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Abstract

The present paper has two aims. One is to survey briefly the state of the art of parameter
estimation in meteorology and oceanography in view of applications of 4-D variational data
assimilation techniques to inverse parameter estimation problems, which bear promise of serious
positive impact on improving model prediction. The other aim is to present crucial aspects of
identifiability and stability essential for validating results of optimal parameter estimation and
which have not been addressed so far in either the meteorological or the oceanographic literature.

As noted by Yeh (1986, Water Resour. Res. 22, 95—108) in the context of ground water flow
parameter estimation the inverse or parameter estimation problem is often ill-posed and beset by
instability and nonuniqueness, particularly if one seeks parameters distributed in space-time
domain. This approach will allow one to assess and rigorously validate results of parameter
estimation, i.e. do they indeed represent a real identification of physical model parameters or just
compensate model errors? A brief survey of other approaches for solving the problem of optimal
parameter estimation in meteorology and oceanography is finally presented. © 1997 Elsevier
Science B.V.

1. Introduction

While a sizable amount of research on adjoint parameter estimation was carried out in
the last 20 years in fields such as groundwater hydrology and petroleum reservoirs for
instance by Carrera and Neuman (1986a,b,c), Yeh (1986), Cushman-Roisin (1986),
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Seinfeld and Kravaris (1982), Sun and Yeh (1990a,b, 1992), matched by a major effort
of the mathematical community started early by seminar work of Richard Bellman and
collaborators (Bellman et al., 1965a,b) Chavent and Lemonnier (1974) and Chavent et
al. (1975), adjoint parameter estimation work in meteorology and oceanography is more
recent and consists of fewer contributions lacking the in-depth approach for validation of
the uniqueness of results taken in above mentioned research fields.

In this paper directed at the segment of the meteorological and oceanographic
community which focuses on data assimilation by 4-D VAR or estimation theory, we
aim to achieve two main goals:

The first is to present a brief review of the state of the art of parameter estimation in
the meteorological and oceanographic community.

The second goal is to illuminate without recourse to the use of heavy mathematics the
issue of ill-posedness of the problem of parameter estimation along with a description of
the problems of identifiability and uniqueness which may preclude the possibility of a
successful parameter estimation procedure. The rigorous mathematical background is
provided in Appendix A.

The paper plan is as follows. Section 2 as mentioned above provides a brief survey of
state of the art parameter estimation in meteorology and oceanography along with the
typical set-up for adjoint parameter estimation. Section 2.3 describes issues of identifia-
bility ill-posedness and regularization in a qualitative way and illustrates the issue with
examples. An effort is made to point out the importance of these concepts for the adjoint
parameter estimation procedure to be relevant and for the results to be uniquely
validated. Section 3 describes an alternative approach to adjoint parameter estimation
focusing on the maximum likelihood (ML) method. The use of total variation as a
regularization method for parameters with discontinuities is presented in Section 4.
Parameter estimation via the extended Kalman filter (EKF) is presented in Section 5.
The issue of the regularization procedure is also discussed. Sensitivity analysis as an
efficient tool in parameter estimation in meteorology and oceanography is discussed in
Section 6. Summary and conclusions are then presented in Section 7. Mathematical
results related to identifiability are presented in Appendix A for the sake of completion.

2. State of the art of adjoint parameter estimation in meteorology and oceanogra-
phy

2.1. Parameter estimation in meteorology

The research effort on adjoint parameter estimation in meteorology can be dated back
to the work of Courtier (1986, 1987) on estimating orography using a shallow-water
equations model.

An early detailed survey addressing also issues of adjoint parameter identification
was provided by Le Dimet and Navon (1988). Early monographs treating inverse
problems in geophysics are those of Menke (1984) and Tarantola (1987).

Zou et al. (1992) estimated the magnitude of the nudging coefficient in the NMC
adiabatic version of the spectral MRF model, while Wang (1993) and Wang et al. (1995)
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estimated the same coefficient using the FSU (Florida State University) adiabatic
spectral model. Stauffer and Bao (1993) performed a parameter estimation of nudging
coefficients in a 1-D linearized shallow water equations model.

Wergen (1992) used also a 1-D linearized shallow-water equations model to recover
both initial state and a set of forcing parameters from the observations. Wergen found
out that even with noisy observation the parameters were recovered to an acceptable
degree of accuracy.

Louis and Zivkovi¢ (1994) carried out physical parameters estimation in a simplified
single column model, and their effort presents a more comprehensive approach to
parameter estimation, making it amenable to generalization to problems of parameter
estimation involving 3-D numerical weather prediction models.

The research methodology used in adjoint parameter estimation in meteorology can
be viewed to be an extension of the 4-D VAR approach for controlling initial or initial
and boundary conditions.

Some authors determine which are the crucial physical package parameters to be
optimally identified based either on experience or using a relative adjoint sensitivity
analysis. Such an analysis enables one to rank a subset of chosen parameters according
to their relative sensitivities to adequately chosen model responses.

The usual procedure for assessing the impact of an optimized parameter requires
testing impact on the model for a sufficiently long period, thus ensuring that no
degradation of the forecast is caused by the optimally estimated parameter.

Since some parameters are known to vary between given bounds, the minimization of
the cost functional (to be described below) will by necessity be of the constrained
minimization type. Several efficient constrained minimization procedures are available
(for instance see Nash and Sofer, 1996, for details). For methods of unconstrained
minimization see Navon and Legler (1987, Navon et al. (1992a,b) and Zou et al. (1993b)
along with an excellent review by Nocedal (1991).

An essential monograph explaining analysis and application of assimilation methods
is the one by Daley (1991).

If an optimally estimated parameter attains unphysical values, one can deduce that
either an overfitting of the data took place, or that this parameter is not identifiable with
the data available. We will address this issue in detail in the section related to
identifiability.

Stratification of groups of parameters to be optimally identified may proceed by
either seasonal stratification or following a given physical process at a time. Due to the
nonlinear feedbacks that exist between classes of physical parameters, one should
proceed with caution when increasing the dimensionality of the problem, i.e. by adding a
new class of physical parameters to be optimally identified.

2.2. Parameter estimation in oceanography

In oceanography optimal control parameter estimation issues have been addressed in
early work by Bennett and McIntosh (1982) and Prevost and Salmon (1986) using
Sasaki’s weak constraint formalism. Early adjoint parameter estimation work is also the
one carried out by Panchang and O’Brien (1989) for bottom drag coefficient identifica-
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tion in a tidal channel, while phase speeds were estimated in the review article by
Smedstad and O’Brien (1991) using the adjoint method in a reduced gravity model for
the tropical Pacific Ocean. Yu and O’Brien (1991) carried out a wind stress coefficient
estimation along with the estimation of the oceanic eddy viscosity profile. Heemink
(1987) used estimation theory for shallow water flow identification.

Early reviews of data assimilation methods in oceanographic applications are the
lectures by Miller (1987) and the special issue of Dynamics of Atmospheres and Oceans
edited by Haidvogel and Robinson (1989).

The book of Bennett (1992) provides a mathematically advanced and thorough
synthesis of oceanographic assimilation methodologies.

An important comprehensive review serving as a milestone in adjoint methodology in
meteorology and oceanography and summarizing state-of-the-art for beginning of the
1990s, including issues of parameter estimation, is the excellent review by Ghil and
Malanotte-Rizzoli (1991).

Typical recent advances related to assimilating data into complex, time-dependent
ocean general circulation models are those of Fukumori et al. (1993) and Tziperman et
al. (1992).

Das and Lardner (1990, 1992) estimated bottom friction and water depth in a 2-D
tidal model and related to the issue of the number of observations required for a given
mesh resolution in order to achieve satisfactory parameter identification.

Richardson and Panchang (1992) are the first in oceanography to have noted the
difficulties associated with parameter estimation (eddy viscosity) with adjoint methods
(and inverse modeling techniques in general) due to their being beset by instabilities and
nonuniqueness when identifying parameters distributed in the space time domain,
especially when the data is noisy. To overcome these difficulties they proposed to insert
an additional criterion in the cost functional formulation namely that the parameter
profiles should be smoothly varying, i.e. a compromise between data-model misfit
minimization and the solution smoothness. A similar approach was introduced in the
context of ground water flow parameter estimation in the doctoral thesis of Cushman-
Roisin (1986). Additional work on eddy viscosity profile parameter estimation in a 3-D
tidal model was carried out by Lardner and his collaborators (see Lardner and Song,
1995, and Lardner (1993), Lardner et al. (1993), Lardner and Das (1994)).

Additional recent parameter estimation applications in oceanography include work of
Tziperman and Thacker (1989), estimating friction and wind forcing in ocean circulation
models, Marotzke (1992), Marotzke and Wunsch (1993), Chertok and Lardner (1996),
Gunson (1995), Yu and O’Brien (1992) and ten Brummelhuis et al. (1993) which used
parameter estimation for tidal models.

A recent book presenting a comprehensive picture of the state-of-the-art of data
assimilation in oceanography in the mid 90s and addressing also in several chapters the
topic of parameter estimation is the excellent monograph edited by Malanotte-Rizzoli
(1996). In particular the contributions of Malanotte-Rizzoli and Tziperman (1996) and
references therein and that of Hogg (1996) in the above monograph, represent modern
lucid contributions to state-of-the-art in parameter estimation in oceanography.

The book by Wunsch (1996) is also a very well-written, lucid and useful contribution
including Gauss—Markov estimation, sequential estimators and adjoint/Pontryagin prin-
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ciple devoted to finite dimensional problems and methods along with a very useful
subsection on parameter estimation geared towards the general topics of parameter
estimation.

1 would finally like to caution the reader that I only addressed in this subsection
literature on the adjoint parameter estimation aspect in oceanography and thus covered
but a narrow aspect of the vast literature on oceanographic adjoint applications. The
monograph edited by Malanotte-Rizzoli (1996) is an authoritative source for references
to these applications.

2.3. Identifiability

The uniqueness problem in parameter identification is ultimately related to the issue
of parameter identifiability.

The notion of identifiability addresses the question of whether it is at all possible to
obtain unique solutions of the inverse problem for unknown parameters of interest in a
meteorological /oceanic model from data collected in the spatial and temporal domains.

Simply put (see Kitamura and Nakarigi, 1977) the parameter identification problem
can be formulated as the one-to-one property of mapping from the space of system
outputs to the space of parameters. The uniqueness of such a mapping is extremely
difficult to establish. A working definition of identifiability is as follows (Kitamura and
Nakarigi, 1977): *“We shall call an unknown parameter ‘identifiable’ if it can be
determined uniquely in all points of its domain by using the input—output relation of the
system and the input—output data’’.

An early review work in the field of identification of parameters was provided by
Goodson and Polis (1979).

Chavent (1979, 1983, 1991) presented a definition of identifiability using the output
least-squares error criterion as used in 4-D VAR. If such a criterion is used for solving
the inverse problem of parameter identification the parameter is said to be output
least-square identifiable if and only if a unique solution of the optimization problem
exists and the solution depends continuously on the observations.

We will now provide two simple illustrative examples related to identifiability (see
Banks and Kunish, 1989).

The first is related to ill-posedness of parameter estimation problems—where there is
a lack of a continuous inverse of the parameter-to-observation mapping.

2.3.1. Example 1 (Banks and Kunish, 1989)

Let O be the set of parameters which guarantee that a chosen model equation has
solution u(q), let C be observation operator mapping from solution space of model to
observation space Z. Using these mappings we have the parameter-to-output mapping
&: Q — Z with &(g) = Cu(q).

Let us assume our model is the 1-D equation

—(qu.),=f on (0,1) (1)
u(0) =u(1) =0

Here f is assumed to be known and ¢ is the unknown parameter.
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Integrating Eq. (1) formally we obtain for x, € (0, 1)

_u(xy) 1
a(0) = 5y 90w oy J S()as for wefou] (2)

If u, >0 (or u,<0) on [0, 1] then ¢ is uniquely determined by Eq. (2) provided
g(x,) is given for some x, €[0, 1]. If u, has precisely one root we may take this point
as x, and define from Eq. (1)

f(xp)
)

provided u“(xp) #0.
Then g is determined uniquely without specification of g at any point in its domain.
Also g can be bounded in terms of u (q) provided that «_ can be bounded away
from zero. However, we cannot bound the inverse of

9(x) = ————

®(q) =u(q)
as a mapping from C(0, 1) to C(0, 1) even in a neighborhood of some 1™ satisfying
u; >0.

To see this let

u(x) = (2k Dn ———sin2kwx on [0,1], k=12,...

and assume f=0 and ¢(0) = 1, are known, then
(1), =1—2k/(2k+1)
u,(0) >0
u,(1)y=1 for all k

and u, » u* with u"(x)=x in C(0, 1).
On the other hand by Eq. (2) we have for the corresponding parameters

-, 2km
uk x 0 ™
(= GkrD) (3)
() () | + ——————cos2kmx
(2k+ 1w

which is a divergent series in C(0, 1). This example illustrates the lack of a continuous
inverse of the parameter-to-observation mapping of parameter estimation problems.

2.3.2. Example 2 (Banks and Kunish, 1989)

We consider the case of a parabolic model equation and show that the unknown
parameters are identifiable. Then a spectral approximation to the model equation is
performed for which the parameters are again identifiable.
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Nevertheless it is not possible to use a spectral approximation in an output least
squares (OLS) formulation to successfully estimate the unknown parameters.
The model equation is:

u,=qu, +qyu for t>0, 0<x<1 (4)
u(0,x) =d(x), 0<x<1
u(t,0)y =u(r,1)=0, t>0

where @ is the piecewise linear interpolant satisfying
1
P(0)=P(1)=0, d)(E) =1
The solution of Eq. (4) is given by

u(t.x,q,,9,) = 214, exp((q2 - ql(iw)z)t)sin iTx (5)

i=1

where i, are the Fourier coefficients of the sine series for @. Observe that
i,; =0, for i=12,...

Let us assume that the observations are of the form
u(t*,-) €L’ for such t* & (0,)

and Jet
q"=(q/.9:). ar >0

be the ‘true’ parameters with corresponding observation
Z=u(t",....q")

Then if u(t*, -, ¢g")=u(t", -, q), g=(q,, g,) it follows from Eq. (5) that g =q".
Now let us take an approximation to Eq. (5) of the form

N
u¥(1.x,9,.9,) = Lu, exp(q2 - ql(iﬂ')zt)sin iTx
i=1
Again uM(t™, ..., ¢")=u™(t", ..., q) implies g =q~, provided N > 3.

Thus g is identifiable at ¢ " for the original as well as for the approximating model
equation. Practically this is useless however, since for only moderately large " and i,
the contribution of the term exp((g, — ¢,(im)?t*) to u”(¢, x, q,, q,) is negligible.

Since #’ =0 we essentially estimate only (g, — g, 7*)t* in an OLS formulation.
Thus either g, or ¢, separately can be estimated successfully, but a simultaneous
estimation of ¢, and g, fails.

2.4. Mathematical background for parameter estimation

A typical cost functional in adjoint parameter estimation takes the form (Zou et al.,
1992)

J(X.P) = ["(W(X = X™)(X—X™))dr+ [KP-P.P=Frar  (6)

ty y
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where vector P, represents model parameters, P is the vector of estimated parameters,
K are specified weighting matrices, X°** is the observation vector, X are the model
output variables, W is a weighting matrix and, for the more realistic case, there is an
interpolation operator H from the model space to the observation space.

The adjoint model equation for

axX )
~- =F(X) +K(P-P) (7)

The adjoint model equation is obtained from a formulation of an augmented Lagrangian,
where

Vod =2K(P—P) - ["(P,(X—X*))ds (8)
fo
and the adjoint model equation is
i oF 1" PT W(X—-X®
= _ _ — _ obs 9
= +|—| e-Po-w( ) (9

where @ is a vector of Lagrangian multipliers identified with the adjoint variables, X is
the discretized state variable, X°™ is the observation vector, and we see that an
additional term, namely:

- pTQ
was added to the left hand side of the last equation.

We can assess sensitivity of forecast to model parameters in a simplistic way (i.e.
without taking into account presence of data) by considering

8J=(V, 1 5P)

where 8P is a small change in parameters vector resulting in a change 8J in forecast
eITOorS.
In a general set up the cost function is

J(X,P)y=3(X-X,)'B'"(X-X,)+1(HX-Xx°) 0 '(HX - X°)

+K(P-P) (P-P) (10)

where B is the background error covariance matrix, X ° is the set of observation whose
error covariance is O, and H is the observation operator which computes the model
equivalent HX of the observation X °.

2.4.1. Typical cost functional for parameter estimation

J(p) =J(p) +Jy(p) +J:(p) +J(p) (1)

J.(p) weighted least-squares term between ‘measured’ and model estimated parame-
ters, with weights which are related to confidence in the data. They may be
more reliable.
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J«{(p) weighted least squares error between ‘measured’ and model estimated parame-
ters at final time of assimilation—J; optimizing improvements in data measure-
ments made at later times.

J4(p) a weighted prior data error term, which represents prior knowledge about the
parameters with weights representing the confidence in the measured prior data.

J(p) a Tichonov regularization term, which deals with instabilities in values of
parameter estimates that appear to be closely related to noise in measured data.
This term smooths parameter estimates, by imposing a penalty on oscillations in
parameter estimates.

2.4.2. Reduction in the dimensionality of parameters

If the number of distributed parameters to be estimated is large—we can approximate
them by constructing (simple) sequences using simple polynomial basis functions
according to

Pe(X) = ;ajxf" (12)

where estimates P°(X) — p(X) as N, — x. Parameter identification is now reduced to
identifying a finite number of coefficients a; such that the cost functional Eq. (11) is
minimized.

2.5. lll-posedness of the problem of parameter estimation

Chavent (1974, 1979, 1983, 1991) was amongst the first to propose parameter
estimation using the adjoint method in connection with the output least squares problem.
He also recognized that this inverse problem is often ill-posed. This ill-posedness is
characterized by
* nonuniqueness

instability of the identified parameters

Instability here means that small errors in data will cause serious errors in the
identified parameters.

The uniqueness problem in parameter identification is intimately related to identifia-
bility.

- The concept of identifiability addresses the question of whether it is at all possible to
obtain unique solutions of the inverse problem for unknown parameters of interest in

a mathematical model from data collected in the spatial and time domains.

The parameter estimation problem consists in finding an estimated value P of the

parameter P from knowledge of data Z, of the parameter to output mapping ¢ and

some ‘a priori’ knowledge on the parameter which is condensed in a set C of

admissible parameters C,.

Due to measurement and forecast model errors the equation

find PeC,, ¢(P)=2 (13)
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has no analytic solution so the equation is solved approximatively using a least-squares
formulation

find ISECa , S.t.

J(P)<J(P) YPeC, (14)
where J(P) is the output or measurement error criterion

YPeCy, J(X)=Il¢(X) - ZlF (15)

for some norm in data space F and one attempts to minimize Eq. (15) over the set C
using his favourite optimization routine.

Here C,, is the admissible parameter set which is chosen as small as possible by
taking into account largest possible amount of ‘a priori’ information on the unknown
parameter such as the following considerations: lower and upper bounds, trends and
regularity.

In many instances of parameter estimation one finds that (a) instability occurs when
the discretization of parameter is refined and (b) lack of uniqueness of the estimated
parameter P, and /or the optimization algorithm gets stuck in a local minimum.

2.6. Identifiability, ill-posedness and regularization of parameter estimation

The key difficulty in developing successful numerical techniques for identifying
spatially dependent parameters resides in the fact such problems are ill-posed.

I1l-posedness follows from the fact that the differentiation operator is not continuous
with respect to any physically meaningful observation topology.

For instance, the problem of identifying spatially dependent coefficients appearing in
the differential operator of a partial differential equation (PDE) is, in general, both
nonlinear and ill-posed (Ewing and Lin, 1989).

Using the customary approach of output least-squares Chavent (1991) we minimize a
cost functional

M .,
JL5=f()T):‘,[U(x,,yi,a,z)—zdl]“dz (16)
i=1
subject to model equations, initial and boundary conditions, where Z, is a set of given
observations (measurements) of U(x,, v, «, t) at a set of discrete spatial locations,
i=1,2, ..., M.

When the number of parameters is kept small, a well behaved solution results.

However, modeling error is significant, since corresponding subspace of parameter
da is too restricted to provide good approximation for an arbitrary a.

As number of parameters is increased, numerical instabilities appear, manifested by
spatial oscillation in estimated «, frequency and amplitude of which are not consistent
with expected smoothness of «.

A typical symptom is a flat global minimum of J, ¢ (Yakowitz and Duckstein, 1980).

To alleviate problem one may incorporate ‘a priori’ statistics concerning « by adding
a Bayesian term to the cost functional.
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Numerical instabilities and ill-posed nature of problem strongly suggest a regulariza-
tion approach.

‘Regularization’ of a problem refers generally to solving a related problem, called the
‘regularized problem’, the solution of which is more regular in a sense than that of the
original problem, but which approximates solution of the original problem (Tichonov,
1963, Tichonov and Arsenin, 1977).

When one refers to ill-posed problems, regularization is an approach to circumvent
lack of continuous dependence on the data. The regularized problem is a well-posed
problem whose solution yields a physically meaningful answer to the given ill-posed
problem.

The idea of regularization was first proposed by Tichonov (1963) or earlier, and
extended by Morozov (1968) and Morozov and Stessin (1993).

3. Maximum likelihood (ML) method for parameter estimation

In this inverse approach, each of the model parameters to be estimated is represented
by a set of discrete ‘model parameters’. Let us designate the ‘true’ values of these model
parameters by p, and their prior estimates (or ‘measured’) values by p*.

The purpose of the inverse model is to provide improved estimates of p, p by relying
on model variables measurements—obtained at a set of observation locations at discrete
time intervals.

The discrepancies between measured and true quantities such as p* — p are referred
to as ‘measurement errors’ while differences between measured and computed quantities
p~ — p are called ‘residuals’.

Maximum likelihood theory is developed in terms of ‘prior errors’ which are usually
taken to be measurement errors. In practice estimation is performed by minimizing a
criterion expressed in terms of the residuals which are a combination of measurement
errors and errors arising from the numerical model. Thus the prior statistics entering into
the estimation criterion should reflect both types of errors.

Since prior errors in the model parameters are affected by a variety of cases we can
assume that the prior errors can be considered Gaussian with zero mean. The covariance
C,, the prior errors associated with parameter type p, can be written as

Cizo'izvi (17)

where o is either a known or unknown positive scalar and V, is a known symmetric
positive-definite matrix.

We assume that the prior estimates of various parameter types are naturally uncorre-
lated. The global covariance matrix of the model parameters to be estimated C, is block
diagonal, its diagonal components being C.

The prior errors can be written as

€’ =N(O,o',-2V,-) (18)

. . . . . . 2
meaning € is a Gaussian random vector with 0 mean and covariance matrix o;"V.,.
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Let Z* =(x", P") be a vector incorporating model and parameter data and 6 = (o7,
a?, ...)7 be a vector of unknown statistical parameters characterizing prior errors. If
B=(p, 8)" is the vector of all the unknown parameters then the likelihood L( B/Z")
of a hypothesis regarding the value of B8, given Z* and a specific model structure such
as numerical method parameterization etc. (see Carrera and Neuman, 1986a) is propor-
tional to f(Z* /B), the probability density of observing Z* if B was true.

For a given model structure, the optimum parameter estimates are taken to be those
that maximize L(3/Z"), where f} is an estimate of (3. Based on an hypothesis that all
data have been properly transformed to yield Gaussian distributions of the prior errors it
becomes obvious that the likelihood function can be written as

L(B*/Z")=f(2"/B)
_ —-1/2 —-1,2 I . T e 1y s
=(2m) det|C | exp E(Z -2y c;(Z*-2) (19)

Here C, is the covariance matrix of the prior errors

Cc, 0
0 C

P

C,=

(20)

where C, and C, are the covariance matrices of the prior model and model parameters
errors (C, = o ?V).

In practice maximum likelihood (ML) estimates are generally obtained by minimizing
the ‘log-likelihood’

§=—2In[L(B/Z")] (21)

where we can explicitly write S as
1
S=logdetCZ+5(Z*—Z)TC;‘(Z*—Z) (22)

This criterion has the desirable property that the log-likelihood of a hypothesis, given all
the data, is the sum of the log-likelihood of the same hypothesis, given each separate set
of data.

This allows one to introduce prior information about the parameters into the
estimation scheme and to analyze data representing conditions created by a variety of
initial and boundary conditions. An excellent survey of approximation of the ML
method to parameter estimation of aquifer parameter is represented by Carrera and
Neuman (1986b). Dee (1995) used ML for covariance parameter estimation.

The method was used in oceanography application by ten Brummelhuis and Heemink
(1990) and ten Brummelhuis et al. (1993). Wahba (1990) and more recently Wahba et
al. (1994, 1995) used more advanced statistical methods such as Gong et al. (1996)
generalized the statistical parameter estimation using generalized cross validation (see
also Wahba et al., 1995) as well as unbiased risk methods for adaptive tuning of
parameters in one space and one time variables for the equivalent barotropic vorticity
equation on a latitude circle, simultaneously tuning some smoothing, weighting and
physical parameters.
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4. Total variation as an L, regularization method for parameters with discontinu-
ities

Using total variation (TV) regularization may turn out to be particularly useful to the
meteorological community related to the potential of the method to deal with parameter
functions which may have jump discontinuities.

This approach bypasses the difficulty of standard regularization techniques that they
do not allow discontinuous solutions (Acar and Vogel, 1994).

The method was used by Santosa and Symes (1988) for reconstructing blocky
impedance profiles in seismology and for parameter identification by Gutman (1990).
Blocky profiles means functions that are piecewise constant and hence have sharply
defined edges (Dobson and Santosa, 1994, 1995).

Since 1990 there has been a wide interest in the TV methods for recovering ‘blocky’,
possibly discontinuous images, from noisy data. Significant work includes Rudin and
Osher (1994), Rudin et al. (1992), Acar and Vogel (1994), Rudin (1987), Osher and
Rudin (1990), Alvarez et al. (1992) and recent work by Dobson and Santosa (1994),
Vogel and Oman (1995) and Vogel and Wade (1995), Vogel (1994), Vogel and Oman
(1996).

Using total variation methods can indeed result in a significant contribution to
problems in optimal parameter estimation where location and size of discontinuities are
important.

The topic of total variation regularization was also the subject of two articles in SIAM
News (December 1993 by Rudin and July 1994 by Santosa) where the work of Rudin et
al. (1994) and Osher as well as the work of for denoising and deblurring images was
described and illustrated.

Consider solving ill-posed operator equation AU =Z. Solving the problem of
constrained minimization

m(}n](U) (23)

Subject to || AU — ZI||I* = o 2. This will achieve stability with the requirement that the
solution be of bounded variation rather than smooth. Here A is a linear operator from
L?(£) into a Hilbert space Z containing data vector Z.

Data Z and operator A are inexact.

a? is an estimate of the size of the error in the data and J(U) is a bounded variation
(BV) norm or semi-norm of U.

J5(U) =fny"IVU|2+de (24)

=0 (25)

”U“BV=HU“L,(.Q) (26)
Another approach is to solve the regularized minimization problem

m(ijnllAU—ZIIz +aJ(U) (27)

This can be viewed as a penalty method approach for solving the constrained optimiza-
tion problem. The penalty parameter a > 0 controls trade off between goodness of fit to
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data measured by [|AU —Z|I> and variability at jumps in approximate solution as
measured by J(U).
The final form of the total variational penalized least-squares functional is

gnAU—znmf WUl +p (28)
K7

Under mild conditions on the operator A Eq. (24) has a unique minimizer U * and
U* depends continuously on the parameters «. 3 and the data Z and on the operator A.

The choice of the penalty parameter « in Eq. (24) depends on factors like signal-to-
noise ratio.

When the error level is very low, « tends to be very small. A number of standard
minimization methods can be applied for an unconstrained minimization of the modified
TV penalty functional.

A nonlinear preconditioned conjugate gradient algorithm will perform well or one can
use augmented Lagrangian methods.

The application of total variation problems to meteorological parameter estimation
problems will address the issue of parameters which have jump discontinuities—allow-
ing us to bypass difficulty of standard regularization technique that do not allow
discontinuous solutions.

5. Parameter estimation by extended Kalman filter

The model system is given by

W=y (W 1) (29)
W/, —best estimation of model state; ¢, _,—state transition function.
W= wk-l(WALl) +bi (30)

b,_, is a Gaussian white noise sequence.

Ebi(B) = 0,5, (31

Q,—model error covariance.
Evolution of system is measured by observation contaminated by error b/,

we= hk(Wk‘) = by (32)
Eb(b7)" =R,y (33)

superscripts t, a, f denote truth, analysis and forecast. A linear estimation of the model
state based on observation (despite the fact that dynamic model , and observation A,
may be nonlinear) is sought:

We =W+ K (WS- W) (34)

K,—weight assigned to ‘observations’.
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Weights are optimized by minimizing the function
T,
5= E|(we = w) (W = w)| = trace[ P] (35)

P} being the analysis error covariance.

EKF linearly approximates i, and #, at each step along the trajectory resulting from
a continuous model update with ‘observations’.

The EKF algorithm when ‘observations’ are available at time-step & is:

W/f: lﬁ;\»l(wkafl) (36)
Pkr= q’k—l(Wkafl)P:-llka I(Wkavl) + Qk~1 (37)
Updating step
Wka — ka + Kk(WkO _ hk(Wkr)) (38)
Pf-lz[1-Kk’"’k(W/\-a—1)]PAf (%)
_ ) . -1
K, = PLHT (W) H(WE) PLHT (W) + R ¢
where
W (W)
V(W)= —7" “
( k ) 1'% W= W ( )
N (W)
H(W!)= ——— *
"( k ) ow W=Ww, ( )

K, is called the Kalman gain representing optimal weight given by observations.

W, is the state transition matrix—a linear propagator of forecast error covariance in
time.

Hao (1994), Hao and Ghil (1994) as well as Hao et al. (1996), Hao and Ghil (1995)
and Ghil (1996) applied EKF method to estimate model parameters by incorporating the
unknown parameter in the scheme such that it is treated as an additional state variable.

kaz ‘!jk‘l(wkl—]’#tk—l)—i_b;c—l (43)
ul=UL | + b, (44)
We = h, (W) + b (45)

where W, and u, can be combined into a composite state vector W,.

Issues of identifiability and regularity will require some attention and further re-
search, as well the fact that parameter estimation with EKF is trajectory dependent. The
number of observations required for successful optimal parameter estimation is found to
be proportional to the size of the errors in the assimilated state fields when the parameter
error is left uncorrected, while correct estimation of ‘important’ model parameters,
results in improved estimation of model state. Hao and Ghil (1995) addressed the issue
of identifiability and show that the scheme in Eqs. (43)-(45) can be extended to a set of
parameters—where u will serve as a vector.
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The dimension of the system increases by the number p of parameters to be
estimated, which is usually small, i.e. p << n. Their research also shows that the number
of observations required to estimate a given parameter is proportioned to the sensitivity
of the state-estimation errors to the parameter value.

Parameter estimation using Kalman filtering is addressed in a number of textbooks
such as Goodwin and Sin (1984, Haykin (1986) and Ljung (1987).

6. Sensitivity analysis as a tool in parameter estimation

Sensitivity is a measure of the effect of changes in a given input parameter on a
selected response (any forecast aspect). The general definition of sensitivity of a
response to variations in system parameters is the Gateau differential.

The G differential VR(X°, «®, h_, h,) of a specific response R(X, a)

R(x,a)=ftar(t;x,a)dt (46)

1

o

at the nominal values (X°, a?), where a is a model parameter vector, for increments
(h,, h,)around (X°, @) is given by

VR(x*,ah, h,) = [, hdr+ [“r-hde (47)
I ty
ar or
r={—,....— (48)
ax, 9xp ] f(x%0)
) ( or dr ) (49)
re=l—....—
“ aa‘ aaN (x%a?

N is the dimension of the vector of model parameters and P is the dimension of the
model variable.

If a variation occurs solely in the nth parameter the corresponding variation A7, of the
parameter vector is

h=(0,...,h%,...0)7 (50)

and the corresponding sensitivity is VR”.
The relative sensitivity S, is the dimensionless quantity

s =E("3)_ (s1)

n 0
R \a,

The relative sensitivity clearly demonstrates the measure of the importance of the input
parameter. The higher the relative sensitivity, the more important the input parameter in
question. Thus, one of the crucial aspects of sensitivity analysis is to identify the most
important input parameters whose changes impact the most the chosen response. The
magnitudes of relative sensitivities can serve as a guide to ranking importance of model
parameters for use in choosing candidates for optimal parameter estimation.
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For models that involve a large number of parameters and comparatively few
responses, sensitivity analysis can be performed very efficiently by using deterministic
methods based on adjoint functions. It can be shown (Zou et al., 1993a) that the changes
in the response function can be expressed in terms of adjoint dynamics ¢(t), which is an
adjoint variable corresponding to the model variable x(r). The use of the adjoint model
eliminates the need to calculate, by forward integration, 8x(tX = x(z)—x°1)), a
quantity whose dynamics is governed by the so-called linear tangent equations, where
x(2) and x°(¢) are the perturbed and the actual model trajectories in phase space. These
forward calculations happen to be explicitly dependent on the changes in the initial
conditions dx(z,) and the model parameters changes and must be repeated every time
these are altered; the formulation using the adjoint solution to the linear tangent
dynamics does not suffer from this shortcoming and is therefore extremely economical
when dealing with large models possessing several parameters.

Based on work of Cacuci (1981, 1988) and Zou et al. (1993a) we can carry out
extended sensitivity analysis to general operator type responses such as time and space
dependent functions of the model state variables and parameters. This since the most
interesting and revealing meteorological cases involve sensitivity with respect to opera-
tor responses that depend on both time and space. We intend to use those methods to
carry out extensive sensitivity studies using the NMC model with physics and its adjoint.

Sensitivities amongst other may quantify the extent that uncertainties in parameters
contribute to uncertainties in model results. Furthermore the adjoint sensitivity analysis
may also provide a quantitative measure of the importance of data or a region in phase
space in contributing to an adequately chosen response function. One limitation of such
sensitivity study is the restriction of each result to one of the forecast aspects. Therefore,
one should carefully select different responses.

Sensitivity studies with the full physics adjoint model will be carried out with the
intention of using a stratification based on various meteorological seasons corresponding
to different meteorological situations—for instance, seasonally dependent sensitivities
(see Errico et al., 1993a,b). In our ranking of model parameters to be used in the
parameter estimation, we shall use various response functions and compare resulting
parameter rankings. This implies stratification of relative sensitivities both by response
and by season—thus implying that the subset of model parameters chosen is of real
impact on the model response. It is well known that the adjoint sensitivity approach
indicates both geographical areas and meteorological parameters to which a given model
function is most sensitive (Rabier et al., 1992, 1993).

7. Summary and conclusions

Parameter estimation using adjoint of full physics NWP models or oceanographic
models will pose serious challenges which were not fully encountered in either
meteorology and oceanography when only few parameters were estimated. The issues of
identifiability, taken usually for granted in optimal parameter estimation with adjoint
method for either atmospheric or ocean general circulation models should be carefully
addressed. The mathematical framework for assessing uniqueness and identifiability in
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optimal parameter estimation using adjoint optimal control methods was outlined. This
issue has particular importance since the potential for benefits using variational data
assimilation with adjoint methods is highly accrued if one can optimally estimate key
parameters in aforesaid oceanic and atmospheric models. Basic research results, using
recent advances in issues related to identifiability, regularization stability and total
variation regularization were shown to be required to establish robust parameter
estimation procedures.

Relative sensitivity analysis will serve as a guide to identify most important parame-
ters whose changes impact most chosen relevant responses for the atmospheric or
oceanographic models employed.

The rich experience accumulated by research workers from other fields such as
water-resources and seismology as exemplified by the few references provided in this
paper can serve as a guide for efforts of reliable optimal parameter estimation in
meteorology and oceanography.

Methods of large-scale constrained minimization for the solution of optimal parame-
ter estimation for range-bounded parameters will have to employ sequential quadratic
programming and projected gradient minimization methods.

When the optimal parameter estimation is done for a full physics model and his
adjoint, as is the case in atmospheric NWP (Numerical Weather Prediction) models,
methods of stratification of parameters by physical package, seasonality and other
considerations (see Louis and Zivkovié, 1994) should be tested.
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Appendix A. Rigorous mathematical framework for identifiability and regulariza-
tion

There has been a serious mathematical effort to understand in depth parameter
estimation starting with the seminal works of Richard Bellman and collaborators in 1965
(Bellman et al., 1965a,b) while in the last 20 years works closely related to the use of
the adjoint method include contributions of Chavent (1979, Kitamura and Nakarigi
(1977, Kubrusly (1977) and more recently works of Banks and Rosen (1987, Banks and
Kunish (1989, Omatu and Seinfeld (1989) and Banks (1992a,b) and references therein. It
is therefore incumbent upon the meteorological community at both the operational and
university level to acquaint itself with these new results.



I.M. Navon / Dynamics of Atmospheres and Oceans 27 (1997) 55-79 73

Let &, U and & be Banach spaces, where & represents a space of partial
differential operators, U represents the space of solutions and & the space of right hand
sides.

Consider a system represented by

V(AU)=f (A1)

where ¥ is a mapping not necessarily linear from & X U into &,
We assume
(al) ¥ is of C* class (k> 1).
(a2) There is an open subset &/, of % and an open subset U _ of U s.t. YA € &,. Eq.
(A.1) admits a unique solution U € U _.
(a3) VAew,, Yue U_, (3/du) A(u) is a linear homeomorphism of U on to F.
Thus one can define an implicit function

U=®(A) (A2)

as the solution of Eq. (A.1). @ is of C* class from &, into U .. Furthermore, consider
that A depends on a set of parameters p belonging to the Banach space A. The set of
physically admissible parameters p is A 4. We assume

(a4) A, A >« is of C* class (k> 1).

(a5) A . is a norm-closed convex subset of A.

(a6) H(A ) <.

The parameter identification problem can be posed as follows:

Knowing mappings ¥, & X U =% and &; A — & and the element f€% and
given an observation Z, of U, find p € A ,, to satisfy Eq. (A.1).

Thus the identification problem can be viewed as solving in A 4 the nonlinear
operator equation

(C-® A)(p)=7, (A3)

If this operator C- @-A: A ,, — # has an unique inverse, and the inverse is continu-
ous, one can apply the least-squares method (adjoint method).
It consists of minimizing over A ,; the functional

Tis(p) =lIC(@(A(p))) ~ Z,li% (A4)

Often the problem of solving Eq. (A.3) is ill-posed. Hence minima of J, (( p) over A
will not depend continuously on the data Z,.

To regularize parameter p, we introduce a more regular space &# for which we
assume,

(b1) & is a Hilbert space.

(b2) # is densely imbedded in A.

(b3) The embedding operator from % into A is compact.

Define .Z,, =% N A 4. It follows that #,, is a norm-closed convex subset of %.
Introduce now stabilizing functional (regularization).

Js( p) = HP”E@’ P S Rad (As)
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and smoothing functional

Jo(p) =Js(p) + BI(p) =lIC(P(A( P))) ‘Zd”f?’+ Blipl%, P ERy
(A.6)

Identification of parameters by regularization proceeds as follows (Nakarigi, 1983,

Kravaris and Seinfeld, 1986).

Given observation Z, € # find p; €%, so as to minimize cost functional Jy( p).

Upon modification of the algorithms by regularization and by using appropriate
constraints, the estimated parameters improve significantly.

When ‘a priori’ knowledge about constraints for certain problem is available a
constrained optimization algorithm may be an efficient choice for solving the parameter
estimation problem (Chavent, 1991, Kunish and Sachs, 1992) otherwise the use of
penalty-regularization terms in the cost function may be preferable.

Several key issues need to be examined:

1. Whether Eq. (A.3) admits a unique solution (identifiability). This means that there is
a chance for the optimally estimated parameter to be close to the true unknown
parameter.

2. Whether solution of Eq. (A.3) depends continuously on the observations Z, (stability).
The stability of the estimated parameter is with respect to perturbations on the
observations. (See Chavent, 1979, Kravaris and Seinfeld, 1985, 1986).

3. Relationship between dimensionality of state space, observation space and parameter
space.
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