
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2010; 62:74–89
Published online 24 February 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2015

Criteria of optimality for sensors’ location based on adjoint
transformation of observation data interpolation error

A. K. Alekseev1 and I. M. Navon2,∗,†

1Moscow Institute for Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
2Department of Scientific Computing, Florida State University, Tallahassee, FL 32306-4120, U.S.A.

SUMMARY

Criteria of optimality for sensors’ location are addressed using an interpolation error transformed by
especial adjoint problems. The considered criteria correspond to the analysis error in certain Hessian-based
metrics and to the error of some forecast aspect. Both criteria are obtained using adjoint problems that
provide computation without the direct use of the Hessian. For a linear inverse heat conduction problem,
these criteria are compared and demonstrated promising results when compared with a criterion based
on the norm of the interpolation error of observation data. Approaches to sensor set modification using
either redistribution of sensors’ or refinement of the sensors grid (insertion of additional sensors) are also
compared. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive observations are aimed to improve a forecast by the dynamical retrieval of optimal
locations for additional measurements. They employ several different methods that are briefly
listed below.

The singular vector approach [1–3] is based on the use of dominant singular vectors (most
rapidly growing disturbances) of the integral tangent propagator that may be found from the
spectrum of corresponding Fisher information matrix (FIM) or the Hessian [4, 5].

New observations are selected to provide a maximum projection on these singular vectors.
The adjoint sensitivity approach is based on the assumption that a change of the analysis data

in zones of maximum gradient of forecast aspect (scalar measure of some forecast quantity of
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interest) causes a maximal change in this aspect, thus additional points of measurements should
be placed in these zones [6, 7]. The key element of this technique is the estimation of sensitivity
via adjoint equations.

The adjoint targeting strategy by Daescu et al. [8, 9] is based on the evaluation of two sensitivity
fields: the first associated with the verification cost functional (some forecast score) and the second
field associated with the discrepancy functional used in the data assimilation process.

A large number of works in adaptive observations are connected with Kalman filter [10, 11]
that provides a natural use of statistical data but requires extensive computer resources.

The combination of adjoint equations (providing fast computations) and the statistical informa-
tion on measurement and background data error is used in a significant part of publications. In [12]
the sensitivity of a forecast aspect to changes in analysis variables was demonstrated to deviate
significantly from the sensitivity of the forecast aspect to observations. It is demonstrated to be
more advantageous to add measurements in zones of large gradient of the forecast with respect to
the observations. The adjoint-derived gradient transformed by Kalman operator is considered as
the sensitivity vector that governs optimal sensor locations.

In [13, 14] the optimization of observations was conducted via direct computation of a reduction
of the error variance of forecast score caused by additional observations. The variance of forecast
score was expressed through adjoint sensitivity gradients and the covariance matrix of analysis
(initial state) error. The effect of this matrix changes (caused by a sensors’ grid modification) on
the forecast score error variance was considered. In this approach, the forecast aspect gradients are
estimated in metrics produced by the FIM resulting in a forecast aspect variance. The approach by
Bergot and Doerenbecher [13, 14] is very close to the V-optimality condition used in some works
on the optimal experiment design [15].

In a significant number of works on the optimum experiment design [16–19], certain measures
of the FIM (determinant, maximum or minimum eigenvalues, traces) are used as criteria for an
optimal sensor placement. These approaches are rather computationally extensive due to the need
to directly operate with FIM or the Hessian.

In [20–22] the estimation of analysis error in dependence on a number of uncertainties (including
an observation error) is considered for deterministic and stochastic cases. This estimation is stated
using Hessian and the second-order adjoint problem. It is potentially applicable to the adaptive
observations. Issues of the control for errors of different origin (including observation and projection
errors) are discussed in [23] with the statement of corresponding cost functional and optimality
conditions, which may also serve as a guide for adaptive observations.

There exists some analogy (especially significant for the deterministic case) between the search
for optimum computational grid and optimum grid of sensors. In some works the minimization of
either the local error of approximation [24–26] or the error of some goal functional [27] is used
for the retrieval of an optimum computational grid. It is interesting to extend this approach for
the search of the optimum sensor locations. However, the direct minimization of the interpolation
error of observation data does not provide an account of this error transfer, growth or damping.
The natural way to overcome this difficulty is the direct use of an analysis error, caused by the
interpolation error. Unfortunately, this approach implies solving an inverse problem (or estimation
of the inverse Hessian) at every step of sensors’ adaptation iterations thus leading to an extremely
high computational burden.

In the present paper some compromise criteria are considered (that are using an adjoint-based
transformation of the observation data interpolation error) with the final aim of application to the
adaptive observations. These criteria include both the information on an interpolation error and
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the information on this error transfer and do not require solving an inverse problem, thus ensuring
their implementation to be computationally inexpensive.

2. PROBLEM STATEMENT

Denote an evolution problem statement as

AT0= T̃ (1)

where A is an operator of the direct problem, A−1 is the formal inverse of A, T (t=0, x)=T0(x)
is the initial data (T0∈L2(Q), Q⊂ Rn , n=1,2,3), T̃ is the exact solution at a final time, T obs(xi )
are the observation data at a final time, {xi } denotes sensors’ coordinates (i=1 . . . Jsen), P is the
projection operator from a total field to the sensor positions (PAT0=T obs). Herein, all scalar
products ( f,g)L2(Q) are for brevity denoted as ( f,g), all norms are considered in the following
sense: ‖ f ‖2=( f, f )L2(Q) if another meaning is not specified.

The inverse problem of the estimation of the initial data T0 from the data at the final time may
be formally stated as

T0= A−1T̃ (2)

In data assimilation problems instead of T̃ we have observations T obs also made at a final time
but on the discrete grid of sensors. The need for some interpolation causes the additional error
that can be used as a measure of the quality of sensors’ location.

In the present paper the influence of interpolation error is considered, while the impact of
measurement error is neglected (measurements are considered to be precise). We address to the
search for sensors’ locations xi which are optimal for the estimation of T0 from two perspectives:

• minimization of the analysis error norm ‖�T0‖ in special metrics (a statement similar to
inverse retrospective problems);

• minimization of the valuable functional error |�J | estimated also in special metrics (a statement
similar to forecast problems).

In data assimilation problems [1–3, 6–14], usually, the cost functional (discrepancy between
observations and model calculations) is minimized and assumes the following form:

ε1=(PAT0−T obs,M1(PAT0−T obs)T)/2 (3)

where M1 is a metric tensor for the deterministic approach. In stochastic events it means an inverse
covariance matrix (M1=C−1) of observation error (this implies weighting different sensors in
accordance with their precision). The covariance matrix of analysis error may be determined via
the inverse Hessian as

H−1=(P∗A∗M1PA)−1 (4)

Information regarding fast algorithms for the Hessian calculation may be found in [28, 29].
Herein, we consider another approach. We interpolate the observations T obs→T obs

int on the total
computation domain Q

T obs
int = R ·T obs (5)
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where R is some interpolation operator (concrete form of R, used herein, is specified in the section
of numerical tests), �T obs

int is an interpolation error

T obs
int = T̃ +�T obs

int (6)

The estimation of T0 (solving an inverse problem T0= A−1T obs
int ) may be done in the optimization

statement by a minimization of the discrepancy of the forecast and the interpolation of observations

ε=(AT0−T obs
int ,M(AT0−T obs

int ))/2 (7)

The gradient of the discrepancy assumes the following form:

∇ε= A∗M(AT0−T obs
int ) (8)

where A∗ is the adjoint problem operator. The corresponding form of FIM A∗MA is a symmetrical
positive-definite matrix that may be used as a metric tensor. In the vicinity of the optimal solution
it is equal to the Hessian of discrepancy that is denoted here as H1.

In the present paper an optimal location of sensors is considered from the viewpoint of the
minimization of certain easily computable norm of the analysis error �T0. As raw information we
use estimations of the interpolation error of observation data �T obs

int (that may assume different forms
as surveyed in [30], for example). Corresponding error of T0 may be expressed as �T0= A−1�T obs

int ,
or, accounting

�∇ε=−A∗M�T obs
int (9)

as

�T0=−H−1
1 �∇ε (10)

We denote ∇ε(T0) as �∇ε, herein since it has some specific features (for example, even at the
exact solution ∇ε(T0) �=0 due to the presence of �T obs

int ).
Consider several norms of �T0 from a standpoint of their computational convenience and physical

meanings.
A norm of interpolation error

‖�T obs
int ‖=(�T obs

int ,�T obs
int )1/2 (11)

may be used for the search of the optimal sensor location similarly to the methods of computation
of grid adaptation [24]. ‖�T obs

int ‖ corresponds to the norm of �T0 in a metric engendered by the
matrix HE = A∗A:

(�T obs
int ,�T obs

int )=(�T0,HE�T0)=‖�T0‖2HE
(12)

The expression (�T obs
int ,�T obs

int ) may be directly calculated from the observations without solving
the main problem and, thus, it does not contain information about the considered problem which
constitutes its obvious shortcoming.

The norm of error of the inverse problem solution (analysis error)

‖�T0‖2 = (�T0,�T0)=(A−1�T obs
int , A−1�T obs

int )=(�T obs
int , A−1∗A−1�T obs

int )

= (�T obs
int ,H−1

E �T obs
int ) (13)
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may be considered as a ‘natural’ criterion for the optimal location of sensors. The inverse Hessian
serves herein as a metrics tensor in the space of measurements. The obvious disadvantage of this
approach is caused by the high computational burden of H−1

E calculation, especially in an iterative
process of sensors’ allocation, and instabilities occurring when inverting the Hessian.

In the present paper we suggest to use the norm of the gradient variation caused by �T obs
int

‖�∇ε‖2=(�∇ε,�∇ε) (14)

which may be computed using direct and especial adjoint (loaded by the interpolation error)
problems without the direct use of the Hessian. Taking into account (9), we obtain

(�∇ε,�∇ε) = (A∗M�T obs
int , A∗M�T obs

int )=(�T obs
int ,M∗AA∗M�T obs

int )=(A�T0,M
∗AA∗MA�T0)

= (�T0, A
∗M∗AA∗MA�T0)=(�T0,H

∗
1 H1�T0)=‖�T0‖2H∗

1 H1
(15)

Thus, the norm of gradient variation is equal to the norm of analysis error in certain Hessian-based
metric engendered by matrix H1H∗

1 . This norm is of interest due to its relative simplicity of
calculation.

In a set of problems we may be interested in the precise calculation of some valuable functional
(forecast aspect), herein denoted as J (T0). On the solution of an additional adjoint problem �
connected with this functional (the detailed statement is presented in following section (Equations
(35)–(39))) we may determine the variation of the forecast aspect as

�J =(�,�T0)=(�, A−1�T obs
int ) (16)

The estimation of �J =(�,�T0) implies solving an inverse problem for the estimation of �T0,
and thus it involves a significant computational cost. Thus, in the present paper we consider an
alternative expression

(�,�∇ε)=(�, A∗M�T obs
int )=(�, A∗MA�T0)=(�,H1�T0)=�JH1 (17)

which can be calculated from two adjoint problems, linked with the forecast aspect and the
interpolation error and providing values of � and �∇ε. We treat this value as the variation of the
forecast aspect calculated in the special metric.

The values ‖�∇ε‖ and |(�,�∇ε)| are considered in this paper as criteria for sensors’ location
optimality and compared with the directly computed ‖�T obs

int ‖. The corresponding value of ‖�T0‖ is
estimated by solving the inverse problem (as the difference of a priori known T0 and the result of
inverse problem solving) and used as a reference. In numerical tests we solved the inverse problem
by gradient-based iterations (conjugate gradients) that provide an implicit regularization [17].

The optimization of location of sensors in numerical tests was performed by both redistribution
and refinement. The redistribution of sensors was conducted by an optimization using conjugate
gradients and the simplex method [31]. The refinement means the placement of additional sensors
in zones of the large error density. Generally speaking, the redistribution has a greater potential
from the viewpoint of optimal sensor configuration and is close to an optimum experiment design
[16]. However, it is connected with a great number of algorithmic problems and require high
computational resources. In this approach, the grid of sensors tends to be highly irregular. For two
dimensional or three dimensional events, an interpolation on the irregular grid (and corresponding
error estimation) may cause serious problems [30, 32] and redistribution seems to be very difficult
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or even impossible. A refinement is much simpler from this viewpoint and close to the current
practice of adaptive observations.

3. TEST PROBLEM

Let us consider a one-dimensional problem for the determination of an initial temperature distri-
bution T0(x) from observations at the final moment T obs(xi ); i=1 . . . Jsen. In inverse problems,
usually, the cost functional having a summation over the sensors should be minimized

ε1(T0(·))=
Jsen∑
i, j

(T (t f , xi )−T obs(xi ))M1,i j (T (t f , x j )−T obs(x j )) (18)

In the present paper, we consider another functional with a summation over all grid nodes

ε(T0(·))=
N∑
i, j

(T (t f , xi )−RT obs(xi ))Mi j (T (t f , x j )−RT obs(x j )) (19)

For deriving the adjoint equation the following continuous analog is used:

ε(T0(·))=
∫

(T (t f , x)−T obs
int (x))M(x, y)(T (t f , y)−T obs

int (y))dx dy (20)

The direct problem is described by the unsteady one-dimensional heat transfer equation

�T
�t

− �
�x

(
�
�T
�x

)
=0, (t, X)∈�=(0< t< t f ;0< x< X) (21)

with boundary conditions

�T
�x

∣∣∣∣
0
=0,

�T
�x

∣∣∣∣
X

=0 (22)

The final condition is obtained by an interpolation of observation data

T |t=t f =T obs
int (x) (23)

The error of interpolation may be presented as �T obs
int (x)=T obs

int (x)− T̃ (t f , x), where tildes mean
the exact solution (in tests �T obs

int (x) is approximately estimated via higher-order terms of the
interpolation polynomial).

The initial conditions

T |t=0=T0(x) (24)

are unknown and should be estimated. As a result we obtain a retrospective statement of the
inverse heat transfer problem [17]. Certainly, the error of T0(x) grows as t f →∞, and there exist
restrictions on an admissible interval of observation t f which may be determined using a priori
information on T0(x) in a standard application for inverse problems [17] .
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We may use gradient-based iterative methods to determine T0(x). The following adjoint problem:

��

�t
+�

�2�
�x2

=0 (25)

with the boundary condition

��

�x

∣∣∣∣
0
=0,

��

�x

∣∣∣∣
X

=0 (26)

and the final condition

�(t f , x)=−
∫

M(x, y)(T (t f , y)−T obs
int (y))dy (27)

may be posed. When M(x, y)=E(x, x) (E(x, x) is a continuous analog of the unity matrix) the
commonly used form (which is applied in further considerations) is recovered

�(t f , x)=−(T (t f , x)−T obs
int (x)) (28)

The gradient of the goal functional has a form

∇ε(T0)=−�(0, x) (29)

which may be used in the gradient-based optimization procedures.
Let us consider an optimization of sensor locations in the framework of above-mentioned

problem.
An optimal placement of sensors based on the criterion ‖�∇ε‖2

{xi }=argmin‖�∇ε‖2 (30)

implies solving of the following adjoint problem:

��1

�t
+�

�2�1

�x2
=0 (31)

with the boundary condition

��1

�x

∣∣∣∣
0
=0,

��1

�x

∣∣∣∣
X

=0 (32)

and with the final condition

�1(t f , x)=�T obs
int (x) (33)

As a result, this problem solution provides the value

�∇ε=−�1(0, x)

whose norm should be minimized.
The search of an optimal sensor location from the criterion |(�,�∇ε)|

{xi }=argmin |(�,�∇ε)| (34)
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includes solving of the additional adjoint problem associated with the goal functional (forecast
aspect). In numerical tests, we consider the temperature at some point Test=T (test, xest) as a goal
functional

J =
∫ ∫

�
T (t, x)�(t− test)�(x−xest)dt dx (35)

The corresponding adjoint problem follows:

��

�t
+�

�2�
�x2

=0, (t, x)∈� (36)

Boundary condition as:

��

�x

∣∣∣∣
x=X

=0,
��

�x

∣∣∣∣
x=0

=0 (37)

We use test= t f , then the final condition:

�(t f , x)=−�(x−xest) (38)

The goal functional variation caused by the analysis error assumes the form

�J =(�(0, x),�T0) (39)

Instead of this value we will consider �JH1 =(�(0, x),H1�T0)=(�(0, x),�∇ε) using solutions of
(36)–(38) and (31)–(33) which are less computationally expensive.

The direct problems (21)–(24) and adjoint problems (25)–(29), (31)–(33) and (36)–(38) were
solved in numerical tests. A finite difference approximation of both the heat transfer equation and
the corresponding adjoint equations having a second-order accuracy over time and space was used.
An implicit method (implemented by using the Thomas algorithm) was applied for solving these
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Figure 1. 1—true distribution of measured temperature, 2—interpolated distribution, 3—error estimation
(41), 4—true error of interpolation.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:74–89
DOI: 10.1002/fld



82 A. K. ALEKSEEV AND I. M. NAVON

problems. Thermal diffusivity value was taken as �=2×10−7m2/s. The spatial grid consisted
of 50–500 nodes; the temporal integration contained 100–10 000 time steps. The illustrations,
presented herein, have been carried out with 100 spatial nodes and 100 time steps. The initial
temperature distribution is presented in Figure 2, while the final distribution may be found in
Figure 1.

4. NUMERICAL TESTS

A number of numerical tests were performed for the study and comparison of the considered
criteria. At a first step (for known T0(x)) the exact magnitude of J is computed, and the inverse
retrospective problem is solved for total input data (posed at the every node of computational grid
at the final time). The error of an inverse problem solution (‖�T0‖2)1=∑N

k (Tk,0−T exact
k,0 )2/N is

determined by comparing it with the known T0(x) and assumed to be the lowest bound of error.
At a second step the number of sensors and their initial positions {x0i } are set. For these sensors’

data we also solved the inverse problem and obtained an error norm (‖�T0‖2)2 assumed to be
the starting value of the error that should be minimized. The optimization of location of sensors
{xnewi } for (‖�T0‖2)2 reduction is conducted by the minimization of the following functionals of
the interpolation error:

1. ‖�T obs
int ‖

2. ‖�∇ε‖
3. |(�,�∇ε)|

or by inserting additional sensors into zones of great density of error. For optimized locations
{xnewi } we calculated the observation data, resolved the inverse problem and found (‖�T0‖2)3 which
is compared with the minimal and initial values.

4.1. Estimation of the interpolation error of observation data

Herein, we consider the estimation of ‖�T obs
int ‖ in one-dimensional case. At the initialization

stage we have a set of sensors {xi }, i =1 . . . Jsen and corresponding observations T obs(xi ). The
observations are assumed to be precise since we are studying, herein, the impact of interpolation
error. Using these data one may compute an interpolation of observations (at instant t f ) by the
Newton interpolation polynomial.

The piecewise constant derivatives are computed for an interpolation error estimation

�2T apr

�x2k+1

= 1

xk+2−xk

(
T obs(xk+2)−T obs(xk+1)

xk+2−xk+1
− T obs(xk+1)−T obs(xk)

xk+1−xk

)
(40)

For linear interpolation, the second term of Newton polynomial (coinciding with Taylor expan-
sion in one dimension) provides the estimation of the interpolation error on (xk, xk+1) as follows:

�T obs
int (xk, xk+1)= (x−xk+1)(x−xk)

2

�2T apr

�x2
(41)
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Figure 2. 1—exact T0, 2—estimation using measurements on all computation grids,
3—estimation using 11 sensors.

True and interpolated distributions of the final (observed) temperature along with the true
interpolation error and estimation of this error (41) are presented in Figure 1 as a function of the
node number.

After optimization, we find a new set of sensors {xnewi }, i=1 . . . Jsen such that the error

ε(xi )=
Jsen−1∑
k=1

∫ xk+1

xk
(�T obs

int )2 dx=
Jsen−1∑
k=1

∫ xk+1

xk

(
(x−xk)(x−xk+1)

1

2

�2T apr

�x2

)2

dx (42)

diminishes. We employed in (42) ‘frozen’ derivatives (computed from the initial sensors’ location
and kept constant over iterations). Otherwise, the sensors tend to aggregate in zones of low second
derivatives away from the regions containing useful information (zones that provide the trivial
solution of minimization problem). This is one of the multiple obstacles in the way of effective
sensors’ redistributions.

The initial temperature distribution and results of its estimation using different grids of sensors
are presented in Figure 2 (11 sensors are located at points 1,10,20, . . . ,100).

Figures 3 and 4 contain the results of the redistribution via an optimization (using conju-
gate gradients). The analysis of these data demonstrates the decrease of exact error norm by a
factor 3.1 (error distributions are provided in Figure 4) when error estimation (42) dropped by a
factor of 2.5 (Figure 3). Thus, reduction of the error estimation �T obs

int leads to a decrease in the
true error �T0.

This approach (sensor redistribution) is difficult from the algorithmic viewpoint and entails a
large computational burden caused by the multiple direct problem solution and the need to use
new measurements for all sensors.

The refinement (inserting additional sensors into zones of the high error density) is much simpler
from the algorithmic viewpoint and it does not require significant additional computations. Results
of the refinement (addition of measurements in points 45 and 55 reduces the error by 20%) are
presented in Figure 5.
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Figure 3. 1—error estimation on initial grid of sensors, 2—error estimation on optimized grid of sensors.
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Figure 4. 1—true error on initial grid of sensors, 2—true error on optimized grid of sensors.

Thus, the numerical tests (Figures 3–5) confirm that the local error of interpolation �T obs
int may

be estimated and reduced by either a redistribution or a refinement of sensors’ grid in such a way
that the true error �T0 also diminishes.

4.2. Optimization of sensor location via ‖�∇ε‖ and |(�,�∇ε)|
An optimization of sensors’ location using �T obs

int is demonstrated in the above section to be feasible
but it may be not the best option, because it does not account for features of both the used model
and the goal functional. Thus, we consider another criteria ‖�∇ε‖ and |(�,�∇ε)|. Figure 6 enables
us to compare the error estimation �T obs

int (41), the true error and �∇ε.
The density of ‖�∇ε‖ is much smoother when compared with either true error or the estimation

error.
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Figure 5. 1—error estimation on initial grid of sensors, 2—error estimation on refined grid
of sensors, 3—true error on initial grid, 4—true error on refined grid. (Curves 3 and 4

coincide in zones of unperturbed sensors.)
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Figure 6. Comparison of error densities. 1—true error, 2—error estimation (42), 3—�∇ε.

The density error has a significantly different shape if we care for the accuracy of the goal
functional. Figure 7 presents distributions of the error density components for the pointwise
functional (35).

Initial coordinates of sensors and coordinates obtained by optimization (conjugate gradients)
using the above considered criteria are presented in Table I. The quality of optimization (when
compared with the initial sensor grid) from the viewpoint of ‖�T0‖2 and �J/J may be estimated
from Table II.

The simplex method [31] used for a minimization of ‖�∇ε‖ and ‖�T obs
int ‖ tends to change

the order of sensors and was considered as unacceptable but was improved by adding a special

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:74–89
DOI: 10.1002/fld



86 A. K. ALEKSEEV AND I. M. NAVON

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90 100

1
2
3

Figure 7. Distributions of density error components for the goal functional. 1—�∇ε, 2—�, 3—��∇ε.

Table I. Initial and optimized coordinates of sensors.

Sensor coordinates

Initial {x0i } 1 4 14 24 34 44 54 64 74 84 100
{xnewi }, regarding ‖�T obs

int ‖ 1 10.3 18.7 27.7 35.5 45.5 52 62 70 79.5 100
{xnewi }, regarding ‖�∇ε‖2 1 18 25.3 32 45 49 53 59 67.5 73.5 100
{xnewi }, regarding |(�,�∇ε)| 1 4 9 14 20 24 30 34 54 84 100

Table II. Analysis error norm and relative goal error for different grid of sensors.

Initial {xnewi }, optimal {xnewi }, optimal {xnewi }, optimal
Total sensor grid regarding regarding regarding

grid data {x0i } ‖�T obs
int ‖ ‖�∇ε‖ |(��∇ε)|

‖�T0‖2 1.16 2.53 1.86 1.46 2.56
|�J |/J 0 0.713 0.138 0.067 0.045

penalty term. However, results obtained exhibit a similar quality for both the simplex method and
the conjugate gradients. For |(�,�∇ε)| neither the simplex method nor the conjugate gradients
provided acceptable results and a refinement was used for the sensor grid modification.

Data presented in Table II demonstrate the optimization over ‖�∇ε‖ to provide the best results
from viewpoint of ‖�T0‖ when compared with the optimization over‖�T obs

int ‖. Naturally, the opti-
mization over |(�,�∇ε)| is more advantageous from a �J/J viewpoint (however, it deteriorates
‖�T0‖2).
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4.3. Comparison of impact of different sensors

If we delete a sensor, this action affects all the above-mentioned measures of errors. Thus, the
information provided by a given sensor may be estimated via the increase in the error caused by
its deletion.

The results are provided in Figures 8 and 9 as a function of the sensor location. The
error is divided by the error corresponding to the intact sensor grid ‖�T obs

int all−i‖/‖�T obs
int all‖,

‖�∇εall−i‖/‖�∇εall‖ and ‖�T0,all−i‖/‖�T0,all‖.
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It may be noted that the relative importance of sensors estimated via ‖�∇ε‖ is closer to the one
obtained from ‖�T0‖, than to the one, obtained from ‖�T obs

int ‖. This argues in favor of using ‖�∇ε‖
for the sensor location optimization. From the viewpoint of goal functional (35), the importance
of sensors assumes another form and is presented in Figure 9.

Thus, the approach presented above provides a feasibility for the qualitative evaluation (and
comparison) of the information obtained by a selected sensor. The estimation of the relative
importance of sensors provides another tool for the sensor grid improvement.

The considered sensor location criteria are presented for a linear model; however, this does not
detract from the generality of approach. Both for a linear and for nonlinear statements we should
recalculate the sensors’ location in dependence on the observed field. Relatively good results
may be obtained for a small observation error when the linear approximation of the influence
propagation (adjoint problem) is valid.

5. CONCLUSION

The criterion of sensor location optimality (�∇ε,�∇ε) having a meaning of an analysis error
in a special Hessian-based metric and the criterion connected with the goal functional (forecast
aspect) error |(�,�∇ε)| were considered in this research. Both criteria use adjoint problems that
transform the interpolation error of observation data and provide for a relatively efficient calculation
excluding inverse problem solution or direct use of the Hessian. The numerical tests carried out
demonstrated the applicability of these criteria for the adaptive observations and promising results
when compared with a criterion based on the norm of the interpolation error.

The optimization-based redistribution of sensors requires significant computational efforts and
encounters serious algorithmic problems caused, for example, by possible sensors merging or a
change in the sensors’ order. The refinement using both criteria (�∇ε,�∇ε) and |(�,�∇ε)| provides
a faster and more robust improvement of a sensor grid in contrast to the redistribution.

The information provided by a selected sensor may be qualitatively estimated by the increase
of some measure of error (provided by the above-mentioned criteria) caused by its deletion. This
information depends both on the sensor location in a measured field and on the configuration of
the other sensors.

The proposed sensor location criteria were presented and implemented in a linear framework.
Extension to nonlinear case will constitute our follow-up research effort.
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