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SUMMARY 
The known properties of equivalence between four-dimensional variational (4D-Var) data assimilation and 

the Kalman filter as well as the fixed-interval Kalman smoother point to particular optimal properties of 4D-Var. 
In the linear context, the 4D-Var solution is optimal, not only with respect to the model trajectory segment over the 
assimilation time interval, but also with respect to any model state at a single observation time level; in the batch 
processing (cycling 4D-Var) method, the information in 4D-Var is fully transferred from one batch to the next by 
the background term; 4D-Var allows the processing of observations in subsets, while the final solution is optimal 
as all observations are processed simultaneously. These properties hold even for models that are imperfect, as well 
as not invertible. Various properties of equivalence of 4D-Var to the Kalman filter and smoother result from these 
optimality properties of 4D-Var. Further, we show that the fixed-lag Kalman smoother may also be constructed 
in an optimal way using a multiple batch-processing 4D-Var approach. While error covariances are crucial for 
the equivalence, practical techniques for evaluating error covariances in the framework of cycling 4D-Var are 
discussed. 
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1. INTRODUCTION 

Methodologies of meteorological data assimilation comprise two families: vari- 
ational data assimilation and sequential data assimilation (Daley 1991; Ghil and 
Malanotte-Rizzoli 1991; Cohn 1997; Courtier 1997; Ghil 1997). Both variational and 
sequential data assimilation fit into the framework of estimation theory, though varia- 
tional methods are closer to aspects of control theory (Lorenc 1986; Ghil and Malanotte- 
Rizzoli 1991; Cohn 1997; and references therein). The variational data assimilation 
methods include both three-dimensional and four-dimensional variational data assimi- 
lation (3D-Var and 4D-Var respectively), while the sequential data assimilation features 
the Kalman filter and smoother. 

Variational data assimilation has undergone rapid development since the work by 
Le Dimet and Talagrand (1986), Lewis and Derber (1985), Talagrand and Courtier 
(1987), and Courtier and Talagrand (1987). 3D-Var was put in operational use in 
place of the optimal interpolation (01) method in 1991 at the National Centers for 
Environment Prediction (NCEP) (Derber et al. 1991; Parrish and Derber 1992). Since 
then, most meteorological centres in the world have implemented 3D-Var, including the 
European Centre for Medium-Range Weather Forecasts (ECMWF) in 1996 (Courtier 
et al. 1998), the Canadian Meteorological Center in 1997 (Gauthier et al. 1998), the 
Data Assimilation Office (Cohn et al. 1998), the Met Office of the UK (UKMO) (Ingleby 
et al. 1999), MCt6o-France (ThCpaut et al. 1998), and the High-Resolution Limited-Area 
Model (HIRLAM) group (Berre et al. 1999). At the same time, 4D-Var is intensively 
investigated and developed in conjunction with operational models (e.g. ThCpaut and 
Courtier 1991; Navon et al. 1992; Chao and Chang 1992; Zupanski 1993; Courtier 
et al. 1994; Zou and Kuo 1996; Zupanski and Mesinger 1995; to cite just a few). 
The most encouraging achievement occurred recently at ECMWF, where 4D-Var was 
implemented for operational use at the end of 1997. 4D-Var was implemented using 
numerical weather prediction (NWP) models even with the most sophisticated physical 
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processes (e.g. Zou and Kuo 1996; Zupanski 1997; Mahfouf and Rabier 2000; Rabier 
et al. 1998,2000). 

Parallel with variational methods, sequential methods have been extensively investi- 
gated since the beginning of the 1980’s (Ghil et al. 1981). Most meteorological applica- 
tions of the Kalman filter are limited to idealized one- and two-dimensional models (e.g. 
Cohn and Parrish 1991; Dee 1991; Daley 1992; Evensen 1994; Todling and Cohn 1994). 
Cohn et al. (1994) introduced a Kalman smoother to meteorology, named retrospective 
data assimilation, aiming to produce a long time-consistent sequence of analyses. This 
retrospective method has also been studied using idealized one- and two-dimensional 
models (Cohn et al. 1994; Todling et al. 1998). 

Variational methods seem to dominate the scene of meteorological data assimilation. 
In estimation theory, variational methods are called statistical methods or the least- 
squares approach (Jazwinski 1970, p. 51). The least-squares approach does not seem 
to contribute much to estimation theory. The current popularity of variational methods 
can primarily be attributed to two facts, namely, the large size of atmospheric models and 
the availability of efficient minimization algorithms associated with adjoint techniques 
(Le Dimet and Talagrand 1986; Talagrand and Courtier 1987). Contrary to variational 
methods, the large size of meteorological models has prevented the Kalman filter and 
smoother from being implemented in their full form. Some significant advances have 
been made in developing sub-optimal Kalman filters and smoothers (e.g. Todling et al. 
1998), but enormous efforts are still required to operationally implement these sub- 
optimal systems in meteorology. 

Although sequential methods and variational methods are implemented separately, 
they are intimately connected to each other. Some connections between them have long 
been known. For a perfect, linear model and linear observation operators, both 4D-Var 
and the Kalman filter (Kalman 1960) yield the same values for the model variables at 
the end of the 4D-Var assimilation period (e.g. Lorenc 1986; Ghil 1989). 4D-Var and 
the fixed-interval Kalman smoother are equivalent even for models with errors (Bryson 
and Ho 1975; Bennett and Budge11 1989; MCnard and Daley 1996). 

The equivalence between sequential and variational methods provides a possibility 
of combining these two methods, which may result in more powerful algorithms. A 
few efforts in this direction have already been undertaken. A major effort is related 
to cycling 3D-Var and 4D-Var (Cohn 1993; Courtier et al. 1994). Cycling 3D-Var 
is algorithmically equivalent to the Kalman filter, while cycling 4D-Var operates in 
a way similar to the fixed-lag Kalman smoother. Recently, it has been emphatically 
suggested that simplified Kalman filters can be used for evaluating error covariance 
matrices required by 3D-Var and 4D-Var (MCnard and Daley 1996; Ehrendorfer and 
Bouttier 1998). These methods have shown prospects for practical use (Fisher 1998). 
We know that the solutions of the Kalman filter/smoother are optimal in the sense of 
the maximum likelihood or minimum error variance. It is easy to show that cycling 3D- 
Var is exactly the Kalman filter in the framework of a perfect model (e.g. Lorenc 1986; 
Rabier et al. 1993). However, the optimality of cycling 4D-Var has not previously been 
shown, especially when model errors are taken into consideration. 

Thus, in this work, we intend to present a consistent and detailed analysis of the 
optimality of 4D-Var solutions. Then, the issues of the optimality of cycling 4D-Var and 
the equivalences between the sequential and variational methods are further investigated. 

It is known that a 4D-Var solution is optimal in the sense of joint maximum 
likelihood (Bayesian) estimation, i.e. maximizing the joint conditional density function. 
It has also been recognized that the 4D-Var solution at the end of the time window is 
optimal in the sense of maximizing the marginal conditional density function, and thus 
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is equivalent to the Kalman filter solution (Jazwinski 1970; Lorenc 1986; Ghil 1989). 
Here we will extend these results by proving that the 4D-Var solution is optimal for 
any single observation time level in the sense of maximizing the marginal conditional 
density function, a property called the consistent optimality property. 

We will further show that the information in 4D-Var can be fully transferred from 
one batch to the next by a background term when batch-processing (cycling 4D-Var) 
methods are used, called the transferable optimality property. Also, 4D-Var allows 
the processing of observations in subsets, while the final solution is optimal as all 
observations are processed simultaneously, and such a property is called the additive 
optimalityproperty. Actually, these two optimal properties have been used in the past but 
only as ad hoc assumptions. The consistent and transferable properties render cycling 
4D-Var to be as optimal as a fixed-lag Kalman smoother when the exact error covariance 
is available. The additive property implies an exact 4D-Var solution when computed by 
quasi-continuous variational data assimilation (Jarvinnen et al. 1996). It is noteworthy 
that these three properties are derived for perfect models as well as models with errors, 
but for linear systems with Gaussian distributions. 

These optimality properties of 4D-Var can be used to demonstrate various con- 
nections between 4D-Var and the Kalman filtedsmoother. As we have mentioned, the 
relationship between 4D-Var and the Kalman filter has long been known (Jazwinski 
1970; Lorenc 1986; Ghil 1989), and also the equivalence between 4D-Var and the 
fixed-interval Kalman smoother (e.g. Bryson and Ho 1975; Bennett and Budge11 1989; 
MCnard and Daley 1996). We will show here that the batch (cycling) 4D-Var is equiv- 
alent to the fixed-lag Kalman smoother from the 4D-Var consistent and transferable 
optimality properties. We learned that Zhu et al. (1999) have comprehensively examined 
the relationship between 4D-Var and smoother algorithms when we submitted this paper. 
Zhu et al. (1999) have also shown the equivalence of 4D-Var and the fixed-lag Kalman 
smoother by using a sweep method (Bryson and Ho 1975; MCnard and Daley 1996), but 
the constructive procedure of the fixed-lag Kalman smoother is different from the one 
presented here. 

The derivation of the above results has led to the presentation of some new formu- 
lations. These formulations are useful for further theoretical analysis and for designing 
cycling 4D-Vad3D-Var. Actually, our derivation is 4D-Var algorithm oriented, which is 
especially emphasized when model errors are considered. 

The outline of this paper is as follows. In section 2, we briefly summarize the 
mathematical assumptions used in this study. Section 3 presents some properties of 
4D-Var. The optimality of 4D-Var is detailed in section 4. Section 5 examines the 
equivalence between the variational and sequential methods, and a 4D-Var smoother 
is proposed for producing a time-consis tent long sequence of assimilated analyses. 
Possible strategies for evaluating error covariances are analysed in section 6. Finally, 
section 7 discusses and summarizes the results derived in this study. 

2. BASIC ASSUMPTIONS AND MATHEMATICAL FORMULATIONS 

In what follows, we will restrict our analysis to linear dynamics and observational 
operators. Consider the discrete stochastic dynamical system described by the stochastic 
vector difference equation, 

(1) xk+1 = L(k + 1,  k ) ~ k  + r ( k ) W k + l ,  k = 0, I ,  . . . , 
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where the state at tk is X k ,  an n-vector, L(k + 1, k )  is an n x n matrix, r(k) is n x r ,  
and W k  { k  = 1, . . .} is an r-vector, white Gaussian sequence, i.e. 

w k  - N ( O ,  Q k ) ,  (2) 
where N stands for the Gaussian (normal) distribution, and Q k  is the covariance of W k .  
The distribution of the initial condition xo is assumed given, 

xo - N ( $ ,  Bo), (3) 

where x! is the background state, Bo is the analysis error covariance matrix at time to, 
and xo is independent of { w k ) .  We can see that the random sequence generated by Eq. (1) 
is Markov, since x k + l  is determined by Xk and W k ,  independently of { X k - 1 ,  . . . , X O }  
(Jazwinski 197 1, p. 86). Let discrete, noisy, m-vector observations (measurements) Y k  
be given by 

Y k  = h k x k  -k v k  (4) 
where h k  is an m x n matrix and { V k ,  k = I ,  . . .) is an m-vector, white Gaussian 
sequence, v k  - N ( 0 ,  R k ) ,  R k  > 0. { W k )  and { V k }  are assumed independent, and { W k }  
is independent of xo. We note that the joint { X k ,  Y k }  process is Markov. 

Let Y1 be the sequence of observations 

y1 = { Y l ,  * * - 9 Y l ) .  ( 5 )  
Given a realization of the sequence of observations {yl, . . . , yz}, that is, given Yl, the 
estimation problem consists of computing an estimate Xk based on Y 1 .  If k < 1, the 
problem is called the smoothing problem; if k = I, it is called the filtering problem; and 
if k > I, it is called the prediction problem. 

Let i k  be an estimate of Xk given Yz. The goal of data assimilation is to obtain the 
optimal &. It is necessary to define criteria measuring the optimality. We have the error 
of estimation 

(6) 

where xk is the true state. The criterion should be that the optimal estimate has the 
smallest error. 

Estimation theory shows that the minimum mean square error or minimum variance 
estimate is the conditional mean, that is, the mean conditioned by observations (Jazwin- 
ski 1970; Cohn 1997). It is noteworthy that this result is general and independent of the 
nature of the conditional probability density p ( X k l Y 1 )  (Cohn 1997). Thus, the condi- 
tional mean is a reasonable optimal estimate. 

The alternative is the maximum likelihood (Bayesian) estimate obtained by maxi- 
mizing the conditional probability density function p ( X k  IYz). When p ( x k  IYi) is Gaus- 
sian, the maximum likelihood (Bayesian) estimate is identical to the minimum variance 
estimate. In the following, we shall use terminologies associated with the maximum 
likelihood (Bayesian) estimate to analyse both the variational and sequential methods 
(e.g. Jazwinski 1970). 

t *  8 x k  x k  - x k ,  

3. PROPERTIES OF FOUR-DIMENSIONAL VARIATIONAL DATA ASSIMILATION 

(a) Perject model 

(i) Consistentproperties of the time intend. The standard 4D-Var minimizes the cost 
(objective) function J that measures the weighted sum of squares of distances to the 
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background state xb and to the observations y distributed over a time interval (to, t i )  
(Lorenc 1986), 

where the p superscript refers to the perfect model. Observations start from time tl . This 
is only for the sake of convenience when we describe cycling 4D-Var. 

In the standard 4D-Var, the minimization of the cost function Eq. (7) is carried out 
with respect to the initial state xo. As such, the cost function Eq. (7) becomes 

1 b T -1  b 
JP(X0) = -(xo - Xo) B, (xo - Xo) 2 

k= 1 L 

Here, we have used the notation 

L(k, i) = L(k, k - 1) . . . L(i + 1, i), for i 5 k .  (9) 
For the cost function with respect to xo, the analytical expression of the optimal 

solution has been presented by, for example, Lorenc (1986) and ThCpaut and Courtier 
(1991). Here, we still present the basic expressions for the sake of the paper being self- 
contained. 

Differentiating Eq. (8), we obtain the gradient of JP(x0) with respect to xo 
1 

VxoJp(~o) = B<'(x~  -xi) + C LT(k, O)h,TRil{hkL(k, O ) X ~  - yk}. (10) 

A minimum solution satisfies VxOJP(xo) = 0. From Eq. (lo), we then obtain the optimal 
solution 

k=l 

(1 1) io = xO b - ~i; v,, J ( x ~ ) ,  

where 
1 

Ho,l = B,' + C LT(k ,  O)hTRi'hkL(k, 0) (12) 

is the second derivative of the cost function Eq. (8) at xo, called the Hessian matrix, and 
k= 1 

k=l 

is the gradient of the cost function Eq. (8) at x!. Here 

b b b yk = hkXk = hkL(k, 0)Xo. 

The Hessian matrix is symmetric and positive semi definite. 
The error covariance matrix is (Rabier and Courtier 1992) 
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where xb is the assumed true value of XO. By using the Sherman-Morrison-Woodbury 
formula ((7B.5) in Jazwinski (1970)), we can easily get the expression given by Lorenc 
(1986) and ThCpaut and Courtier (1991) in terms of the Kalman gain (Kalman 1960; 
Cohn 1997). It is of practical importance that the analysis error covariance matrix is the 
inverse of the Hessian matrix (see section 6). 

We now turn to our concern about the optimality of each state on the trajectory 
determined by i o  over the entire time window. That is, we want to prove that L(k, O)?, 
minimizes Eq. (7). To prove this we only need to demonstrate that & = L(k, 0) io  
( k  = 1, . . . , I) minimizes the following cost function: 

b T  -T b 1 
2 J P ( X ~ )  = -(xk - xk) L ( k ,  O ) B ~ ' L - ' ( ~ ,  o)(xk - xk) 

. k  

Here L-T stands for (LT)-l. 
This cost function involves the inverse of L(k, 0). An atmospheric model may not 

necessarily be invertible. Thus, we introduce the generalized or Moore-Penrose inverse 

L-l(k, 0) = V(k,  k - l)g-'(k, O)UT(k, 0). 

L(k, 0) = U(k, O)C(k ,  O)VT(k, O), 

(17) 

(18) 
where C ( k ,  0) is a diagonal matrix, and both U(k, 0) and V ( k ,  0) are orthonormal 
matrices (see appendix for the definition of C ( k ,  0), U(k, 0) and V ( k ,  0)). Let C ( k ,  0) 
= diag(o1, . . . , q, . . . , 0, . . . , 0). Then 

(19) 

Actually, the generalized inverse is defined by the singular value decomposition 

-1 g - ' ( k ,  0) = diag(o,', . . . , ai , . . . , 0, . . . , 0). 

The cost function then becomes 
1 b T - - T  -1"-1 JP(xk) = -(xk - xk) L ( k ,  O)B, L ( k ,  O)(X~ - x:) 2 

l k  + - C{hiL-'(k, i)xk - yj}TR[l{hjL-l(k, i)xk - yj} 
i = l  2 

We can deduce that JP(xk) is simply JP(x0) by using xo = L-T(k, 0)xk and L-'(k,  
O)L(k, 0) = I, where I is the identity matrix. Using the chain rule, we obtain the gradient 
with respect to xk 

VXkJp(xk) = L-'(k, O)VX,,Jp(~o). (21) 
From the optimality condition Ox, JP(xk) = 0, some algebraic manipulations yield 

& = xi - H<:VxkJ(X,b), (22) 
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where 
k 

Hk,l = LYT(k, O)Bi'L-'(k, 0) + L-T(k, i)hTRL'hiC-'(k, i )  
i = l  

+ 2 LT(i, k)hTR;'hiL(i, k )  
i=k+l 

is the Hessian matrix of the cost function Eq. (16) at xk, and 

VXkJp(x;) = L-'(k, O)Vx,Jp(~~) (24) 

is the gradient of the cost function Eq. (16) at x;. 
A procedure similar to that used to obtain Eq. (15) (Rabier and Courtier 1992) yields 

(25) 

We can now associate Eqs. (22), (23), (24), and (25) with the counterparts of the 

t T - ~ - 1  pi = ( ( i k  - - xk) ) - k , l ?  

where x: is the true value of Xk. 

optimal solution xo. 

i k  = L(k, 0) io  (26) 

These relations are obtained by simply applying L(k, 0) to Eqs. (22), (23), (24), and 

The expressions for Eqs. (26) and (29) show that the optimal solution associated 
with the cost function Eq. (16) is on the trajectory initiated with 20, while the associated 
analysis error covariance is propagated by the model. This is true whether the model is 
invertible or not (see appendix for an explanation). 

(ii) Additive property. For the cost function Eq. (7), we process all the observations 
simultaneously. We may separate the observations into a few subsets. The 4D-Var 
process is performed for each subset as implemented by Jarvinnen et al. (1996). Here 
we want to prove that the final solution can be identical to the one obtained when all the 
observations are simultaneously processed. 

We discuss the case in which the observations are divided into two subsets. Two cost 
functions associated with the observation subset are then 

(25). 

1 T"-1 J~(xo)  = ?(XO - i o )  Bo (X - 20) 
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where 1 = 11 + 12, and k l ( i )  (i = 1, . . . , l 1 )  and k2(i) (i = 1, . . . , 12) sum up to yield k 
( k  = 1, . . . , I). The 4D-Var calculation is first carried out with JY with respect to xo. The 
optimal solution $0 is used as the background in J;. BO is the analysis error covariance 
associated with 20. Then the 4D-Var calculation is carried out with Ji. The final solution 
is denoted by f o .  

What we need to prove is that 20 is the same solution as the one that directly 
minimizes Eq. (7). We may write JY as 

,. 

J:(xo) = (XO - 2oITHo,ll (XO - 20) + J:(~o), (32) 

where Ho,l, is the Hessian of the cost function Eq. (30). Equation (32) is actually the 
Taylor expansion of JY(x0) at 20. Note that the first derivative is zero at 20. 

Since Hi;l in Eq. (32) is the analysis error covariance of 20, it is simply B o  in 
Eq. (3 1). We then obtain 

Since Jy(20) is a constant, the minimization solution of JP(x0) is identical to that of 
J; (xo) when both problems are solved accurately. 

(b) Model with errors 

(i) 
cost function in 4D-Var can be written as (Jazwinski 1970; Cohn 1997) 

Consistent properties of the time interval. When model errors are considered, the 

l 1  + 5 w ~ Q F ' w ~ .  
k=l  

(34) 

This cost function implies that the model errors are time uncorrelated. The case where 
the correlation amongst model errors is taken into account has been investigated (see 
Zupanski 1997). 

We have three choices for carrying out the minimization of the cost function 
Eq. (34), that is: 

1. Carrying out constrained minimization Je with respect to (xo, . . . , XI, w1, . . . , 
wl), subject to Eq. (1). In this case the optimization is computationally prohibitive 
for this formulation in meteorological data assimilation, though it has been applied 
by using 'the representer reduction approximation' in oceanic data assimilation (e.g. 
Bennett 1992). This formulation is usually employed for theoretical analysis, and it has 
been exclusively used to prove the equivalence between Kalman smoothers and 4D-Var 
(Bryson and Ho 1975; Bennett and Budge11 1989; MCnard and Daley 1996; Zhu et al. 
1999). 
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2. Carrying out unconstrained minimization of the following cost function (Cohn 
1997) 

f - l 1  c { X k - L ( k ,  k - 1)Xk-1) T T  r (k - l)QGII'(k - l){Xk-L(k, k - l )Xk-l} ,  

k=l 2 
(35)  

with respect to (xo, . . . , xl). In this sense, we should not be considering 4D-Var as a 
method for searching for the optimal initial condition, but rather for searching for an 
optimal trajectory segment. 

3. Carrying out unconstrained minimization of the following cost function (also see 
Zupanski 1997) 

b T  1 1 
J; = ~ ( X O  - x0) B, (XO - x!) 

. I  

with respect to {xo, w 1  . . . , wl}. In the derivation of J;, we have used the time integra- 
tion solution of the difference equation (l), 

k 

j=1  

The merit of J i  deserves to be emphasized. We know that Wk are r-vectors. Prac- 
tically, r may be smaller than the dimension n of x k .  Specifically, J; provides us 
with tremendous flexibility in approximately representing model errors with a small 
r .  Such an approximation has been implemented by Zupanski (1997). In the variational 
continuous-assimilation technique due to Derber (1989), Wk is simply considered to be 
independent of k ,  that is, the time variable is fixed. In the following, we use J;, and thus 
the derivation is computational and algorithm oriented. 

Since we treat {XO, w1, . . . , wl} jointly, let us introduce an augmented n + Zr vector 
Zr  = (xi, wT, . . . , w?). Then JZ is transformed to 

where (Z:)T = {(x:)~, 0, . . . , 01, Bz, is a (1 + I) x (1 + I) block diagonal matrix 
whose diagonal blocks are Bo, Q1, . . . , Ql (thus Bz, is an (n + rZ) x (n + r l )  matrix), 
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are n x (n + r l )  matrices. 

JP, we obtain the optimal solution 
For the case of the perfect model J i  reverts to an identical formulation to JP. As for 

where the Hessian matrix is 

and the gradient of J; at Z: 

k=l 

Also, we can calculate that the error covariance of Zo is the inverse of the Hessian 
matrix, that is 

Now we turn to proving that every model state on the trajectory determined by Zo = 
(?;, i?:, . . . , i?F) minimizes Eq. (36). From Eq. (37), the model state on this trajectory 
is 

That is, we need to prove that Z k  = {L(k, O)%;, i?;, . . . , i?T} also minimizes Eq. (36). 
This is obvious when considering zk = A(k, 0)Zo and making a comparison with the 
case of the perfect model, and we further have 

Here A(k,  0) is an (n + r l )  x (n + r l )  matrix. Its first n rows are C(k, 0), and the 
diagonal entries are 1 with the non-diagonal entries being zero for all the other rows. 
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(ii) Additive property. 4D-Var with models where errors are present also retains the 
additive property similar to that for perfect models. We define two cost functions 

1 
2 

J;, (Zo) = - (XO - x!)~B~ '  (XO - xi) 

k= 1 

Suppose that ZO is the minimization solution of J;, (Zo) and Bij is taken as Hzo. The 
Taylor expansion yields 

J; , l (Zo)  = J;,l(Zo) + $(Z - Zo) Bz (Z - Zo). (49) T " - 1  

Combining Eqs. (48) and (49), we obtain 

J;(zo) = J;,2(Zo) + J e , , , ( Z O ) .  (50) 

Thus, the minimization solution of J;,2(Z) is identical to that of Jg(Z), where all the 
observations are processed simultaneously. 

4. OPTIMALITY O F  FOUR-DIMENSIONAL VARIATIONAL DATA ASSIMILATION 

(a )  Consistent and additive properties of optimality 

Perfect model. For a perfect model, it has been shown (Lorenc 1986) that the joint (i) 
conditional probability density is 

p(x0, X I ,  . * * 9 XllYl ,  * * * > Y d  

(51) 

where c is a constant. Thus, maximizing p(x0, X I ,  . . . , xllyl, . . . , yl) with respect to 
{xo, . . . , xl} is equivalent to minimizing Eq. (7). The minimum solution of the cost 
function Eq. (7) is the joint maximum likelihood (Bayesian) estimate or the most 
probable estimate. 

Now we are concerned with the optimal solution with respect to x k  (0 5 k 5 1)  only, 
that is, the solution that maximizes the marginal probability density 

P(XkIY1, . . * > Yl)? (52) 

rather than the joint probability density. 
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We first consider the case for k = 0. Using Bayes’ rule, we get 

In view of Eq. (4), we get 

yi - hjL(i, O)XO = vi i = 1, . . . , 1. 

Thus, with xo given and with {XI . . . , xl} given by xk = L(k, O)XO, {yl, . . 
independent. We then have 

P(Y1, . * * 9 YllXO) = C ’ P  {YllL(l, 0)Xo)l * * * PI(YlIL(1, 0)XOj 

where c’ is a constant. Since xo and Vi are Gaussian, Eq. (53) becomes 

b T  -1 p(xoly1, . . . , yA = c exp - xo) Bo (XO - x!) 

where c is a constant depending only on c’ and p(y1, . . . , yl). Thus, maximizing 
p(xoly1, . . . , yl) turns out to be equivalent to minimizing Eq. (8). Due to the consis- 
tency property of 4D-Var, maximizing p(xoly1, . . . , yl) is equivalent to maximizing 
P(X0, x1, - * - , X l l Y l ,  - * 7 Yl). 

Since xk = L(k, O)xo, we have (Jazwinski 1970, Theorem 2.7) 

IIL(k9 O)llP(XOlYl, * * 9 Y d  = P(XklY19 * .  * 9 yr), (57) 

where IIL(k, 0)II is the absolute value of the determinant of L(k, 0). Thus, maximizing 
p(xkIy1, . . . , yl) is equivalent to maximizing p(xoly1, . . . , yl). 

We then draw the conclusion that the 4D-Var solution is optimal not only with 
respect to the model trajectory consisting of {xo, . . . , xl}, but also with respect to xk 
at a single observation time. 

(ii) Model with errors. Here we first consider maximizing 

P(X0, w1, . * - 9 WllYl ,  * * * f YZ) (58)  

with respect to {xo, w1, . . . , wl}. Similar to Jazwinski (1970, pp. 153-155), we shall 
show that the 4D-Var solution minimizing the cost function Eq. (36) is identical to the 
maximum likelihood estimate. 

Using Bayes’ rule, we write the density in Eq. (58) as 
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With (xo, w1, . . . , wl} given, Xk is then determined by Eq. (37). In view of Eq. (4), 
with Xk given, Yk are Gaussian and independent, since Vk are white. We thus have 

P(Y1, * .  3 YllXO, w1, - .  . > w1) 

= P ( Y l l X 0 ~  w1, . . * 7 Wl> . * * P(YlIX0, w1, * * * 9 Wl) 

= P(YllX1) * P(YllXl)  

Since xo is independent of (w1, . . . , wl}, we obtain 

P(XOlW1, . . * 9 Wl) = PX&O>. 

PWl, * * * 7 Wl) = PWJWl) * * .  PWJWZ). 

With {wl, . . . , wl} independent, we get 

Substitution of Eqs. (60), (61) and (62) into Eq. (59) yields 

P ( X 0 ,  w1, . . . , WlIYl, . . * 1 Yl) 

b T  -1 - x0> B, (xo -xi)  

k 
L(k, O)XO + C L(k, j ) r ( j  - 1)wj 

j=1 

where c' only depends on (yl, . . . , yl}, and is independent of (XO, w1, . . . , wl}. Thus, 
maximizing p(x0, w1, . . . , WI Iy1, . . . , y1) is equivalent to minimizing the cost function 
Eq. (36). 

From Eq. (49), we can conclude that p(x0, w1, . . . , wllY1) is Gaussian, and 
thus p(xolYl), p(wlIYi), . . . p(wlJY1) are also Gaussian. The minimum solution 
of Eq. (36), 20, . . . , i l ,  provides the maximum likelihood estimates, that is, 
i io,  i l ,  . . . , i l  maximize p(xoIYl), p(w1 IYi), . . . p(wlIYl), respectively. 

Now we turn to the optimal estimation with respect to (Xk, w1, . . . , w1}, 0 5 k 5 1,  
that is, the estimate maximizes the conditional density 

p(Xk3  w1, . . . 7 wllyl, . 9 yl). (64) 

Let Z: = (Xk, w1, . . . , ~ 1 ) ~ .  Since we have the transformation 

Zz = A(k, O)Zi, (65) 
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where A(k, 0) is defined in section 3(b). Then we have (Jazwinski 1970, Theorem 2.7) 

IIAllp(xk, wi,  . . . , Wilyi, . . . , ~ i )  = p(xo, wi ,  . . . , wilyi, . . . yi), (66) 
where IlAll is the absolute value of the determinant of A. Maximizing p(Xk, w1, . . . , 
wl Iy1, . . . , y1) is thus equivalent to maximizing p(x0, w1, . . . , wl Iy1, . . . , yl). 

We thus conclude that the 4D-Var solution is optimal, not only with respect to 
the model trajectory consisting of (xo, . . . , xl), but also with respect to X k  at a single 
observation time even though the model error is taken into consideration. We call this 
property the consistent optimality. 

When observations are separated into subsets, 4D-Var is carried out in the way 
described in section 3. From the additive property, we know that the final 4D-Var 
solution is optimal as all the observations are processed simultaneously. 

(b) Optimal transferability property 
We further present an optimal property of 4D-Var, which we call the transferable 

optimality property. This property is intimately related to the equivalence between 4D- 
Var and Kalman smoothers. Here we consider a time window with observations 

(67) 
The observations are split into two batches in time, namely, 

(68) 
We solve two 4D-Var problems: the first one with observations {yl, . . . , yl}, yielding 
the solution {?I, . . . , ? l } ;  the second one with {yl+1, . . . , ~l+m),  yielding (fil, . . . , 
?l+m}. The background of the second 4D-Var is 51, that is, the solution of the first 4D-Var 
of the first batch. Then the final 4D-Var solution yielded by the second batch is optimal 
as in the 4D-Var where all data in the two batches are processed simultaneously, namely, 
?k maximizes p ( x ~ I Y l + ~ )  for (1 5 k 5 1 + m),  This property shows that information 
from one batch can be fully transferred to the next one via the background term defined 
by {fil), that is, the 4D-Var solution at the end of the time window of the previous batch. 

For a perfect model in the linear context, 4D-Var preserves this property without 
any additional assumptions. Correspondingly, we can prove this property by a direct 
examination of the 4D-Var solution. For a model with errors, we can prove this property 
by invoking the property of Gaussian distributions. The proof is as follows. 

I Y I ,  * - . 9 ~ 1 ,  YI+I ,  . . - 3 Yl+rn}. 

I Y I ,  - 7 ~ l } ,  IYI+I, - * - 7 Yl+rn}. 

Using Bayes’ rule repeatedly, we can have 

~ ( ~ 1 7  . - 5 Xl+rnIY1+rn) 
- p(xl, . - 9 Xl+m,  Y I ,  Y ~ + I ?  * * 9 Yl+rn) - 

P(Yl+m) 
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In view of Eqs. (4) and (37), Wk is independent of Yl for k > 1. Further, since the 
sequence Xk is Markov, we obtain 

P ( X l + l ,  * * 9 Xl+mIXl, YZ) = P ( X l + l ,  . * * 9 Xl+mIXI) 

= P(Xl+rnIXl+rn-l) * * P ( X l + l I X l >  

- P W l + ,  b 1 + 1  - + 19 O X l J  * * 
- 

* * * P W l + ,  {Xlfm - L(1 + m ,  1 + rn - l )XZ+m-lI .  (72) 

Substituting Eqs. (70), (71) and (72) into Eq. (69), we thus obtain that maximizing 
p ( x l ,  . . . , xl+,,, IYl+,) is equivalent to minimizing the cost function 

subject to constraints in Eq. (l), where kl and Pr are provided by the 4D-Var process 
over the first batch. 

5 .  RELATIONSHIP BETWEEN FOUR-DIMENSIONAL VARIATIONAL DATA ASSIMILATION 
AND THE KALMAN FILTER/SMOOTHER 

(a )  The KalrnanJilter 
It has long been known that for a perfect, linear model and linear observation 

operators, both 4D-Var and the Kalman filter (Kalman 1960) yield the same values for 
the model variables at the end of the 4D-Var assimilation period (also see Lorenc 1986; 
Ghil 1989). The previous section has shown that 4D-Var provides a maximum likelihood 
solution at the end of the time interval for both perfect and imperfect models, identical 
to the one yielded by the Kalman filter. 

This equivalence can also be verified by directly comparing the 4D-Var and Kalman 
filter solutions. For one iteration of the Kalman filter, we have at the ( k  - 1)th step 

xk-1 “(kk-1, p i - 1 ) .  (74) 

We define a cost function corresponding to Eq. (73) 
1 T - 1  

Jk = z ( x k - 1  - 2 k - 1 )  Bk-I(Xk-1 - k k - 1 )  

(75) 

The optimal solution k k  of Eq. (75) is identical to the Kalman filter solution (Bryson and 
Ho 1975, pp. 391-393). Based on the transferable property of 4D-Var, the equivalence 
between 4D-Var and the Kalman filter becomes obvious. 

T -1 + $(Yk - hkxk) R, (Yk - h k x k )  + i W I Q F I W k .  

(b)  The Kalrnan smoother 
Generally, there are three types of smoothing (Anderson and Moore 1979, p. 166). 

Fixed-interval smoothing is concerned with obtaining optimal estimate kk using obser- 
vations YI for fixed 1 and all k in the interval 0 5 k 5 1 .  Fixed-lag smoothing is con- 
cerned with obtaining optimal estimate k ~ - ~  using observations Y1 for all 1 and fixed 
n.  Fixed-point smoothing is concerned with obtaining optimal estimate k j  using Yl for 
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fixed j and all 1 ,  where 0 5 j I 1. Fixed-point smoothing does not seem to be applicable 
in meteorology, thus it will not be addressed. 

In the linear context, 4D-Var is theoretically a perfect smoother, since the 4D- 
Var solution is optimal not only with respect to the model trajectory consisting of 
(xo, . . . , xl), but also with respect to Xk at a single observation time level. One single 
evaluation of 4D-Var yields all optimal estimates (20, . . . , i l ) .  

In practice, however, 4D-Var is always performed over a limited time interval. 
The fixed-lag smoothing is required to be implemented for any 1. For large 1 ,  4D-Var 
cannot be directly applied. This is the case when we are producing a consistent and 
long sequence of assimilation data, or climatological data. Producing a set of time- 
consistent climatological data is the purpose of all re-analysis projects (e.g. Schubert 
and Rood 1995; Gibson et al. 1996; Kalnay et al. 1996). This issue has been discussed 
in depth by Cohn et al. (1994) and Todling et al. (1998). They note that retrospective 
data assimilation based on fixed-lag smoothing should be the ultimate goal of re-analysis 
efforts. Thus, 4D-Var is practically not equivalent to the fixed-lag smoother. 

(c)  A four-dimensional variationalfied-lag smoother 
Although 4D-Var is practically not equivalent to the fixed-lag smoother, we can use 

4D-Var to construct a smoother that is equivalent to the fixed-lag smoother proposed by 
Cohn et al. (1994). In what follows, we propose such an approach. 

This approach is based on a batch-processing approach or cycling 4D-Var. The 
batch-processing approach consists of separating the observations into batches in time: 

{ Y I ,  - .  . j  Y ~ I ?  I Y I + I ,  ~ 2 1 1 ,  * 7 {Y(j-1)1+1? - - - 7 yjl), - - .  3 (76) 
and solving the standard 4D-Var problem separately for each batch of observations 
(Jazwinski 1970). 

Due to the optimality of the transferability property of 4D-Var, it immediately 
follows that the optimal solution k(j-l)l+k in the j th  batch maximizes 

P(X(j-l)l+kIYl, y 2 7  . . . 9 Yj) (77) 

where 1 5 k 5 I, and Yj = {y(j-iy+i, . . . , yjl]. 
This transferable optimality property of the batch processing approach allows us to 

construct a smoother which is equivalent to the fixed-lag Kalman smoother proposed by 
Cohn et al. (1994). The fixed-lag Kalman smoother seeks the optimal %k that maximizes 
p(xkly1, . . . , y k ,  . . . , ~ k + ~ )  for all k with n fixed. The constructive procedure is 
outlined as follows: 

1. We separate the observations into a sequence of batches, 

{ Y l ,  * f * 9 Y l l l  IYZ+l, * * * 9 Y211, . . . 3 (78) 
and proceed to solve the standard 4D-Var problem separately for each batch of 
observations. The solution at the end of one batch is used as the background for 
the subsequent batch. 

2. Since assimilated analyses are not required at every time level of observations, 
the time interval between required assimilated analyses, for instance, is d times as 
large as the observation interval. We can construct new sequences of batches in 
time, 

(79) {Yi+md, * * 9 ~ l + m d l ,  IYl+md+l, . . . ?  ~ 2 ~ + m d l ,  . . . ?  
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where rn = 1, . . . , l / d  5 1. Here we have assumed that the time interval with each 
batch is M = l / d  times as large as the time interval between required assimilated 
analyses. 

3. Using these M + 1 assimilated analysis sequences, we can construct a time- 
consistent climatological data sequence by picking one single assimilation data 
point in each batch, in order that the fixed n (1 5 n 5 I )  future time levels of 
observations are used for every assimilated analysis &. Thus, ?k maximizes 

The assimilated data sequence produced by one sequence of batches defined in 
Eq. (76) is not consistent in time. This actually causes a type of time discontinuity (Cohn 
et al. 1994). One may think of separating the observations in a different manner. There is 
an estimation principle which states that all observations must be used only once for the 
estimation of one variable. To comply with this principle, such batch processing appears 
to be the most efficient algorithm. 

This 4D-Var fixed-lag smoother requires M-batch processing. M is usually one. 
This occurs, for instance, if the 4D-Var time window length is six hours and we require 
assimilation data for every six hours. However, even though M > 1, the computational 
overhead must not necessarily increase M fold. Although M-batch processing is carried 
out independently, the information generated by one batch processing can be used by 
another batch processing. This observation leads to two techniques which may be used 
jointly to accelerate the minimization procedure, and thus reduce the computational 
overhead. 

First, the 4D-Var in the (rn - l)th sequence provides the initial guess to the 4D- 
Var in the rn-th sequence. This technique is the same as the one used in quasi- 
continuous variational data assimilation due to Jarvinnen et al. (1996). We note that 
in this case the initial guess should be distinguished from the background field. The 
background field must be provided by the 4D-Var in the previous batch in the same 
sequence in order to ensure that all observations are used only once for the estimation of 
each assimilated analysis. Second, the 4D-Var in the (rn - 1)th sequence provides the 
Hessian information for the 4D-Var in the rn-th sequence. This Hessian information can 
be used to precondition the minimization procedure, or even to start directly the 4D-Var 
procedure (Courtier et al. 1994; Li et al. 2000). 

p(xklyl, . . . 9 Y k ,  - 9 Y k f n )  forallk. 

6 .  ESTIMATION OF ERROR COVARIANCES 

The equivalence of 4D-Var to the Kalman filter/smoother hinges on the availability 
of analysis error covariances. 4D-Var itself does not involve generating the time evolu- 
tion of covariances. However, the formulation presented above allows the evaluation of 
the error covariances in the framework of 4D-Var, and the method is essentially identical 
to that used for the Kalman filter and smoother. 

We have shown that the analysis error covariance is the inverse of the Hessian of the 
cost function for both perfect models and imperfect models (see Eqs. (15) and (43)). This 
relationship provides us with possibilities for evaluating the analysis error covariance 
(also see Fisher and Courtier 1995). In fact, the inverse of the Hessian of 3D-Var is 
included in the Kalman gain matrix, and also has to be explicitly computed in the 
Kalman filter. 

Sub-optimal techniques used in the Kalman filter/smoother are directly applicable 
to cycling 4D-Var. One method consists of computing directly the approximate of the 
inverse of the Hessian. Since the adjoint model is usually available, the eigenvalues and 
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eigenvectors can be computed efficiently (e.g. Molteni and Palmer 1993). A powerful 
method is thus to perform the singular vector decomposition of the Hessian, and then 
compute the inverse of the Hessian. Assume that the rank of the Hessian is 1 5 n,  and the 
eigenvalues and eigenvectors are CT' and vi (i = 0, . . . , 1). The analysis error covariance 
is 

Pio = vx-'vT, 
where C-' is an I x 1 diagonal matrix with the diagonal entries of and V an n x 1 
matrix with its columns of vi. For a sub-optimal technique, V contains only singular 
vectors associated with the dominant large singular values. 

An alternative is to estimate the inverse of the Hessian approximately during the 
minimization process. Minimization algorithms usually provide an estimate of the 
inverse of the Hessian, such as quasi-Newton types of minimization algorithms. This 
implies the possibility of estimating the analysis error covariance matrix during the 
minimization procedure (Fisher and Courtier 1995). 

When the above mentioned algorithms are applied to the case of imperfect models, 
the concern is the dimension of the Hessian Hz,. How to use a limited number of 
parameters to represent model errors still constitutes a challenge, though there have 
been efforts in this direction such as Zupanski (1997). In this sense, sequential methods 
possess advantages, since sequential methods implement the computation once at one 
single observational time level rather than several time levels being processed jointly as 
in 4D-Var. 

The above techniques are only concerned with computing the analysis covariance 
associated with xo at the initial time. For X k ,  we must propagate the analysis covariance 
in terms of Eqs. (29) and (46), which is also required by the Kalman filterhmoother. 
To do so, sub-optimal methods are usually necessary. Examples are simplified Kalman 
filters (Fisher 1998) that are related to the partial eigen-decomposition method (Todling 
et al. 1998), and the ensemble method due to Evensen (1994). 

When we resort to sub-optimal algorithms, an advantage of cycling 4D-Var is that 
error covariances are implicitly and accurately evolved within the 4D-Var time window. 
The implicit evolution of error covariances also results in computational efficiency. 

7. SUMMARY AND DISCUSSION 

We showed that the 4D-Var solution was optimal not only with respect to the 
model trajectory segment over the assimilation time interval but also with respect to 
any model state at a single observation time, irrespective of whether the model was 
perfect or not. In the batch-processing method, the information in 4D-Var was fully 
transferred from one batch to the next by the background term. As in the Kalman filter, 
4D-Var may also fully extract information from observations prior to the time interval 
over which 4D-Var is currently being performed. Also, 4D-Var allows the processing 
of observations in subsets, while the final solution is optimal as all observations are 
processed simultaneously. It should be emphasized that these conclusions were true 
only for a linear model and linear observation operators. A major assumption in all the 
derivations in this study was that the distribution of errors was Gaussian. In a nonlinear 
system, the assumption of Gaussian distribution may not be applicable. Thus, for a 
nonlinear system, the solution generally does not possess such a property. 

From the optimality of 4D-Var, the equivalence between 4D-Var and the Kalman 
filterhmoother became evident. 4D-Var is a perfect fixed-interval smoother in both 
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practical and theoretical senses in the linear context, even for models with errors. For 
the fixed-lag Kalman smoother, there is no direct equivalent relationship. However, we 
proposed a 4D-Var fixed-lag smoother. This smoother turned out to be equivalent to the 
fixed-lag Kalman smoother proposed by Cohn et al. (1994) in the linear context. Due 
to the computational efficiency of 4D-Var, this multi-batch processing 4D-Var smoother 
may hold promise for practical use. 

Since a 4D-Var solution is optimal at any single observation time, and the informa- 
tion is fully transferred from one batch to the next by the background term, the varia- 
tional method and sequential method can be used interchangeably. Difficulties usually 
arise when 4D-Var is used to produce a consistent and long sequence of assimilation 
data, which is the major purpose of data re-analysis (Schubert and Rood 1995; Gibson 
et al. 1996; Kalnay et al. 1996). Practically, 4D-Var can only be carried out for a lim- 
ited time interval. On the other hand, the fixed-lag Kalman smoother, as a sequential 
method, is naturally applicable to this task. With the 4D-Var fixed-lag smoother that we 
constructed, 4D-Var can also produce a consistent and long sequence of climatological 
data. 

The optimality properties of 4D-Var seem to lead to the conclusion that 4D-Var 
provides an assimilation identical to 3D-Var at the end of the time window, as the 
smoother provides an assimilation identical to the filter. However, we emphasize that 
approximations in computing error covariances may result in substantial differences 
among these methods. 

The equivalence of 4D-Var to the Kalman filter/smoother hinges on two prerequi- 
sites: all statistics of the error covariances used in 4D-Var should be identical to those 
used in the Kalman filter/smoother; 4D-Var reaches the exact minimum solution of the 
problem. Unfortunately, this is not the case in practice. Sub-optimal use of covariances 
will be inevitable. 4D-Var possesses an advantage in that it only approximates error 
covariances at the beginning or end of the time window, while the propagation of error 
covariances in the time window is implicit and thus accurate. In sequential methods, 
approximation is made for each time step. However, the minimization process in 4D-Var 
is generally terminated prior to the minimal solution being obtained. Such termination 
may not cause a serious problem for 4D-Var used for NWP, but it constitutes a serious 
concern when 4D-Var is used for producing climatological data, as in the proposed 
multi-processing 4D-Var smoother. 

A common challenge for both the sequential and variational methods is how to deal 
with model errors. A serious difficulty consists of how to define the statistics of model 
errors, although model bias seems manageable (e.g. Dee and da Silva 1998; Derber 
1989). In 4D-Var, it is necessary to use only a limited number of parameters to represent 
model errors, as shown in section 3 (also see Bennett 1992; Zupanski 1997). Further, 
time correlation of model errors may necessarily be considered (Cohn and Dee 1988). 

We have emphasized above the optimality of 4D-Var, but have made no attempt 
to determine whether the sequential or variational method performs better. In practice, 
the performance of each method strongly depends on model performance, quantity of 
observations, and use of assimilated data. Moreover, approximations in computing error 
covariances are inevitable and object oriented. 
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APPENDIX 

Invertibility of models and 4D-Var 
Let us consider the contribution of one observation, Yk, to the optimal solution, 20, 

and the reduction in the analysis error variance. As such, the Hessian (see Eq. (12)) is 

HO,J = B i l  + LT(k, O)h:Ri'hkL(k, 0). 

@ = LT(k, O)h:R,'hkL(k, 0) > 0. 

(A.1) 
xo is observable if and only if (Jazwinski 1970, p. 232) 

(A.2) 
@ is called the information matrix with respect to Yk. 

If L(k, 0) is not invertible, then xo must not be observable. However, even though 
xo is not observable, the observation still reduces the analysis error variance since @ is 
positive semi definite. Thus, lack of observability only implies that some sub-space is 
not observable. In the following, we will discuss properties of this unobservable sub- 
space. 

Let us denote the rank of L(k, 0) as q ( k ,  0). When L(k, 0) is not invertible, q ( k ,  0) 
is less than its order n. In this case, L(k, 0) may be decomposed as 

(A.3) 
This is called a singular value decomposition. The U(k, 0), C ( k ,  0), and V ( k ,  0) are 
determined as follows. We can have an orthonormal basis of eigenvectors from 

(A.4) 

Note that LT(k, O)L(k, 0) is positive semi definite, and only has q ( k ,  0) non-zero 
eigenvalues. vj are also called singular vectors of L(k, i), and aj are the corresponding 
singular values. Then we introduce 

L(k, 0) = U(k, O ) X ( k ,  O)VT(k, 0). 

~ ~ ( k ,  o ) L ( ~ ,  O)vj = 0 ; V . i .  

1 

Oj 
U j  = -L(k, i )v j ,  j = l ,  . . .  

uj also constitutes an orthonormal basis. By the Gram-Schmidt procedure, we complete 
uj to a complete orthonormal basis of order n .  Then, V(k ,  i) is an n x n matrix whose 
columns are the vectors v j ,  and U(k, 0) is also an n x n matrix whose columns are the 
vectors uj. Finally C ( k ,  0) is an n x n diagonal matrix, and 

(A.6) C ( k ,  0) =diag(al, . . . , aq(k ,0 ) ,  0, . . . , 0). 

We perform a space transformation in terms of the basis consisting of vj 

zo = VT(k, 0)xo. (A.7) 

The corresponding Hessian becomes 

H$ = VT(k, O)Bi'V(k, 0) + C ( k ,  O)UT(k, O)hzR,'hkU(k, O ) X ( k ,  0), (A.8) 

and the information matrix becomes 

@ = X ( k ,  O)UT(k, O)hzR,'hkU(k, O)C(k ,  0). (A.9) 
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We see that the entries of @ for i, j > q ( k ,  0) are zero. Thus the sub space (rank space) 
spanned by the singular vectors associated with non-zero eigenvalues is observable, 
and the sub-space (null space) spanned by the singular vectors associated with zero 
eigenvalues is not observable. 

It is noteworthy that an unobservable system is undetermined if there is no back- 
ground term. On the contrary, the background term with a positive definite error covari- 
ance matrix is a sufficient condition for well posedness of the system. In this case, the 
background term is a regularization term as proposed by Tikhonov and Arsenin (1977). 
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