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SUMMARY

A novel Proper Orthogonal Decomposition (POD) inverse model, developed for a mesh adaptive ocean

model (the Imperial College Ocean Model, ICOM) is presented here. The new POD model is validated

using the Munk gyre flow test case, where it inverts for initial conditions. The optimised velocity fields

exhibit overall good agreement with those generated by the full model. The correlation between the

inverted modelled and the true velocity is 80%-98% over the majority of the domain. Error estimation

(including the projection error, subspace integration error and the error introduced by the controls)

was used to judge quality of reduced adaptive mesh models. The cost function (consisting of the misfit
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2 F. FANG ET. AL.

between the inverted modelled and true velocity values spatially and temporally) is reduced by 50%

of its original value, and further by 25% after the POD bases are updated.

In this study, the reduced adjoint model is derived directly from the discretised reduced forward

model. The whole optimisation procedure is undertaken completely in reduced space. Computational

cost for the 4-D Var data assimilation is significantly reduced (here a decrease of 70% in the test

case) by decreasing the dimensional size of the control space, in both the forward and adjoint models.

Computational efficiency is further enhanced (by a factor of N , here, N is the number of times

to run the reduced models) since both the reduced forward and adjoint models are constructed by

a series of time-independent sub-matrices. These sub-matrices are calculated prior to running the

reduced models. The reduced forward and adjoint models can thus be run repeatedly with negligible

computational costs.

An adaptive POD 4-D Var is employed to update the POD bases as minimisation advances and loses

control, thus adaptive updating of the POD bases is necessary (here, when the value of cost function

cannot be decreased by more than 10−3 between the consecutive iterations). It is noted that the

adaptive POD 4D-Var is not always effective. An appropriate choice of initial guess controls can help

to achieve a reasonable minimum location during the optimisation procedure.

Previously developed numerical approaches [1] are employed to accurately represent the geostrophic

balance and improve the efficiency of the POD simulation.

keywords: inverse, adjoint, POD; reduced-order modelling; ocean model; finite element; unstructured

adaptive mesh Copyright c© 2004 John Wiley & Sons, Ltd.

1. Introduction

The threat of impending climate change highlights the importance of improving the predictive

capabilities of ocean models. Data assimilation techniques are a critical component of ocean

modelling. By assimilating observations (such as in situ measurements and remote sensing) into

models, unknown inputs such as initial and boundary conditions, bottom friction coefficients,
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A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 3

turbulent viscosity, and wind stress etc. can be optimised [2, 3, 4, 5, 6, 7, 8, 9]

A variety of approaches have in the past been used to facilitate data assimilation and include

statistical interpolation methods, nudging data assimilation and variational methods along

with sequential estimation such as Kalman filter (KF), extended Kalman filter (EKF) and

Ensemble Kalman filter (EnKF). In particular the four-dimensional variational (4D-Var)

method has proved an efficient means of assimilating observed data into simulations [10, 11].

the 4D-Var method is capable of producing a best estimate model solution by fitting a

numerical simulation to observational data over both space and time. The technique also

facilitates the estimation of the error sources caused by uncertainties (boundary conditions,

initial condition and parameters) in the model. The solution is derived by minimising a cost

function that contains the misfits between the data and dynamical model, as well as the

covariances specifying spatial and temporal correlations of errors. 4D-Var data assimilation

has been used widely in both atmospheric and oceanographic models over the past two decades

[12, 13, 10, 14, 15, 16, 17, 18, 8, 9, 15, 19, 5, 7, 20, 21]. However, the major difficulty in the

implementation of 4D-Var data assimilation in an ocean model is the large dimensionality of

the control space (for a discrete realistic model, the size of the control variables is typically in

the range 106 − 108), and hence the 4D-Var method incurs high memory and computational

costs. However the computational cost can be reduced by decreasing the dimensions of the

control space thus ensuring that the minimisation of the cost function (or error covariances)

is carried out within a low-dimensional space. This can be achieved through an incremental

approach ([22]) whereby a succession of quadratic problems are generated over increasing

time periods. The successive quadratic minimisation problems can then be solved by running

tangent linear model and adjoint model approximations using a coarse resolution in the inner-
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4 F. FANG ET. AL.

loop of the minimisation. Using this approach, the dimension of the minimisation problem can

be decreased by one or two orders of magnitude. Although such an incremental approach is

currently used in operational atmospheric models, the dimensions of the control space remain

quite large in realistic applications [25].

The use of Empirical Orthogonal Functions (EOF) analysis has been advocated as an approach

that can lead to reduced order ocean modelling ([26]). The implementation of this method

additionally results in a drastic reduction of the dimension of the control space and thus the

iterative minimisation process [25, 27]. Reduced order 4D-Var can also be used to precondition

4D-Var, and reduce computational cost [28]. It has been further proposed ([29]) that efficiencies

can be enhanced if the adjoint model can be directly implemented in a subspace of the reduced

model (determined by the leading EOFs) and then used to approximate the gradient of the

cost function. The minimisation process can thus be solved completely in reduced space with

negligible computational costs.

Proper Orthogonal Decomposition (POD) methodologies, in combination with the Galerkin

projection procedure have additionally provide an efficient means of generating reduced order

models [30, 31, 32]. This technique essentially identifies the most energetic modes in a time-

dependent system thus providing a means of obtaining a low-dimensional description of the

system’s dynamics. POD has been widely and successfully applied to diverse disciplines,

including signal analysis and pattern recognition [33], fluid dynamics and coherent structures

[34, 30, 35] and image reconstruction [36]. To improve the accuracy of reduced models, a

goal-oriented approach has been used to optimise the POD bases [37, 38]. The dual-weighted

POD approach provides an ’enriched’ set of basis functions combining information from both

model dynamics and the data assimilation system. The practical utility of this approach has
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A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 5

been extended to include ocean and climate modelling and the solution of inverse problems

[25, 27, 39, 31]. The POD-based 4D-Var not only reduces the dimension of control space, but

also reduces the size of dynamical model, both in dramatic ways [39, 40].

Herein we describe a POD reduced order 4D-Var for an adaptive mesh ocean model. A POD-

based reduced forward model [1] has been developed for the Imperial College Ocean Model

(ICOM) that can simultaneously resolve both small and large scale ocean flows while smoothly

varying mesh resolution and conforming to complex coastlines and bathymetry. In this work, a

further step has been made to introduce the POD approach into an adaptive mesh refinement

adjoint model. Using the POD and Galerkin projection approaches, the reduced forward model

is derived in a subspace (details in [1]). Once the forward reduced model is available, the

reduced order adjoint model can directly obtained from the POD reduced forward model in

the subspace, instead of the original forward model. The minimisation procedure is then carried

out in the reduced space.

When adaptive meshes are employed in both the forward and adjoint models, the mesh

resolution requirements for each model may be spatially and temporally different, as the meshes

are adapted according to the flow features of each model. This poses additional challenges for

the implementation of an inverse POD-based reduced adaptive model, which include snapshots

of varying length at time levels; and the fact that the POD base of the forward model can differ

from the POD base of the adjoint model. To overcome these difficulties, a standard reference

fixed mesh is adopted for both the forward and adjoint reduced models. The solutions for both

are interpolated from their own mesh onto the same reference fixed mesh at each time level.

This allows the same number of base modes for both the reduced forward and adjoint models.

In this work, an adaptive POD procedure is employed to improve the reduced model by
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6 F. FANG ET. AL.

updating the POD basis. The original reduced basis for inverse problems is calculated using

a set of snapshots based on the results from the full forward model with the specified control

variables. The re-calculation of the reduced basis is needed when the resulting control variables

from the optimisation procedure are significantly different from those that the POD model is

based on. Ravindran (2002, 2006) [41, 42] proposed an adaptive procedure that successively

updates the reduced-order model being used via a Sequential Quadratic Programming (SQP)

constrained optimisation algorithm. Cao et al. (2007) introduced an adaptive POD approach

into POD inverse (adjoint) models. In this approach the reduced basis is recalculated using a

refreshed set of snapshots based on the latest results obtained from the full forward model using

a restart criterion of the adaptive POD procedure based on convergence of the minimisation

process. One can also consider the Trust Region Method for restart criterion [43].

2. POD reduced model

POD is the most efficient choice among linear decompositions in the sense that it can capture

the greatest possible kinetic energy. A 3D dynamical flow model is generally written as:

∂u
∂t

= f(u, t,x), (1)

where f is a general function representing a 3D nonlinear flow dynamics (here, Navier-Stokes

equation), u is a vector containing all variables to be solved (e.g., velocities, pressure and

temperature etc.), t is time and x = (x, y, z)T represents the Cartesian coordinate position.

2.1. Proper Orthogonal Decomposition

The model variables u are sampled at defined checkpoints during the simulation period

[t1, . . . , tK ], also referred to as snapshots U = (U1, . . . , UK)T where K is the number of
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A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 7

snapshots. The snapshots can be obtained either from a numerical model of the phenomenon or

from experiments/observations. The sampled values of variables at the snapshot k are stored

in a vector Uk with N entries, Uk = (Uk,1, . . . , Uk,i, . . . , Uk,N ), where N is the number of

nodes and U represents one of variables u, v, w, p. The average of the ensemble of snapshots is

defined as:

Ūi =
1
K

K∑
k=1

Uk,i, 1 ≤ i ≤ N , (2)

where Uk,i is the model variable value at the snapshot k and node i. Taking the deviation from

the mean of variables yields

Vk,i = Uk,i − Ūi, 1 ≤ i ≤ N . (3)

A collection of all Vk,i constructs a rectangular N by K matrix A. The aim of POD is to find a

set of orthogonal basis functions which can represent the most dynamic energy in the original

flow system. The N ×N eigenvalue problem is established

AATxk = λkxk; 1 ≤ k ≤ K. (4)

The order N for matrix AAT is far larger than the order K for matrix ATA in realistic ocean

cases. Therefore the K ×K eigenvalue problem is solved

ATAyk = λkyk; 1 ≤ k ≤ K. (5)

This procedure is equivalent to a Singular Value Decomposition (SVD). The eigenvalues λk

are real and positive and for reasons which will be apparent, should be sorted in an descending

order. The POD basis vectors Φk associated with the eigenvalues λk are orthogonal and

expressed as follows:

Φk = Ayk/σk = Ayk/
√
λk, (6)
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8 F. FANG ET. AL.

where the kth eigenvalue is a measure of the kinetic energy transferred within the kth basis

mode. If the POD spectrum (energy) decays fast enough, practically all the support of the

invariant measure is contained in a compact set. Roughly speaking, all the likely realisations

in the ensemble can be found in a relatively small set of bounded extent. By neglecting modes

corresponding to the small eigenvalues, the following formula is therefore defined to choose a

low-dimensional basis of size M , where M << K,

I(M) =
∑M
i=1 λi∑K
i=1 λi

, (7)

where I(M) represents the percentage of energy which is captured by the POD basis

Φ1, . . . ,Φm, . . . ,ΦM .

2.2. Reduced model

The variables in (1) can be expressed as an expansion of the POD basis functions {Φ1, . . . ,ΦM}:

u(t, x, y, z) = ū +
M∑
m=1

αm(t)Φm(x), (8)

where ū is the mean of the ensemble of snapshots for the variables u(t), αm (1 ≤ m ≤M) are

the time-dependent coefficients to be determined, and αm(0) are the coefficients at the initial

time level. Substituting (8) into (1) and taking the POD basis function as the test function,

then integrating over the computational domain Ω,∫
Ω

Φmf

(
(ū +

M∑
m=1

αmΦm(x)), t, x

)
dΩ. (9)

The POD reduced model is then obtained:

∂αm
∂t

=
〈
f

(
(ū +

M∑
m=1

αm(t)Φm(x)), t, x

)
, Φm

〉
, (10)

subject to the initial condition

αm(0) = ((u(0,x)− ū(x)),Φm). (11)
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A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 9

In the finite element method, the POD basis Φm(x) =
∑N
i=1NiΦm,i, equation (10) can

therefore be written as:

∂αm
∂t

=
〈
f

(
(ū +

M∑
m=1

αm(t)
N∑
i=1

NiΦm,i), t, x

)
, Φm

〉
, (12)

where Ni is the basis function in the finite element and N is the number of nodes in the

computational domain.

3. Reduced order 4D-Var

The aim of 4D-Var is to determine optimal control variables (e.g., initial conditions). Optimal

solution for (1) is obtained by minimising the functional =(U0):

=(U0) =
1
2

(U0 − Ub)TB−1(U0 − Ub) +
1
2

Nt∑
n=1

(HUn − yno )TWo(HUn − yno ), (13)

where B is the background error covariance matrix, Wo is the observation error covariance

matrix, H is the observation operator, U0 is a vector containing the control variables (here,

initial conditions), Un is a vector containing the solution of variables from the model (the

reduced order model) at the time level n (here, Nt is the number of time levels), and yno is the

observation at time level n. In a POD reduced model, the initial value U0 and the reduced

order solution Un are expressed as:

U0 = Ū +
M∑
m=1

αm(0)Φm(x), (14)

Un = Ū +
M∑
m=1

αm(tn)Φm(x). (15)
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10 F. FANG ET. AL.

Substituting (14) and (15) into (13) yields:

=(α(0)) =
1
2

((
Ū +

M∑
m=1

αm(0)Φm(x)

)
− Ub

)T
B−1

((
Ū +

M∑
m=1

αm(0)Φm(x)

)
− Ub

)

+
1
2

Nt∑
n=1

(
H

(
Ū +

M∑
m=1

αm(tn)Φm(x),

)
− yno

)T
W o

(
H

(
Ū +

M∑
m=1

αm(tn)Φm(x),

)
− yno

)
.

(16)

where the snapshots are chosen at time intervals with a constant time interval between them

during the simulation period.

3.1. Discrete reduced order adjoint equations

The discrete forward model of (10) at the time level n can be written in a subspace:

Anαn = sn, (17)

where,

sn = Bnαn−1 + fs, (18)

An and Bn (An,Bn ∈ RM×M , where, M is the number of POD bases) are the matrices

at the time level n which include all the discretization of (10), αn = (αn1 , . . . , α
n
M ) and

αn−1 = (αn−1
1 , . . . , αn−1

M ) are the vectors of variables to be solved at the time levels n and

n− 1 respectively, here including the coefficients related to the POD basis functions for state

variables u in (1), n is the time index, sn is a discretised source term at the time level n and

fs is a source term including the forcing terms on the boundaries.

For a nonlinear simulation, the matrices An and Bn can be written as:

An = Ân
0 +

M∑
m=1

αn−1
m Ân

m, (19)

Bn = B̂n
0 +

M∑
m=1

αn−1
m B̂n

m, (20)
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A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 11

where, An,Bn, Ân
0 , B̂

n
0 , Â

n
m, B̂

n
m ∈ RM×M and the components can be expressed as:

Ân
0,i,j =

∫
Ω

Φif(θū Φj) dΩ, 1 ≤ i, j ≤M, (21)

Ân
m,i,j =

∫
Ω

Φif (θΦj Φm) dΩ, 1 ≤ i, j ≤M, (22)

B̂n
0,i,j =

∫
Ω

Φif((θ − 1)ū Φj) dΩ, 1 ≤ i, j ≤M, (23)

B̂n
m,i,j =

∫
Ω

Φif ((θ − 1)Φj Φm) dΩ, 1 ≤, i, j ≤M. (24)

(19) and (20) can be rewritten as:

An = Ân
0 + Ânαn−1, (25)

Bn = B̂n
0 + B̂nαn−1, (26)

where Ân = (Ân
1 , . . . , Â

n
M ) and B̂ = (B̂n

1 , . . . , B̂
n
M ) [1].

Taking into account (17), the discrete forward equation during the simulation period

[t1, . . . , tNt ] can be written:

Aα = s (27)

where,

A =



A1

−B2 A2

. . . . . .

−BNt ANt


(28)
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12 F. FANG ET. AL.

and

α = (α1, α2, . . . , αNt)T (29)

s = (B1α0, 0, . . . , 0)T + fs (30)

Differentiating (27) with respect to the control variables to be optimised (i.e., the initial

coefficient, α0 = α(0)), the tangent linear model is obtained

Āα+ Aᾱ = s̄, (31)

where the overbar is defined as the differentiation with respect to the control variables α0

Ā =
∂A
∂α0

=



Ā1

−B̄2 Ā2

. . . . . .

−B̄Nt ĀNt


, (32)

and

ᾱ =
∂α

∂α0
= (ᾱ1, ᾱ2, . . . , ᾱNt)T (33)

s̄ =
∂s

∂α0
= (B̄1α0, 0, . . . , 0)T + (B1ᾱ0, 0, . . . , 0)T (34)

where taking into account (25) and (26)

Ān =
∂An

∂α0
= Âᾱn−1, (35)

B̄n =
∂Bn

∂α0
= B̂ᾱn−1, (36)
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A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 13

where n describes time levels, 1 ≤ n ≤ Nt. (31) can therefore rewritten as

Ā1

−B̄2 Ā2

. . . . . .

−B̄Nt ĀNt





α1

α2

...

αNt


+



A1

−B2 A2

. . . . . .

−BNt ANt





ᾱ1

ᾱ2

...

ᾱNt


=



B̂1α0ᾱ0

0

...

0


+



B1ᾱ0

0

...

0


.

(37)

The tangent linear model is then derived

(A + Aextra)
∂α

∂α0
=

∂s

∂α0
, (38)

where A is calculated in [27] and Aextra originates from the nonlinear terms and is expressed

as:

Aextra =



0

Âα2 − B̂α1 0

. . . . . .

ÂαNt − B̂αNt−1 0


(39)

The variation of the objective function (13) with respect to the control variables α0 is

∂=
∂α0

=
(
∂α

∂α0

)T
∂=
∂α

. (40)

Taking into account equation (38), yields

∂=
∂α0

=
(
∂s

∂α0

)T
(A + Aextra)−T

∂=
∂α

. (41)

The gradient of the objective function can then be written

∂=
∂α0

=
(
∂s

∂α0

)T
α∗, (42)

where, α∗ is the adjoint variable and can be calculated by solving the following adjoint equation:

(A + Aextra)Tα∗ =
∂=
∂α

. (43)
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14 F. FANG ET. AL.

3.2. Adaptive POD

In this work, the POD model is based on the solution of the original model for specified control

variables (e.g., initial and boundary conditions, etc). It is therefore necessary to reconstruct

the POD model when the resulting control variables from the latest optimisation iteration

are significantly different from the ones upon which the POD model is based. An adaptive

POD 4D-Var procedure is used to periodically update the POD basis, and the reduced direct

and inverse models (for detail see in [41, 42]. The inversion procedure starts with the initial

estimation of the control variables. An initial set of snapshots is obtained by running the full

forward model, and the corresponding POD subspace and reduced model are constructed. The

adaptive POD procedure proposed is as follows:

1. Set the POD iteration level it = 1 and the initial guess controls cit;

2. Set up the snapshots Uit from the solution of the full forward model with the controls

cit;

3. Calculate the POD bases (the number of POD bases is chosen to capture a prescribed

energy level);

4. Project the controls cit on the reduced space αit,jt (jt = 1);

5. Optimise the initial controls αit,jt on the reduced space (note: the optimisation procedure

is carried out completely on the reduced space. The Polak-Ribiere nonlinear conjugate

gradient (CG) technique is employed here and jt is the Nonlinear CG iteration level );

6. (a) check the value of cost function (13). If |=jt| < ε (where, ε is the tolerance for the

optimisation), then go to step 7;

(b) if |=jt| > ε and |=jt − =jt−1| > 10−3 (where, jt − 1 and jt are the consecutive

optimisation iteration levels), then set jt = jt+ 1 and go back step 5;

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:1–6
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A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 15

(c) if |=jt| > ε and |=jt −=jt−1| < 10−3, then update the POD bases:

i. find the new controls cit+1 by projecting the optimisation controls αit,j onto

the original flow domain, and

ii. set it = it+ 1 and go back step 2;

7. The adaptive POD optimisation procedure is completed.

4. Mesh adaptivity in reduced models

4.1. Description of Imperial College Ocean Model

The POD-based reduced model presented was implemented for ICOM. This unstructure

adaptive model can simultaneously resolve both small and large scale ocean flows while

smoothly varying resolution and conforming to complex coastlines and bathymetry. With

more appropriate focused numerical resolution (e.g. adaptive and anisotropic resolution of

fronts and boundary layers, and optimal representation of vertical structures in the ocean)

the ocean dynamics resulting from climate change will be predicted with greater accuracy.

To accurately represent local flow around steep topography the hydrostatic assumption is not

made. The pressure is split into the non-geostrophic and geostrophic parts which are solved

separately. This allows the accurate representation of hydrostatic/geostrophic balance [44].

A dynamically adapting anisotropic mesh in 3-D is used here [45, 46]. Mesh adaptivity or

optimisation relies on the derivation of appropriate error measures, which dictate how the

mesh is to be modified [45]
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16 F. FANG ET. AL.

4.2. Anisotropic mesh adaptivity

The mesh adaptivity technique used in this work first constructs a metric tensor which encodes

local error estimates using information from the current solution fields [45]. The metric tensor

is used to calculate the required edge lengths and orientation to control solution errors. It is

constructed so that an ideal edge length is unity when measured in metric space. This gives a

guide to those elements which have edges that are too large or too small. Since the metric is

dependent on both location and direction it is able to reflect locally anisotropic information

within the solution. Thus inhomogeneous and anisotropic meshes result from this approach.

By defining an objective functional which is based on the element quality in this metric space,

an optimisation technique is used to improve the overall quality of the mesh. That is, local

operations on the mesh connectivity and node positioning are performed which aim to improve

the local quality of the mesh. The operations are performed on a three-dimensional tetrahedral

mesh by the adaptivity method and include: edge collapsing/splitting; face to edge and edge

to face swapping; edge to edge swapping; and local node movement or mesh smoothing in a

fashion similar to Freitag and Ollivier- Gooch [47] and Buscaglia and Dari [48]. Constraints

are imposed on these operations so as to preserve the integrity of non-planar geometrical

boundaries [45, 46]. The interpolation error resulting from a piecewise linear approximation of

a smooth function ψ may be written in terms of the functions second derivatives or Hessian

H ≡ ∇T∇φ. In particular, over a tetrahedral element the quantity

ε = vT |H(x)|v, (44)

gives a guide to this interpolation error at location x and direction v. Note that here the

notation | · | corresponds to the absolute value of the matrix, defined by diagonalising the

matrix and taking the absolute value of the eigenvalues, rather than the determinant. Taking
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the maximum of (44) over all locations and all vectors v that lie within the element gives a

bound on the magnitude of the interpolation error on this element. For more details see [46]

and the references therein.

Given a user defined error tolerance, ε̂, a metric tensor may be defined by

M̂ =
1
ε̂
|H|. (45)

To obtain this error tolerance everywhere, length scales in the mesh should therefore

take the value unity when measured in metric space. The mesh optimisation technique

described above is used to achieve this aim as closely as possible. In practise the Hessian

must be approximated and here reconstructed from the piecewise linear solution fields. To

simultaneously satisfy separate error bounds for separate solution fields a metric is obtained

for each and these are then superimposed to yield a combined error metric. Finally, by suitably

altering the definition of this metric, computational constraints on the total number of nodes

and maximum/minimum allowed element sizes and aspect ratios may be imposed [45]. An

alternative approach of error measures (goal-based) is described in [49].

4.3. Mesh adaptive technique in POD and error estimate

When adaptive meshes are employed in ocean models, the mesh resolution requirements vary

spatially and temporally, as the meshes are adapted according to the flow features through the

whole simulation. The dimensional size of the variable vectors is different at each time level

since the number of nodes varies during the simulation. Snapshots can therefore be of different

length at different time levels. This unavoidably brings difficulties in the implementation of a

POD-based reduced model for an adaptive model. To overcome these difficulties, a standard

reference fixed mesh is adopted for the reduced model. The solutions from the original full
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model are interpolated from their own mesh onto the same reference fixed mesh at each time

level, and then stored in the snapshots. The information at the snapshots is used to find the

optimal POD basis. This allows the same length of base modes to be obtained at each time

level. The resolution of the reference mesh and the piecewise linear interpolation errors between

the two meshes (the adaptive mesh and the fixed reference mesh) may affect the accuracy of

the POD simulation. To reduce the interpolation error, a high order interpolation approach is

suggested in future work.

5. Application and discussion

The new model has been applied to 2D gyre flows. The initial conditions are optimised using

the POD reduced adjoint model. The accuracy and validation of the reduced order POD

adjoint model have been evaluated. Error estimation is undertaken through the comparison

of the results obtained from the original (full) and POD reduced models. Furthermore, the

adaptive POD approach is employed to update the POD bases (when the value of the cost

function cannot be decreased by more than 10−3 between the consecutive iterations), and

its effectiveness is discussed. The Polak-Ribiere nonlinear conjugate gradient technique is

employed in the implementation of the inversion.

5.1. Description of the case: Gyre

The POD reduced adjoint model is tested in a computational domain, 1000 km by 1000 km

with a depth of H = 500 m. The wind forcing on the free surface is given

τy = τ0cos(πy/L), τx = 0.0, (46)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 00:1–6

Prepared using fldauth.cls



A POD REDUCED ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 19

where τx and τy are the wind stresses on the free surface along the x and y directions

respectively, and L = 1000 km. A maximum zonal wind stress of τ0 = 0.1 Nm−1 is applied

in the latitude (y) direction. The Coriolis terms are taken into account with the beta-plane

approximation (f = βy) where β = 1.8× 10−11 and the reference density ρ0 = 1000 kgm−1.

The problem is non-dimensionalised with the maximum Sverdrup balance velocity

βHρ0v =
∂τ

∂y
≤ τ0π

L
⇒ v ≤ 3.5× 10−2m/s−1 (47)

(and so the velocity scale U = 3.5×10−2m/s−1 is used here), and the length scale L = 1000 km.

Time is non-dimensionalised with T = L
U . Incorporating the beta-plane approximation gives

a non-dimensional β∗ = L2β
U = 514.286. The non-dimensional wind stress (applied as a body

force here averaged over the depth of the domain) takes the same cosine of latitude profile

with τ∗0 = τ0L
(U2ρ0H) = 163.2653. The Reynolds number is defined as Re = UL

ν = 250 (here the

kinematic viscosity is 140 m2s−1).

No-slip boundary conditions are applied to the lateral boundaries. The simulation starts

from ’rest’ and is driven by the wind stresses (46) on the free surface. The spin-up period

is 0.3024 (equivalent to 100 days). The simulation period is [0.3024, 0.6048] (equivalent to

[100, 200] days). The time step is 3.78× 10−4 (or 3 hrs).

5.2. Optimisation of initial conditions

The control variables in the case tested are the initial conditions on the 100th day. The

data assimilation experiments are designed by an identical twin technique. The ’true’ flow

state is generated by running the full forward model (ICOM) with a zonal wind forcing on

the free surface. The pseudo-observational data is taken on days 125, 150 and 175 over the

computational domain. The guess values of the initial conditions are given by the background
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flow (here, taken from the ’true’ flow fields on days either 112.5 or 137.5 in the experiments).

The POD bases are constructed by the snapshots which are obtained from the numerical

solutions by forcing the full forward model with the background flow. 40 snapshots with 35

POD bases for the velocity field u, v, w and pressure are chosen which capture more than

99.5% of energy (calculated by the first 35 leading eigenvalues (7)).

To accurately represent geostrophic pressure its basis functions are split into two sets: Φpgu and

Φpgv which are associated with the u- and v-velocity components. Furthermore the geostrophic

pressure can be represented by a summation of the two sets of geostrophic basis functions.

The geostrophic basis functions are calculated by solving the elliptic equations (the geostrophic

balance equations) using a conjugate gradient iterative method. The geostrophic pressure has

a quadratic finite element representation whilst linear finite element representations are used

for the velocity components.

An adaptive mesh is adopted in the full model. The mesh for the full model adapts every

19 time steps with maximum and minimum mesh size of 0.2 and 0.001 (non-dimensional)

respectively. To allow the same length of POD bases at the snapshots for both the reduced

forward and adjoint models, a reference fixed mesh is chosen for the POD inversion (right

panel in figure 7). To build up the snapshots, the solutions from the full forward model are

interpolated from the adaptive mesh (left panel in figure 7) onto the reference fixed mesh.

5.3. Issue on adaptive reduced 4D-Var

As discussed in section 3.2, the POD reduced model based on the background flow can be

improved by updating the POD bases. Here the POD bases are re-calculated when the value

of cost function cannot be decreased by more than 10−3 between the consecutive optimisation
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iterations. The resulting control variables from the latest optimisation iteration are applied

back to the full model to generate the new POD bases. The new POD bases then replace the

previous ones to derive a new POD reduced order model [41].

However in the experiments the updated POD bases may be unacceptable if the control

variables optimised during the latest POD iteration are far from true values. As an example,

the initial guess controls (background flow) are taken from the true flow field on the 137.5th day.

By fitting the numerical solution to observational data, the errors of the inverted modelled

velocity field at the time levels (t = 125, 150, 175 days) are reduced to small values (less

than 8 in figure 1). The cost function (13) is reduced by 73 % of its original value during

the optimisation procedure. However, the optimised initial controls during the current POD

inversion iteration are far from what it is expected (inverted modelled velocity on the top

panel in figure 1 and the true value in figure 5a). It is assumed that a local minimum was

attained in this case. Obviously the optimised initial conditions cannot be used to update the

POD bases. An appropriate choice of initial guess controls is needed to improve the adaptive

reduced 4D-Var solution (here, taken from the true flow field on the 112.5th day, see section

5.4.2).

5.4. Error estimation and POD results

The total error of the inverted modelled results comprises: (a) the integration error of the POD

reduced model and the projection error (including the piecewise linear interpolation error when

adaptive meshes are adopted);and (b) the error introduced by the optimised controls.

5.4.1. Error estimation for the POD reduced model The error of the POD reduced model is

split into the projection error and the error from the integration in the subspace (see [50]).
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The two norm of the projection error can be calculated by [50]

||eproj ||L2 =

√√√√ K∑
i=M+1

λi (48)

where K is the number of snapshots and M is the number of POD bases (i.e. the subspace

size). Here M = 35, the two norm of the projection error is therefore
√∑K

i=M+1 λi = 1.22, 1.3

and 1.37 for the velocity components u, v and pressure p respectively.

To isolate the error of the reduced model, the POD reduced model is driven by the true controls

rather than the optimised ones. The results from the POD reduced model are compared with

those from the full model. The root mean square error (RMSE) between the POD velocity

solution and the true one at the time level n is used to estimate the error of the POD model:

RMSEn =

√∑N
i=1(Uni − Un0,i)2

N
(49)

where, Uni and Uno,i are the vectors containing the POD velocity components and true ones

at the node i respectively, N is the total number of nodes over the domain. The Root Mean

Square Error (RMSE) during the simulation period is provided in figure 2. The dashed line

represents the total reduced model error (the integration error plus project error) when 41

snapshots with 35 POD bases are chosen, while the solid line shows the integration error

isolated by eliminating the projection error (the number of POD bases being the same as

that of snapshots). The total reduced model error (RMSE) remains small (less than 2) when

t ≤ 150 days, and increases to 4 at t = 175 days. Since adaptive meshes are employed in

the full model, the RSME shown in figure 2 includes the (piecewise linear) interpolation error

as well. The absolute error between the POD solution and true flow state over the domain

at the different time levels (t = 125, 150, 175 days) is shown in figure 3. The maximum error

is less than 8 (non-dimensional) during the first half simulation period and increases as the

simulation time accrues.
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5.4.2. Optimised results and error estimation In this case, the guess values of the initial

conditions (background flows) are taken from the true flow state on the 112.5th day. The POD

reduced forward and adjoint models are used to optimise the initial conditions. The POD bases

are updated once during the optimisation procedure. The error between the inverted modelled

velocity and the true value (figure 4) decreases by 10 − 50% in the larger part of flow after

updating the snapshots (right panel). The cost function (taking into account only the error

introduced by the optimised controls) is reduced by 50 % of its original value at the first POD

inversion iteration. It is further reduced by 25 % at the second adaptive POD iteration, i.e.,

after the snapshots are updated.

The correlation cor defined below is also used to evaluate the quantity of the inversion

simulation:

cor =
cov12

σ1σ2
,

where,

σ1(x) =
Nt∑
n=1

(Un(x)− Ū(x))2, σ2(x) =
Nt∑
n=1

(Uno (x)− Ūo(x))2,

cov12(x) =
Nt∑
n=1

(Un(x)− Ū(x))(Uo(x)n − Ūo(x)), (50)

where, Un and Uno are the vectors containing the optimal and true velocity components (u, v) at

the time level n over the domain respectively, their respective means over the simulation period

are Ū and Ūo, n is the time level, and Nt is the total number of time levels, x = (x, y, z). The

correlation between the true and modelled velocity in the case of running the POD model with

the initial guess control (background flow) is low, mostly less than 0.5 over the domain (figure

6(b)). It is improved after the initial conditions are optimised (figure 6(c)), especially after

updating the POD bases (at the second adaptive POD iteration, figure 6(d)). The correlation
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between the inverted modelled and true velocity varies between 0.80-0.98 over the domain.

The optimised velocity fields are drawn in figure 7 and exhibit an overall good agreement with

the true ones while the POD bases are updated only once for the entire optimisation process.

5.5. Computational efficiency of reduced 4D-Var

In this test case, it takes 10 hours to run the full model, and 3 hours to run the reduced model.

Thus running the reduced model results in a decrease of 70% of CPU time. As a consequence,

the computational time required for reduced 4D-Var is reduced by a factor of 3N (where

N is the number of times needed to run the models until the optimality is satisfied). POD

preconditions the minimisation process which results in less minimisation iterations.

It is also noted that 99% of CPU required for the reduced model is used to calculate the

discretised matrix. The numerical technique developed in [1] is adopted to accelerate the POD

inversion, that is, the matrices in the discretised POD forward and adjoint equations can be

constructed by sets of time-independent sub-matrices (see equations (19) and (20)) prior to

running the reduced forward and adjoint models. These sub-matrices remain the same until

the POD bases are updated.

In total, the computer time required for the inverse simulation in this test case is given below:

• Running the full forward model to setup the snapshots and calculate the POD bases ( 10

hours);

• Calculating the time-independent sub-matrices in preparation for running both the

reduced forward and adjoint models ( 2.5 hours);

• Running the reduced forward and adjoint models during the optimisation procedure ( 10

minutes, where the Polak-Ribiere nonlinear conjugate gradient approach for large-scale
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unconstrained minimisation is employed).

6. Conclusion

The development of the POD reduced 4D-Var model for an adaptive mesh, non-hydrostatic

finite element ocean model is presented here. Using the POD and Galerkin projection

approaches, the reduced forward model is derived in a reduced subspace (details in [38]).

Once the forward reduced model is available, the reduced order adjoint model can be directly

obtained from the POD reduced forward model in the subspace, instead of the original forward

model. The minimisation procedure is then carried out in the reduced space. The matrix for

the discretised forward and adjoint models is constructed by a series of time-independent sub-

matrices which remain unchanged until the POD bases are updated[1]. The reduced forward

and adjoint models can thus be run repeatedly with negligible computational cost.

The performance of POD 4D-Var model is demonstrated by inverting for the initial conditions

of a wind driven gyre in an idealised geometry. The correlation between the inverted modelled

and true velocity is of the order of 80%- 98% over the majority of the domain. The cost function

(taking into account only the error introduced by the optimised controls) is reduced by 50 %

of its original value at the first POD inversion iteration. It is further reduced by 25 % after

the snapshots are updated. The projection error is less than 1.22 for u, 1.3 for v and 1.37 for

p (non-dimensional unit).

In general, the advantages of the POD reduced inverse model developed here over existing

POD approaches are the ability:

• to implement the reduced adjoint model from the discretised forward model easily; ;
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• to use dynamically adaptive meshes in the reduced 4D-Var; ;

• to significantly reduce the computation cost for 4D-Var by carrying out the optimisation

in the reduced space since POD reduces condition number of Hessian of cost function

[51];

• to accurately represent the geostrophic balance by two sets of POD bases for the velocity

components u and v.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Optimisation problem (local minimum) introduced by an unappropriate choice of initial guess

controls (the initial guess controls is taken from the true flow field on the 137.5th day). Velocity results:

(a) (b) at the initial time level; (c)(d) at time level t = 125 days; (e) (f) at time level t = 175 days.

Left panel: inverted modelled velocity field; right panel: error for the velocity field.
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Figure 2. Error of the POD reduced forward model. Solid line: integration error (41 snapshots and 41

POD bases); dashed line: total reduced model error (integration error plus project error, 41 snapshots

and 35 POD bases).
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(a) (b)

(c)

Figure 3. Error in the velocity field from the POD reduced model with the true initial conditions at

time levels (a) t = 125 days (top panel) (b) t = 150 days (middle panel) (c) t = 175 days (bottom

panel).
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Error in the velocity of the POD forward model driven by the optimised initial conditions

at time levels: (a)(b) t = 125 days (the top panel); (c)(d) t = 150 days (the middle panel); (e)(f)

t = 175 days (the bottom panel). Left panel: the first POD iteration; right panel: the second POD

iteration (after updating the snapshots).
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(a) (b)

(c)

Figure 5. The comparison between the optimised and true initial velocity conditions. (a) the true

initial conditions; (b) the optimised initial conditions; (c) the error between the optimised and true

initial conditions.
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(a) (b)

(c) (d)

Figure 6. Correlation between the inverted modelled velocity and true one. The inverted modelled

velocity is obtained from the POD model driven by (a) the true control; (b) the initial guess controls;

(c) the optimised controls at the first POD iteration; (d) the optimised controls after the second POD

iteration, i.e., after updating the POD bases.
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(a) (b)
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Figure 7. Comparison between the true velocity field and that from the POD reduced model (driven

by the optimised initial conditions) at the time levels: (a)(b) t = 125 days; (c)(d) t = 150 days; (e)(f)

t = 175 days. Left panel: the true velocity field; right panel: the optimised velocity field)
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