal-based error estimates
that can be used by mesh adaptivity. By using POD, the computer cost can be significantly reduced
while most of kinetic energy can be represented [46]. In addition, it is straightforward to implement
the POD-reduced consistent adjoint model. A barotropic wind-driven gyre problem is used to
demonstrate the capabilities of the approach developed here.

2. PROPER ORTHOGONAL DECOMPOSITION

The model variables � are sampled at defined time intervals (time steps in a discrete model) during
the simulation period [t1, . . . , tK ], also referred to as snapshots �=(�1, . . . ,�K )T (K being the
number of snapshots). The snapshots can be obtained either from a mathematical (numerical)
model of the phenomenon or from experiments/observations. The sampled values of variables at
the snapshot k are stored in a vector Uk with N entries (N being the number of nodes); here, �
can represent one of the independent variables u,v,w, p. The average of the ensemble of snapshots
is defined as:

�̄i = 1

K

K∑
k=1

�k,i , 1�i�N (1)

Taking the deviation from the mean forms

Vk,i =�k,i −�̄i , 1�i�N (2)

A collection of all Vk,i constructs a rectangular N by K matrix A. The goal of POD is to find a
set of orthogonal basis functions �=�1,�2, . . . ,�K such that it maximizes

1

K

K∑
k=1

N∑
i=1

(Vk,i�k) (3)
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subject to

K∑
k=1

�2
k =1 (4)

Singular value decomposition (SVD) is used to find the optimal base � of the optimization problem
in (3). From SVD, the matrix A∈ RN×K can be expressed as

A= X

(
� 0

0 0

)
Y T (5)

where K=diag(�1,�2, . . . ,�d)∈ Rd×d , X ∈ RN×N and Y ∈ RK×K are the matrices that consist of
the orthogonal vectors for AAT and ATA, respectively. The order N for matrix AAT is far larger
than the order K for matrix ATA. Therefore, a K ×K eigenvalue problem is solved

ATAyk =�k yk, 1�k�K (6)

The eigenvalues �k are real and positive and should be sorted in an descending order. The
POD basis vectors �k associated with the eigenvalues �k are orthogonal and expressed as
follows:

�k = Ayk/
√

�k (7)

The kth eigenvalue is a measure of the kinetic energy transferred within the kth basis mode. If the
POD spectrum (energy) decays fast enough, practically all the support of the invariant measure is
contained in a compact set. Roughly speaking, all the likely realizations in the ensemble can be
found in a relatively small set of bounded extent. By neglecting modes corresponding to the small
eigenvalues, the following formula is therefore defined to choose a low-dimensional basis of size
M (M�K ),

I (M)=
∑M

i=1 �i∑K
i=1 �i

(8)

subject to

M=argmin{I (M) : I (M)��} (9)

where 0���1 is the percentage of energy that is captured by the POD basis �1, . . . ,�m, . . . ,�M .

3. AN ADJOINT-BASED SENSITIVITY MEASURE

Power et al. [29] developed a goal-based method for defining an anisotropic error metric to guide
adaptive meshing. The error contribution to each of the nodal solution variables can be determined
and used to substantially improve the accuracy of the functional (a measure of the dynamics of the
system, for example vorticity). However, the error metric involves the primal and adjoint solutions
and therefore incurs high memory andcomputational costs. In Power’s work, the solutions of the
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primal and adjoint models were obtained with a single large time level (the size of a multiple of
time steps, equal to the pre-set time between adaptations of the mesh).

In this work, a further step has been made to introduce POD into the primal and adjoint models,
thus facilitating efficient integration forwards and backwards in time. This enables one to take into
account all nodal primal and adjoint variables at all time levels in the calculation of the metric
tensor.

Based on the work [29] two error measures are derived based on the reduced order forward and
adjoint solutions, leading to two alternate definitions for the metric tensor. In POD, any variable
� can be expressed as

�(t, x, y, z)= �̄+
M∑

m=1
�m,�(t)�m,�(x, y, z) (10)

where �̄ is the mean of the ensemble of snapshots for the variable �, �m,�(x, y, z) is the POD
base for �, �m,�(t) is the corresponding coefficient, 1�m�M and M is the number of the POD
bases.

In this section, the adaptive meshing algorithm developed by Power et al. [29] is first outlined.
The extension of the algorithm is described in Section 3.2. What distinguishes this work from
previous work is: (a) the use of the POD reduced-order modelling and (b) the incorporation of the
interpolation error from each time level.

3.1. A goal-based error measure

Suppose a differential equation to be solved is

L�exact−s=0 (11)

for source s, linear operator L (the extension to nonlinear operators is relatively straightforward
although it can involve considerable algebra) and the exact solution is �exact≡�exact(x, t). Taking
into account (10), this solution in the reduced space is approximated with a finite element scheme as

�≡�(x, t)=
N∑
j=1

N j (x)� j = �̄+
M∑

m=1
�m,�(t)

N∑
j=1

N j (x)�m,�, j (12)

with x=(x, y, z)T being the spatial coordinates, N j (x) is the finite element basis function associated
with node j , �≡(�1,�2, . . . ,�N)T is the discrete solution vector, �m,�, j is the value of the
POD bases for the variable � at node j and N is the number of nodes in the finite element mesh.

The aim is to make the equation residual R(�)≡L�−s small in some sense. By discretizing
(11), the residual vector is then obtained

r(�)=A�−S=0 (13)

for matrix A and discretized source S. In a practical implementation with inexact arithmetic and
possibly the use of iterative solution methods, r(�) may not be identically zero. It is assumed to
be insignificantly small in this work. This assumption may be relaxed by retaining r(�) in the
following equations.
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3.1.1. The functional. Suppose that the functional whose accuracy is to be optimized is represented
as �≡�(�), and

�(�)=
∫

�
f (�)d� (14)

where � is the solution domain. �(�) may be any derived quantity of the solution �. Applying
a first-order Taylor series expression, the gradient � f /�� near the exact solution �exact can be
obtained in discrete form: (

��
��

)T

(�exact−�)≈�(�̃exact)−�(�) (15)

in which �exact≡(�exact1,�exact2, . . . ,�exactN)T is a vector containing the exact solution at the
N finite element nodes (or control volume cells) and

�̃exact=
N∑
j=1

N j (x)�exact j (16)

That is, �̃exact is a finite element (or other numerical) interpolants of the exact solution �exact.

3.1.2. Discrete error measure. Suppose a nonsingular matrix Aexact exists such that

rexact(�̃exact)=Aexact�exact−S=0 (17)

where �exact is the exact solution at the nodes for a given discretized source vectors S. Now define
the adjoint solutions �∗ and �∗

exact in terms of the adjoint problems

AT�∗− ��
��

=0 (18)

and

AT
exact�

∗
exact−

��
��

=0 (19)

The adjoint solution in the reduced space is approximated with a finite element scheme as

�∗ ≡�∗(x, t)=
N∑
j=1

N j (x)�∗
j =

M∑
m=1

�∗
m,�(t)

N∑
j=1

N j (x)�m,�, j (20)

where �∗ ≡(�∗
1,�

∗
2, . . . ,�

∗
N)T is the discrete adjoint solution vector. The corresponding adjoint

coefficient �∗
m,�(t) can be obtained by resolving the adjoint model (18) in the reduced space [46].

Combining (15), (18) and (19), the error measure, in a discrete sense, can be obtained,

�(�̃exact)−�(�)≈(AT�∗
exact)

T(�exact−�) (21)
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3.2. Derivation of a metric tensor

In Section 3.1 the error measures were derived. In this section these error measures are modified
slightly by approximating the unknown quantities AT�∗

exact and r(�̃exact) with known quantities
̂AT�∗

exact and r̂(�̃exact), respectively. The error measures equation (21) then becomes

�(�̃exact)−�(�)≈( ̂AT�∗
exact)

T(�exact−�) (22)

The error measure in (22) requires a measure of the error in the primal solution. An alternate
error measure that involves a measure of the error in both the primal and adjoint solutions can be
expressed as

�(�̃exact)−�(�)≈
(

��
��

)T

(�exact−�)+ r̂(�̃exact)
T(�∗

exact−�∗) (23)

3.2.1. Defining a metric tensor. A error metric tensor to guide an adaptive meshing algorithm can
be defined as

M̄= �

|�| |H| (24)

Here H is the Hessian matrix, � the required level of error and � a scalar constant. The absolute
value of the symmetric Hessian matrix is defined as

|H|=V|K|VT (25)

where the matrices V and K contain the eigenvectors ei and eigenvalues �i of the Hessian matrix
H, respectively. Ideal elements then have sides of length unity when measured with respect to the
metric tensor. The discrete (nodal) form of �, from (22), is

�i = �̃�∑NT
n=1 |( ̂AT�∗

exact)
n
i |

(26)

Here n is the time index, NT is the number of time levels, ( ̂AT�∗
exact)

n
i is the i th entry of the

vector ( ̂AT�∗
exact)

n . Suppose �� is the acceptable error in �; then assuming the error contribution
to � is the same for each node, then define

�̃�= ��
N

(27)

3.2.2. Application to multiple field problems. For each solution variable l (here, a variable is one
of the various variables u,v,w, p at a single time step n or at any other time step, that is, both un

and un+1 can be considered separate variables) at each node i , it is possible to define two Hessians:
Hl,n

i associated with the primal solution �l,n
i and H∗l,n

i associated with the adjoint solution �∗l,n
i .

The Hessian matrices are defined as

Hl,n
i ≡(∇T∇�l,n)i , H∗l,n

i ≡(∇T∇�∗l,n)i (28)
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where �l,n and �∗l,n can be calculated by

�l,n ≡�l,n(x, t)=
N∑
j=1

N j (x)�
l,n
j = �̄

l
(x)+

Ml∑
m=1

�l,nm,�

N∑
j=1

N j�
l
m,�, j (29)

�∗l,n ≡�∗l,n(x, t)=
N∑
j=1

N j (x)�∗l,n
j =

Ml∑
m=1

�∗l,n
m,�

N∑
j=1

N j�
l
m,�, j (30)

where 1�m�Ml , �l,n
m,�, j is the POD bases for �l,n

j at node j , �l,nm,� and �∗l,n
m,� are the corresponding

coefficients obtained from the primal and adjoint-reduced order models, respectively, and Ml is
the number of the POD bases. To calculate the Hessians, the method presented in [50] is followed.
Galerkin projections are repeatedly applied to calculate the first derivatives [29].

If there are M solution variables per node, then an averaged Hessian H̄i associated with node
i can be defined as

H̄i = 1∑NT
n=1

∑M
l=1 |�l,ni |

NT∑
n=1

M∑
l=1

|�l,ni ||Hl,n
i | (31)

where

�l,ni =( ̂AT�∗
exact)

l,n
i (32)

( ̂AT�∗
exact)

l,n
i at node i can be approximately obtained by

|( ̂AT�∗
exact)

l,n
i |=

∣∣∣∣∣∣
(∑

j 	=i
AT
i, j�

∗
j +AT

i,i�̄
∗
i − ��

��

)l,n
∣∣∣∣∣∣ (33)

where �̄
∗
i is the average adjoint value of �∗ around node i . Absolute values of the Hessian

matrices |Hi,n
i | are as given by (25). This technique uses (22) as the basis for this average. Using

the error measure defined by (22), the metric tensor field can be found. An interpolation error �̄i
at node i can be defined as

�̄i = �̃�∑NT
n=1

∑M
l=1 |�l,ni | (34)

Then the nodal metric tensor M̄i is obtained from

M̄i = �

|�̄i | |H̄i | (35)

Using the adjoint error measure defined by (23), a second metric tensor can be obtained based on
the primal and adjoint solutions. To that end, suppose that

�∗l,n
i = r̂(�)

l,n
i (36)
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and the residual at node i can be approximately obtained by

|r̂ l,ni |=
∣∣∣∣∣∣
(∑

j 	=i
Ai, j� j +Ai,i�̄i −si

)l,n
∣∣∣∣∣∣ (37)

where �̄i is the average value of � around node i . It may be valuable to consider a modified adjoint
metric tensor constructed in a similar manner to that used in (31). Taking this into consideration,
a modified averaged adjoint Hessian, H̄∗

i say, can be defined as

H̄∗
i = 1∑NT

n=1
∑M

l=1 |�∗l,n
i |

NT∑
n=1

M∑
l=1

|�∗l,n
i ||H∗l,n

i | (38)

Consequently a modified adjoint-based interpolation error �̄∗i can be defined as:

�̄∗i = �̃�∑NT
n=1

∑M
l=1 |�∗l,n

i | (39)

So a modified adjoint-based metric tensor M̄∗
i for node i is obtained from

M̄∗
i = �

|�̄∗i |
|H̄∗

i | (40)

The matrix tensors M̄∗ and M̄ are designed to result in conservatively small element length scales.
Thus, the minimal ellipsoid that superscribes both ellipses is an appropriate metric for use with
mesh adaptivity (see Figure 1). Importantly this new metric retains the anisotropic information of
both the matrices M̄∗ and M̄.

¯̄MGs

i =Gs(M̄i ,M̄∗
i ) (41)

The operator Gs is used to superscribe the matrix tensors M̄∗
i and M̄i that are conservative

representation of the errors.

4. APPLICATION AND DISCUSSION

The POD adjoint-based error measure for mesh optimization has been tested in a 2D gyre flow.
The functional to represent the flow dynamics has been defined in terms of the misfit between the
POD velocity results and the observational data (case 1) and the vorticity (case 2). The comparison
between the results resolved with the original structured mesh and the optimal mesh (adapted to
optimize the accuracy of the functional) has been carried out. The root mean square error (RMSE)
between the POD velocity solution and the true one at the time level n is used to estimate the
error of the POD model:

RMSEn =
√∑N

i=1(�
n
i −�n

0,i )
2

N
(42)

where �n
i and �n

0,i are the POD solution and true one at node i , respectively,N is the total number
of nodes over the domain.
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194 F. FANG ET AL.

Figure 1. The metric tensors M̄i and M̄∗
i .

4.1. Description of an ocean gyre test case

The POD-reduced adjoint model is tested in a computational domain, 1000 km by 1000 km with
a depth of H =500m. The wind forcing on the free surface is given as

	y =	0 cos(
y/L), 	x =0.0 (43)

where 	x and 	y are the wind stresses on the free surface along the x and y directions, respectively,
and L=1000km. A maximum zonal wind stress of 	0=0.1Nm−1 is applied in the latitude (y)
direction. The Coriolis terms are taken into account with the beta-plane approximation ( f =�y),
where �=1.8×10−11 and the reference density �0=1000kgm−1.

The problem is nondimensionalized with the maximum Sverdrup balance velocity

�H�0v= �	

�y
�	0


L
⇒v�3.5×10−2ms−1 (44)

(and so the velocity scale U =3.5×10−2ms−1 is used here). Time is nondimensionalized with
T = L/U . Incorporating the beta-plane approximation gives a nondimensional �∗ = L2�/U =
514.286. The nondimensional wind stress (applied as a body force here averaged over the depth
of the domain) takes the same cosine of latitude profile with 	∗

0=	0L/(U 2�0H)=163.2653. The
Reynolds number is defined as Re=UL/
=250 (here the kinematic viscosity is 140m2 s−1). The
time step is 3.78×10−4, equivalent to 3 h. No-slip boundary conditions are applied to the lateral
boundaries. The spin-up period is 0.3024 (100 days). The simulation period is [100,200] days.
The initial structured mesh consists of 7442 nodes and 21600 elements (Figure 2(a)).
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A POD GOAL-ORIENTED ERROR MEASURE FOR MESH OPTIMIZATION 195

Figure 2. Meshes for the primal and adjoint models. Left panel: the original structured mesh; right panel:
the mesh adapted to minimize the misfit between the POD results and exact ones.

4.2. Numerical model

The method outlined in this paper is used in conjunction with the Imperial College Ocean Model
(ICOM) [51, 52]. The underlying model equations consist of the 3D incompressible Navier–Stokes
equations,

∇ ·u=0 (45)

�u
�t

+u·∇u+ f k×u+∇ p−∇ ·s−s=0 (46)

where u≡(u,v,w)T≡(u1,u2,u3)T is the velocity vector, x≡(x, y, z)T≡(x1, x2, x3)T are the
orthogonal Cartesian coordinates, p is the perturbation pressure (p := p/�0,�0 is the constant
reference density), f represents the Coriolis inertial force and s is a source term including the
wind stress on the free surface and k=(0,0,1)T. The stress tensor s is used to represent viscous
terms (details in [51]). It is a nonhydrostatic model. The pressure is split into the geostrophic
and ageostrophic parts, which are solved for separately. This allows the accurate representation of
hydrostatic/geostrophic balance.

The POD-reduced order primal and adjoint models have been developed for ICOM [53]. To
accurately represent the geostrophic balance, the POD bases for the geostrophic pressure are split
into two sets of POD bases associated with the velocity components u and v. The geostrophic
pressure has a quadratic finite element representation, while linear finite element representations
are used for the velocity components (details in [46]). The calculation of the error measures in (41)
(involving the solution of the reduced primal and adjoint models, see (31) and (38)) is carried out
in the reduced space, thus significantly reducing the computer cost. The residual in the continuous
equations (45) and (46) is ignored in this study.
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4.3. Optimized/adaptive meshes using the adjoint-based error measure

4.3.1. Case 1: Optimized mesh for inversion problems—the optimization of initial conditions. The
aim in this test case is to seek an optimal mesh for an inversion problem, the optimization of the
initial conditions. The functional for determining an error measure to guide to adapt the mesh is
defined in terms of the misfit between the POD velocity results and the observational data. The
functional f (�) in (14) is defined here:

f (�)=
NT∑
n=1

1

2
�n(�n−�n

o)
T(�n−�n

o) (47)

where �n
o =(uno,v

n
o ,w

n
o )

T and �n =(un,vn,wn)T are the pseudo-observational data (taken at time
levels to=112.5, 125, 137.5, 150, 162.5, 175 and 187.5 days) and the numerical solution from
the POD primal model, respectively, n denotes the time index, NT is the number of time levels
and �n is the weight that gives a value of 1 at the time level where the pseudo-observational
data are available, while 0 at other time levels. The estimated initial conditions are given by the
background flow (here, taken from the ‘true’ flow fields on day 107.5 in the experiments).

The mesh (containing 9914 nodes and 29175 elements) adapted to minimize the functional in
(14) (along with (47)) is shown in Figure 2(b). The optimal mesh is expected to resolve the fields
(u,v,w) (the intense boundary current and eddies) at all time levels, to an optimal (with respect to
the functional) level of accuracy. The snapshots are recalculated using the optimal mesh and then
the POD bases are updated. The POD primal model is driven by the estimated initial conditions
and rerun on the optimal mesh.

The results resolved from the POD reduced model using the initial structured mesh and optimal
mesh are compared with the true values that are obtained from the full model initialized by the
exact initial conditions (i.e. the solution from the full model on day 100). It is shown in Figure 3 that
although there is an error (a value of 2.5ms−1) in the estimated initial conditions, by introducing
the optimal mesh, the error in the POD results remains small (less than 1.5ms−1 after day 142).
Compared with that using the initial structured mesh, the RMSE between the true values and the
POD results with the use of the optimal mesh is reduced by half when t�150 days) while the
correlation of velocity results is increased from 75 to 90% (Figure 3). The absolute error between
the POD speed results and the true ones over the domain at time levels (t=100,150,175,200
days) is shown in Figures 4 and 5. The error between the POD speed results and the true ones
decreases by 10–50% in the larger part of flow after introducing the optimal mesh (Figure 5).
The velocity fields resolved from the POD model on the optimal mesh are drawn in Figure 6 and
exhibit an overall good agreement with the true values (left panel in Figure 6).

Although the calculation of the metric for optimizing the mesh requires additional computations,
these costs are offset by applying model-order reduction. Compared with the CPU time (about
30 h) required for running the full model, the CPU time for running the reduced model decreases
by a factor of 10 while about 99% of the energy is captured (where 35 POD bases are chosen with
41 snapshots).

Error estimation is a critical issue in reduced-order modelling [54–56]. Here the error estimation
for the POD models is carried out using an approach described in [42], where a spectral norm
‖Al‖2 is defined to estimate the spatial error between the full and reduced models. An error bound

for the POD model is given by
√

�(Ml+1) if M
l POD bases are chosen for the variable l, where

�(Ml+1) is (Ml +1)th eigenvalue of Al Al,T. The error of the POD velocity results is shown in
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Figure 3. Case 1: (a) RMSE of velocity results and (b) correlation coefficient between the true
velocity values and the POD velocity results with the use of the initial structured mesh (solid line)
and the mesh adapted to minimize the functional where the observational data are taken either on
days 112.5,125,137.5,150,162.5,175 and 187.5 (dashed line) or on days 125,150 and 175 (dotted
line). The simulation is driven by the estimated initial condition (the background flow, here, taken

from the ‘true’ flow fields on day 107.5).

Figure 4. Error in the speed from the POD primal model at the initial time level t=100 days over the

computational domain. The error is defined as
√

(u1i −u1o,i )
2+(v1i −v1o,i )

2 (ms−1), here u1i and v1i are the

estimated initial values at node i , and u1o,i and v1o,i are the exact initial values at node i .
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Figure 5. Error in the speed from the POD primal model driven by an estimated initial condition (the
background flow, here, taken from the ‘true’ flow fields on day 107.5) at time levels (t=150,175,200
days). Left panel: calculated on the initial structured mesh; right panel: calculated on the mesh adapted
to minimise the functional defined as the misfit between the POD results and the observational data. The
error is defined as the misfit between the POD solutions (uni and vni ) and the true values (uo,i and vo,i )

at node i , i.e.,
√

(uni −uno,i )
2+(vni −vno,i )

2 (m s−1), here, n is the time level: (a, b) t=100 days; (c, d)

t=175 days; and (e, f) t=200 days.
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Figure 6. Comparison between the true velocity values and the POD results (m s−1). Left panel: the
true velocity results obtained from the full model driven by the exact initial condition; right panel:
the velocity results from the POD model driven by the estimated initial condition (given by the
background flow, here, taken from the ‘true’ flow fields on day 107.5): (a, b) t=100 days; (c, d)

t=175 days; and (e, f) t=200 days.
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Figure 7. Error of the POD results in u and v (‖uexact−u‖2�
√

�Mu+1 and ‖vexact−v‖2�
√

�Mv+1). Left
panel: 81 snapshots; right panel: 41 snapshots.

Figure 8. Effect of the number of POD bases on the accuracy of the POD results in case 1 (the solid line: 40
POD bases and the dashed line: 35 POD bases with 41 snapshots): (a) RMSE and (b) correlation coefficient
between the true velocity values and the POD velocity results with the use of the mesh adapted to minimize
the functional where the observational data are taken either on days 112.5,125,137.5,150,162.5,175.

The simulation is driven by the estimated initial condition.

Figure 7. It can be seen that the accuracy of the POD model is improved by increasing the number
of the POD bases and snapshots. The error of the POD results decreases by 70% of its original
values if the first 25% of the leading POD bases are chosen. When a large number of POD bases
is taken (here 40 POD bases with either 41 or 81 snapshots), the error of the POD results remains
very small (here, less than 0.6ms−1). Therefore, the POD results are considered to be closer to
those from the high-fidelity models (here, almost 100% of energy can be captured when 40 POD
bases with 41 snapshots are chosen). The comparison of POD results is provided in Figure 8. It
can be seen that compared with that using 35 POD bases, the error in POD results (caused by the
estimated initial condition) is reduced by 10% during days 187–200 and 155–170 when 40 POD
bases are retained.
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Figure 9. Mesh adapted to optimize the accuracy of the vorticity functional (9858
nodes and 29 362 elements).

4.3.2. Case 2: Mesh adapted to optimize the accuracy of vorticity. In this case, the mesh is adapted
to maximize the accuracy of the vorticity of the flow dynamics. The functional in (14) is defined as

f (�)=
NT∑
n=1

1

2
(�n)2 (48)

where �n is vorticity for 2D flows �n =�vn/�x−�un/�y at time level n and NT is the number of
time levels.

The optimal mesh (containing 9858 nodes and 293 62 elements) is drawn in Figure 9. Areas
highlighted by both the Hessian of the primal/adjoint solution and the residual during the whole
simulation period can be seen to be receiving mesh refinement, while in other areas the mesh is
coarsened. Increased mesh resolution is concentrated around the western boundary and the area
where the eddies are highly active.

The POD primal model is rerun and driven by the exact initial conditions that are the solutions
from the full model on day 100. For comparison, the POD primal model is established and run
on both the initial structured mesh and the optimal mesh. The RMSE and correlation coefficient
between the POD velocity results and the true values at different time levels are provided in
Figure 10. The solid and dashed lines represent the solution with the use of the initial structured
mesh and the optimal mesh, respectively. It can be seen that with the use of the initial structured
mesh, as the simulated time accrues, the RMSE between the POD results and the true ones increases
up to 2ms−1 while the correlation of the velocity results decreases to 84%. By introducing the
optimal mesh, the accuracy of the POD results is improved (the RMSE of the velocity results is
less than 1ms−1 on day 200, while the correlation coefficient of the velocity results is increased
to 92%) during [155,200] days where the resolution of the optimal mesh can reflect the flow
dynamics of highly active eddies. The vorticity results on days 160 and 175 are shown in Figure 11
and exhibit an overall good agreement with exact ones.
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Figure 10. Case 2: (a) RMSE of velocity results and (b) correlation coefficient of velocity results between
the full and POD models. The solid line: with the use of the initial structured mesh; the dashed line: with
the use of the optimal mesh adapted to maximize the functional defined in (14) along with (48). The

simulation is driven by the exact initial condition.

5. CONCLUSION

An approach for designing an error measure to guide an adaptive meshing algorithm using a POD
adjoint-based or goal-based method is described here. This approach is implemented within the
ICOM), a 3D adaptive, nonhydrostatic finite element model. The method employs both primal
and adjoint computations to calculate a sensitivity, thereby highlighting locations of the domain
that warrant increased or decreased resolution. This is a first attempt to introduce POD into the
goal-based error measure for optimizing meshes. The calculation of the goal-based measures is
carried out on the reduced space. The reduced-order primal and adjoint models can be run with
negligible computational cost as long as a set of sub-matrices for the discretized primal and adjoint
models are constructed [46].

The capabilities of the approach, developed here, is demonstrated by a barotropic wind-driven
gyre problem. The approach is used to design the error indicators for optimizing the finite element
meshes to optimally represent a functional. In the applications presented, this functional is either
an integral over space and time of vorticity or the data misfit functional associated with the inverse
problem. The former is a representation of the dynamics of the system and the latter functional
helps to maximize the accuracy of the inverse problem. Both the velocity and vorticity results
from the POD reduced-order model exhibit an overall good agreement with those obtained from
the full model. It is also shown that the use of the optimal adaptive mesh leads to an improvement
in the correlation coefficient and the reduction in the RMSE between the POD velocity results and
the true values.

The POD goal-based error measure algorithm has demonstrated innovative advantages over
existing goal-based techniques in its ability: (1) to implement the consistent reduced-order adjoint
model from the reduced primal model easily, (2) to significantly reduce the computation cost (here
by a factor of 10 in the test cases) of forming the error indicators by carrying out the calculation
of the overall adjoint-based error measure (involving in the primal and adjoint solutions) in the
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Figure 11. Vorticity at time levels (t=160,175 days). Left panel: resolved from the full model; right
panel: resolved from the POD model with the use of the mesh adapted to minimize the functional defined

in (14): (a) t=160 days; (b) t=160 days; (c) t=175 days; and (d) t=175 days.

reduced space. Future work will involve optimizing the dual-weighted POD approach again using
goals and applications to 4D Var data assimilation.
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