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a b s t r a c t

Herein a new approach to enhance the accuracy of a novel Proper Orthogonal Decomposition (POD)
model applied to moderate Reynolds number flows (of the type typically encountered in ocean models)
is presented. This approach develops the POD model of Fang et al. [Fang, F., Pain, C.C., Navon, I.M., Piggott,
M.D., Gorman, G.J., Allison, P., Goddard, A.J.H., 2008. Reduced-order modelling of an adaptive mesh ocean
model. International Journal for Numerical Methods in Fluids. doi:10.1002/fld.1841] used in conjunction
with the Imperial College Ocean Model (ICOM), an adaptive, non-hydrostatic finite element model. Both
the velocity and vorticity results of the POD reduced order model (ROM) exhibit an overall good agree-
ment with those obtained from the full model.

The accuracy of the POD-Galerkin model with the use of adaptive meshes is first evaluated using the
Munk gyre flow test case with Reynolds numbers ranging between 400 and 2000. POD models using
the L2 norm become oscillatory when the Reynolds number exceeds Re ¼ 400. This is because the low-
order truncation of the POD basis inhibits generally all the transfers between the large and the small
(unresolved) scales of the fluid flow. Accuracy is improved by using the H1 POD projector in preference
to the L2 POD projector. The POD bases are constructed by incorporating gradients as well as function val-
ues in the H1 Sobolev norm. The accuracy of numerical results is further enhanced by increasing the num-
ber of snapshots and POD bases. Error estimation was used to assess the effect of truncation (involved in
the POD-Galerkin approach) when adaptive meshes are used in conjunction with POD/ROM. The RMSE of
velocity results between the full model and POD-Galerkin model is reduced by as much as 50% by using
the H1 norm and increasing the number of snapshots and POD bases.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The resolution of ocean models is one of the most important is-
sues in the development of global circulation models. Over the last
decades an important contribution to improving the resolution of
ocean models has involved the introduction of unstructured
meshes. Unstructured, dynamically-adaptive mesh models can
efficiently resolve global, basin, regional and small-scale flow
structures. Adaptive meshing methods recently introduced to 4D-
Var data assimilation are capable of producing a best estimate
model solution by fitting a numerical simulation to observational
data over both space and time (Fang et al., 2005, 2006). The use
of adaptive meshes allows the accuracy of both the forward and in-
verse calculations to be optimised dynamically.

However, a major hurdle in the implementation of 4D-Var data
assimilation for ocean modelling is the large dimensionality (typi-
ll rights reserved.
cally in the range 106—108) of these problems. Computing the cost
function and its gradient results in high memory and computational
costs, requiring the integration of both the forward model and its ad-
joint. To overcome this difficulty, reduced-order modelling presents
a powerful concept enabling a representation of the dynamics of
large-scale systems on a smaller number of degrees of freedom.
Proper Orthogonal Decomposition (POD), in combination with the
Galerkin projection procedure has been shown to provide an effi-
cient means of generating reduced order models (Holmes et al.,
1998; Luo et al., 2007a,b). The Galerkin projection on POD subspace
directly transforms the PDE (Partial Differential Equation) system of
the incompressible Navier–Stokes equations to a system of ODE (Or-
dinary Differential Equation), requiring greatly reduced computa-
tional effort. This technique identifies the most energetic modes in
a time-dependent system, providing a means of obtaining a low-
dimensional description of the system’s dynamics.

POD has been widely and successfully applied to numerous
fields, including signal analysis and pattern recognition (Fukunaga,
1990), fluid dynamics and coherent structures (Holmes et al., 1998;
Lumley, 1967; Aubry et al., 1988; Willcox and Peraire, 2002) and
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image reconstruction (Kirby and Sirovich, 1990). The practical use
of the POD approach has also been extended to large scale complex
flow dynamics such as ocean modelling (Luo et al., 2007a; Cao
et al., 2006) and the four-dimensional variational (4D-Var) data
assimilation (Cao et al., 2006; Robert et al., 2005; Hoteit et al.,
2006; Daescu and Navon, 2008). Furthermore, the POD approach
has been incorporated in an unstructured mesh finite element
ocean model (Fang et al., 2008a,b) which includes an ability to
simultaneously resolve both small and large scale ocean flows (as
they evolve), and improved representation of bathymetry/
coastlines.

The price of the low-dimensionality, however, entails a lack of
stability especially for transitional and turbulent flows (Iollo
et al., 2000; Couplet et al., 2005; Noack et al., 2005; Galletti
et al., 2004; Gloerfelt, 2006). This either restricts reduced order
models to a narrow range of parameters or to a short-time integra-
tion span. High Reynolds number ocean flows exhibit dynamics on
a wide range of scales. They display a combination of organised or
coherent structures – associated with the phase-averaged/spatially
phase-correlated components that exhibit the most evident struc-
ture – and apparently disorganised or incoherent structures associ-
ated with the random components. The energy transfer/interaction
between the different coherent/inherent structure flows plays an
important role in high Reynolds number flows. Low-order trunca-
tion of the POD basis, however, inhibits transfers between the large
and small (unresolved) scales of the fluid flow. As a consequence
there is a lack of dissipation in POD/ROM and the reduced order
model may diverge. Therefore, at higher Reynolds numbers –
where more kinetic energy is constrained within the smaller scales
– more POD snapshots as well as more bases should be retained for
a realistic representation (Galletti et al., 2004).

To improve the accuracy of POD-Galerkin models, the effect of
these unresolved modes must be included to provide an insight
into the turbulent energy. Various calibration methods have been
developed to enhance the stability of POD-Galerkin models (Cou-
plet et al., 2005; Gloerfelt, 2006; Galletti et al., 2005; Pastoor
et al., 2008). The calibration terms can include an eddy-viscosity
function, as well as constant or/and linear terms. These calibration
terms are computed by minimising a cost functional defined as
either: the difference between the amplitude coefficients predicted
by the calibrated POD and those from the POD; or a weak con-
straint functional, where the constraints are calibrated POD equa-
tions and are enforced by introducing Lagrange multipliers or
adjoint variables. The effect of pressure gradients for incompress-
ible flow is also the primary source for the lack of dissipation
(Noack et al., 2005; Galletti et al., 2004; Rempfer et al., 2003).
Noack et al. (2005) and Galletti et al. (2004) proposed a quadratic
model (based on a Poisson problem) and a linear model (based on a
least squares procedure) for the pressure calculation, respectively.

Herein the effect of the truncated modes is first evaluated when
adaptive meshes are used in conjunction with POD. To recover the
effect of the truncated bases (usually the small scales), a dissipative
term is directly included in the construction of the POD basis (Iollo
et al., 2000). POD is defined in the H1 Sobolev norm rather than in
the L2 norm. This incorporates gradients as well as function values
into the definition of POD. The stability of the POD-Galerkin model
is evaluated in a Munk gyre tested with Reynolds numbers ranging
between 400 and 2000.
2. POD approach in an adaptive mesh ocean model

2.1. Imperial College Ocean Model

The POD-Galerkin reduced order model presented here was
developed for use with the Imperial College Ocean Model (ICOM)
(Fang et al., 2008a). ICOM is capable to simulate oceanic flow on
a wide range of horizontal and vertical scales as well as modelling
large-scale oceanic flows by using dynamically-adaptive meshes
(using high resolution in localised regions to resolve small-scale
features which affect large scale processes) (Pain et al., 2005; Ford
et al., 2004). Surface conforming finite elements are used for coast-
line and ocean floor topography. The model employs 3D aniso-
tropic mesh adaptivity to resolve and reveal fine scale features as
they develop while reducing resolution elsewhere. Being non-
hydrostatic it can cope with steep topography. It is also uncon-
strained by a rigid lid to permit accurate modelling of surface tides
in shallow on-shelf regions, as well as the interaction between
barotropic and baroclinic tides and other flows. In addition, it takes
advantage of domain decomposition methods (DDM) in order to
run on distributed memory parallel machines. The model consists
of the 3-D continuity and non-hydrostatic Boussinesq equations:

r � u ¼ 0; ð1Þ
@u
@t
¼ FðuÞ � rp; ð2Þ

where
FðuÞ¼�u �ru� f k�u�qgkþr�s;u�ðu;v;wÞT �ðu1;u2;u3ÞT is the
velocity vector, x�ðx;y;zÞT �ðx1;x2;x3ÞT are the orthogonal Carte-
sian coordinates, p is the perturbation pressure (p :¼p=q0;q0 is
the constant reference density), f represents the Coriolis inertial
force, g represents the acceleration due to gravity, q is the perturba-
tion density ðq :¼q=q0Þ, and k¼ð0;0;1ÞT . The stress tensor s is used
to represent viscous terms. The pressure variable is split into the
non-geostrophic and geostrophic parts which are solved separately.
This allows the accurate representation of hydrostatic/geostrophic
balance (for details see, Ford et al., 2004).

2.2. Proper Orthogonal Decomposition

Let the model variables fVkðx; tkÞg (e.g. velocity u ¼ ðu; v;wÞ and
pressure p) be a set of snapshots sampled at the defined check-
points during the simulation ½t1; . . . ; tk; . . . ; tK �, where K is the num-
ber of snapshots assumed of uniform weight. The average of the
ensemble of snapshots is defined as:

�V ¼ 1
K

XK

k¼1

Vk; ð3Þ

and the deviation from the mean of variables is defined as

vk ¼ Vk � �V ; ð4Þ

The goal of POD is to find a set of orthogonal basis functions fUkg
such that it maximises

1
K

XK

k¼1

jhvk;UkiL2 j2; ð5Þ

subject to

XK

k¼1

jhUk;UkiL2 j2 ¼ 1; ð6Þ

where h�; �iL2 is the canonical inner product in L2 norm. The approach
introduced by Sirovich et al. (1987) is used to find an optimal set of
basis functions U of the optimisation problem (5). The POD bases
can be written as a linear combinations of the snapshots vk:

Uk ¼
XK

k¼1

ykvk; 1 6 k 6 K: ð7Þ

Therefore a K � K eigenvalue problem is solved

Cyk ¼ kkyk; 1 6 k 6 K; ð8Þ
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where C is the K � K matrix with Ck;l ¼ 1
K hvk; vlið1 6 k; l 6 KÞ. The

eigenvalues kk are real and positive and should be sorted in
descending order. The eigenvectors yk are orthogonal and are re-
ferred to as the POD basis vectors Uk. The kth eigenvalue is a mea-
sure of the kinetic energy transferred within the kth basis.

2.3. POD-Galerkin projection

The variables u and p can be approximately expressed as an
expansion of the first few POD basis functions fU1;u; . . . ;UM;ug
and fU1;p; . . . ;UM;pg, respectively:

uðt; x; y; zÞ ¼ �uþ
XM

m¼1

am;uðtÞUm;uðxÞ;

pðt; x; y; zÞ ¼ �pþ
XM

m¼1

am;pðtÞUm;pðxÞ;
ð9Þ

where �u and �p are the mean of the ensemble of snapshots for the
variables u and p, respectively, am;u and am;pð1 6 m 6 MÞ are the
time-dependent coefficients to be determined; am;uð0Þ and am;pð0Þ
are the coefficients at the initial time level. Taking the POD basis
function as the test function, then integrating over the computa-
tional domain X,

@u
@t
;Um;u

� �
X

¼ hFðuÞ;Um;uiX � hrp;Um;uiX; ð10Þ

hr � u;Um;piX ¼ 0: ð11Þ

Substituting (9) into (10) and (11), the POD reduced order equations
(ODEs) are then obtained:

@am;u

@t
¼ F �uþ

XM

m¼1

am;uðtÞUm;uðxÞ
 !

;Um;u

* +
X

� r �pþ
XM

m¼1

am;pðtÞUm;pðxÞ
 !

;Um;u

* +
X

; ð12Þ

r � �uþ
XM

m¼1

am;uðtÞUm;uðxÞ
 !

;Um;p

* +
X

¼ 0; ð13Þ

subject to the initial condition

am;uð0Þ ¼ ððuð0;xÞ � �uðxÞÞ;Um;uÞ; am;pð0Þ
¼ ððpð0;xÞ � �pðxÞÞ;Um;pÞ: ð14Þ
2.4. Adaptive mesh technique in conjunction with POD

The use of dynamically-adaptive meshes has its advantage in
resolving small and large flows simultaneously as dynamics evolve.
However, this introduces a complication in the implementation of
a POD-based reduced model for an adaptive model. When adaptive
meshes are employed, the dimensional size of the variable vectors
is different at each time level since the number of nodes varies dur-
ing the simulation. Therefore the POD/ROM snapshots can be of
different length at different time levels. In this study, a reference
fixed mesh is adopted for the reduced model. The solutions from
the original full model are interpolated from their own mesh onto
the same reference fixed mesh at each time level, and then stored
in the snapshots. The information at the snapshots is used to find
an optimal set of basis functions. This allows the same length of
base modes to be obtained at each time level of the numerical sim-
ulation. The resolution of the reference mesh and the interpolation
errors between the two meshes (the adaptive mesh and the fixed
reference mesh) may affect the accuracy of the POD simulation.
The effect of the interpolation error has been investigated in our
previous studies (Fang et al., 2008a,b). The comparison of POD re-
sults with the use of the different interpolation operators demon-
strated that the accuracy of POD results can be improved by
introducing the high order interpolation operators (Fang et al.,
2008b). This will be explained and discussed through the applica-
tions presented below.

2.5. Geostrophic pressure

A deficit of dissipation in the energy budget, causing the POD-
Galerkin model to drift, could be related to the pressure terms
which appear at the boundaries of the computational domain
(Noack et al., 2005; Galletti et al., 2004). To incorporate the pres-
sure effects due to confinement, Noack et al. (2005) and Galletti
et al. (2004) proposed a quadratic model (based on a Poisson prob-
lem) and a linear model (based on a least square procedure) for the
pressure term, respectively,

In ocean modelling, the pressure term also plays an important
role in the geostrophic balance. In this study, taking into account
the role of the pressure term in both the POD-Galerkin model
and the geostrophic balance, the pressure in the momentum equa-
tions is divided into two parts: p ¼ png þ pg . To accurately repre-
sent geostrophic pressure, its basis functions are split into two
sets: Upgu and Upgv which are associated with the u- and v-velocity
components. The geostrophic pressure can be obtained from a qua-
dratic finite element representation while linear finite element
representations are used for the velocity components. Further-
more, the geostrophic pressure can be represented by a summation
of the two sets of geostrophic basis functions, which are calculated
by solving the elliptic equations using a conjugate gradient itera-
tive method (for details see, Fang et al., 2008a).

3. Stabilisation of reduced order model using a Sobolev H1 norm

High Reynolds number ocean flows exhibit dynamics on a wide
range of scales. They display a combination of organised or coher-
ent structures associated with the phase-averaged/spatially phase-
correlated components that exhibit the most evident structure and
apparently disorganised or incoherent structures associated with
the random components. The higher the Reynolds number, the
broader this range of scales. The incoherent turbulence is typically
of a time scale considerably smaller than that of the coherent
structures. The lifetime of a coherent structure seems to decrease
with increasing Reynolds number, when a structure appears to un-
dergo fairly rapid evolutionary change through complex interac-
tions (like tearing, fractional and partial pairings) or decay via
turbulent diffusion by incoherent turbulence (Hussain, 1983).
The distorted or subdivided structures find ways via mutual inter-
actions to re-emerge and generate a new coherent structure. It is
also noted that coherent and incoherent flows are not independent
even if they are uncorrelated. Coherent structures both produce
and spatially organise incoherent turbulence.

Reynolds shear stresses and the energy transfer/interaction be-
tween the different coherent/inherent structure flows play an
important role in characteristics of moderate and high Reynolds
number flows, i.e., the generation, evolution and decay of turbulent
flows (e.g., eddies). It is not surprising that the POD reduced model
derived using the Galerkin approach is not sufficiently accurate in
reproducing the dynamics of higher Reynolds number flows since
the truncation applied in the POD subspace inhibits transfers be-
tween the different scales of the fluid flow. The neglected POD
modes correspond to small scale structures and introduce dissipa-
tive errors in the model. As a consequence, the system may lose its
long-term stability. The stabilisation of a reduced order model can
be achieved by introducing an artificial dissipation by using a
Sobolev H1 inner product norm, that is, the derivatives of the snap-
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shots as well as those of the basis functions are included in the def-
inition of POD (Iollo et al., 2000).

One seeks the POD basis function U ¼ U1;U2; . . . ;UK such that it
maximises:

1
K

XK

k¼1

jhvk;UkiH1 j2 ¼ 1
K

XK

k¼1

XN
i¼1

ðvk;iUk;iÞ2 þ �
1
K

XK

k¼1

XN
i¼1

ðrvk;i

� rUk;iÞ2; ð15Þ

subject to

XK

k¼1

jhUk;UkiH1 j2 ¼ 1; ð16Þ

where vk ¼ ðvk;1; . . . ; vk;N Þ and Uk ¼ ðUk;1; . . . ;Uk;N Þ (N being the
number of nodes), � is a coefficient to be chosen from dimensional
analysis considerations (Iollo et al., 2000) (one may also guess the �
value). The POD basis function Uk can be calculated as in the L2 case:

Uk ¼
XK

k¼1

ykvk; 1 6 k 6 K; ð17Þ

where yk is obtained by solving the eigenvalue problem:

Cyk ¼ kkyk; 1 6 k 6 K; ð18Þ

where C is the K � K matrix with Ck;l ¼ 1
K ðhvk; vli þ �hrvk;rvliÞ

ð1 6 k; l 6 KÞ.
Fig. 2. RMSE of velocity results between the full and POD models (a) Re ¼ 800 (41 snaps
line, with the use of the L2 norm; the dashed line, with the use of the H1 norm.

Fig. 1. Adaptive mesh and velocity field in the full
4. Application and discussion

The stability and accuracy of POD-Galerkin model using adaptive
meshes is explored using the Munk gyre flow test case. By comparing
the results between the POD/ROM and full models, the effect of the
truncated modes is evaluated for Reynolds numbers in the range of
400–2000. To improve the stabilisation of numerical results, the
POD bases are defined in a H1 Sobolev norm. A comparison of results
using the H1 and L2 POD results is carried out.

4.1. Description of the case: the Munk gyre

The POD-Galerkin reduced order model is tested in a computa-
tional domain of horizontal dimensions, 1000 km by 1000 km with
a depth of H ¼ 500 m. The wind forcing on the free surface is given
by

sy ¼ s0cosðpy=LÞ; sx ¼ 0:0; ð19Þ

where sx and sy are the wind stresses on the free surface along the x
and y directions, respectively, and L ¼ 1000 km. A maximum zonal
wind stress of s0 ¼ 0:1 N=m is applied in the latitudinal ðyÞ direc-
tion. The Coriolis terms are taken into account using the beta-plane
approximation ðf ¼ byÞ where b ¼ 1:8� 10�11 and the reference
density is q0 ¼ 1000 kg=m.

The problem is non-dimensionalised with the maximum Sverd-
rup balance velocity
hots with 30 POD bases); (b) Re ¼ 1200 (81 snapshots with 60 POD bases). The solid

model at time level t ¼ 150 days ðRe ¼ 2000Þ.
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bHq0v ¼ @s
@y
6

s0p
L
) v 6 3:5� 10�2 m=s; ð20Þ

(and so the velocity scale U ¼ 3:5� 10�2 m=s is used here), and the
length scale is L ¼ 1000 km. Time is non-dimensionalised with
T ¼ L

U. The spin-up period is 0.1512 (50 days). The equilibrium state
at 50 days is taken as the initial state for both the full and reduced
models. The snapshots are collected from the results obtained in the
full model during the simulation period [50, 150] days. The time
step is 3:78� 10�4, equivalent to 3 h. Incorporating the beta-plane
approximation yields a non-dimensional b� ¼ L2b

U ¼ 514:3. The
a b

Fig. 4. Average (over time) RMSE of velocity results between the full model and the

Fig. 3. Contour of velocity ðRe ¼ 1200Þ at time levels: (a) and (b) t ¼ 100 days; (c) and (d)
the L2 norm (the thick lines: the full model; the thin lines: the POD model defined in H
non-dimensional wind stress (applied as a body force here averaged
over the depth of the domain) takes the same cosine of latitude pro-
file with s�0 ¼

s0L
ðU2q0HÞ ¼ 163:3. No-slip boundary conditions are ap-

plied to the lateral boundaries. The Reynolds number is defined as
Re ¼ UL

m .
The POD bases are constructed by snapshots which are obtained

from the numerical solutions in the full model. To evaluate the ef-
fect of truncated modes, a range of moderate Reynolds numbers
(400–2000) was used. Various numbers of snapshots and POD
bases (dependent on the values of the Reynolds numbers tested)
0 1e-05 2e-05 3e-05 4e-05 5e-05
Epsilon values

4.2

4.4

4.6

4.8

5

5.2

A
ve

ra
ge

 R
M

SE
 o

ve
r 

tim
e 

(m
/s

)

POD model defined in H1 with different � values: (a) Re ¼ 1200; (b) Re ¼ 800.

t ¼ 112:5 days. Left panel: with the use of the H1 norm; right panel: with the use of
1. Eighty-one snapshots and 60 POD bases are chosen).



50 100 150
Time (days)

0

1

2

3

4

5

6

7

R
M

SE
 (

m
/s

)

50 100 150
Time (days)

0

1

2

3

4

R
M

SE
 (

m
/s

)

Fig. 5. RMSE of velocity results between the POD model and the full model with the uses of the piecewise linear (solid line), cubic (dashed line) and quadratic (dotted line)
operators. Left panel: Re ¼ 800 (41 snapshots with 30 POD bases for the linear and quadratic operators while 81 snapshots with 60 POD bases for the cubic operator); right
panel: Re ¼ 1200 (81 snapshots with 60 POD bases for all the interpolation operators).
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for the velocity components u; v;w and the pressure p are chosen to
capture more than 99% of energy.

An adaptive mesh is adopted in the full model. The mesh for
the full model adapts every 19 time steps with maximum and
Fig. 7. Error in the velocity field from the POD reduced model (Re ¼ 2000; unit: m/s) at
chosen); (b) with the use of H1 (201 snapshots and 100 POD bases are chosen).

Fig. 6. RMSE of velocity results between the POD model and the full model ðRe ¼ 2000Þ:
150] days (81 snapshots with 60 POD bases); (b) the POD model is derived based on snaps
60 POD bases; the dashed line: 81 snapshots with 70 POD bases; the dot-dashed line: 2
minimum mesh size of 0.2 and 0.001 (non-dimensional), respec-
tively. The mesh was dynamically adapted according to the flow
features. The adaptive mesh adopted (at time level t ¼ 150 days)
in the full model is shown in Fig. 1. To allow the same length of
time level t ¼ 150 days: (a) with the use of L2 (81 snapshots and 60 POD bases are

(a) the POD model is derived based on snapshots obtained during a long period [50,
hots obtained during a short period [50, 100] days (the solid line: 81 snapshots with
01 snapshots with 100 POD bases).



Fig. 9. Viscous forcing term from the full and POD reduced order models (Re ¼ 2000; un
model; right panel: POD model with the use of H1 (201 snapshots and 100 POD bases a

Fig. 8. Correlation of velocity results between the full model and the POD model
defined in both the H1 and L2ðRe ¼ 2000Þ.
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POD bases at the snapshots for the reduced order model, a ref-
erence fixed mesh is chosen. To build up the snapshots, the solu-
tions from the full model are interpolated from the adaptive
mesh onto the reference fixed mesh. The aim of this paper is
to evaluate the effect of the truncated modes when adaptive
meshes are used in conjunction with the POD/ROM. The POD-
Galerkin model is derived using both the H1 and L2 norms. The
root mean square error (RMSE) between the POD velocity solu-
tion and the true one at the time level n is used to estimate
the error of the POD/ROM projection results:

RMSEn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðU

n
i � Un

o;iÞ
2

N

s
; ð21Þ

where, Un
i and Un

o;i are the vectors containing the POD velocity com-
ponents and true ones at the node i, respectively, N is the total
number of nodes over the domain.
it: N) at time levels: (a) and (b) t ¼ 75 days; (c) and (d) t ¼ 150 days; left panel: full
re chosen).



134 F. Fang et al. / Ocean Modelling 28 (2009) 127–136
4.2. Results and discussion

4.2.1. Test case I: Re ¼ 400—1200
The case studies detailed below have been carried out with Rey-

nolds numbers in the range 400–2000. It is noted that the POD-
Fig. 11. Contours of velocity at time levels ðRe ¼ 2000Þ: (a) t ¼ 62:5 days; (b) t ¼ 75 days;
POD model defined in H1. Two hundred and one snapshots and 100 POD bases are chos

Fig. 10. Vorticity from the full and POD reduced order models (Re ¼ 2000; unit: s�1): at ti
snapshots and 100 POD bases.
Galerkin model with the L2 norm can represent the velocity field
well when Re 6 400. In the case of Re ¼ 400, 30 POD bases and
41 snapshots are chosen for velocity components u; v;w and pres-
sure p, for which about 98.9% of energy is captured. The RMSE of
velocity results between the POD and full models is less than
(c) t ¼ 87:5 days; (d) t ¼ 100 days (the thick lines: the full model; the thin lines: the
en).

me level t ¼ 100 days (a) full model; (b) POD model defined in the H1 norm with 201
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3.5 m/s during the simulation period [50, 150] days. The POD-
Galerkin model with the L2 norm gradually lost its stability as
the Reynolds number was further increased (i.e., Re > 400). There
are two ways to stabilise the POD/ROM simulation:

(1) Increasing the number of POD bases and snapshots.
(2) Introducing artificial dissipation e.g. defining the POD basis

in a Sobolev H1 inner product norm.

For the cases ðRe ¼ 800;1200Þ, it is found that the velocity re-
sults can be represented better using the H1 norm (� ¼ 0:00001
for Re ¼ 800 and � ¼ 0:00015 for Re ¼ 1200) than those using the
L2 norm. 41 snapshots with 30 POD bases was chosen for
Re ¼ 800 while the number of snapshots was increased to 81 with
70 POD bases for Re ¼ 1200, where about 99.5% of energy was cap-
tured. The results from the POD reduced order model using the L2

and H1 norms are compared with corresponding results from the
full model. The RMSE of velocity results between the POD and full
models during the simulation period is provided in Fig. 2. It can be
seen that by using the H1 norm, the RMSE of velocity results be-
tween the POD and full models was reduced by up to 25% at
Re ¼ 800 (Fig. 2a) during the period t ¼ 100—150 days and by
50% at Re ¼ 1200 (Fig. 2b) during the period t ¼ 80—120 days.
The velocity contours for Re ¼ 1200 are displayed in Fig. 3. It is ob-
served that the instability in the POD velocity results is reduced by
using the H1 norm. Note that the coefficient � is directly related to
the accuracy of solutions in the POD model defined in H1 (Fig. 4).
One may guess � is associated to Re (Iollo et al., 2000). Herein
the value of the coefficient � is 10�5 for Re ¼ 800 and 1:5� 10�4

for Re ¼ 1200, respectively (where the average RMSE of velocity re-
sults over time reaches the minimum values, see Fig. 4).

To evaluate the interpolation error (introduced to snapshots
and the POD reduced model), the comparison of POD results is car-
ried out with linear and high order (quadratic and cubic) interpo-
lation schemes. It can be seen (Fig. 5) that compared with that
with the use of the linear interpolation, the RMSE of the velocity
results (between the POD and full models) with the use of the qua-
dratic and cubic interpolation schemes is reduced by 20–70%.

4.2.2. Test case II: Re ¼ 2000
As the Reynolds number is further increased to 2000, the POD

reduced order models defined in both the H1 and L2 norms become
Fig. 12. Velocity field at time level t ¼ 150 days (Re ¼ 2000; unit: m/s): (a) full model;
oscillatory and unstable as the simulation time increases and the
RMSE of velocity results increases to 9 m/s (Fig. 6a). The instability
of the POD model can be reduced if the length of the integration
period is shortened by half. The POD model is derived based on
the snapshots obtained during the shortened period [50, 100] days.
The RMSE of velocity results between the POD and full models is
reduced by a factor of 2 after the simulation period is shortened
(Fig. 6). With an increase in the number of snapshots and POD
bases defined in the H1 Sobolev norm, the RMSE of velocity is fur-
ther decreased and attains a small value (less than 2 m/s, repre-
sented by the dot-dashed line in Fig. 6b). The effect of the
truncation involved in the POD-Galerkin approach is further eval-
uated by the error of velocity results between the full and POD re-
duced order model defined in both the L2 and H1 norms (Fig. 7). By
using the H1 norm and increasing the number of snapshots and
POD bases, the error in the velocity field decreases by 30–50% for
the larger part of flow (Fig. 7) while the correlation of velocity re-
sults increases up to 97% (Fig. 8). By introducing a suitable artificial

dissipation the viscous force magnitude (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlr2uÞ2 þ ðlr2vÞ2

q
,

where l is the kinematic viscosity) in the POD model is close to
that in the full model (Fig. 9). A comparison of velocity results be-
tween the full model and POD model defined in H1 (with 201 snap-
shots and 100 POD bases) is provided in Figs. 11 and 12 while the
vorticity at time level t ¼ 100 days is displayed in Fig. 10. Both the
velocity and vorticity results from the POD model exhibit an over-
all good agreement with those obtained with the full model.

5. Summary and conclusions

The accuracy of POD-Galerkin model using adaptive meshes is
investigated for moderate Reynolds numbers flows using the Munk
gyre flow test case. A comparison of results between the full and
POD/ROM models defined in both the L2 and H1 norms, has been
carried out to evaluate the effect of the truncated modes when
adaptive meshes are used in conjunction with POD. The results ob-
tained show that the accuracy of the POD-Galerkin model can be
improved by introducing an artificial dissipation using a Sobolev
H1 inner product norm when Re ¼ 800—2000. The RMSE of velocity
results between the full model and POD-Galerkin model is reduced
by 10–50% with the use of the H1 norm. Both the velocity and vor-
ticity results at the different time levels exhibit an overall good
(b) POD model defined in H1 with 201 snapshots and 100 POD bases are chosen.
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agreement with those obtained with the full model. An increase in
the number of snapshots and POD bases also leads to an improve-
ment in the accuracy of the POD model (for example at Re ¼ 2000,
the RMSE of velocity results decreases to a small value (less than
2.5 m/s)).

Future work will investigate introducing calibration terms (e.g.,
eddy-viscosity terms) to the POD reduced order equations to ac-
count for unresolved fine-scale fluctuations in POD for higher Rey-
nolds numbers of the order of Re = 10,000 (Bottaro et al., 2007;
Favier et al., 2006; Noack et al., 2005; Stankiewicz et al., 2008;
Pastoor et al., 2008). These calibration terms can be calculated by
resolving appropriate constrained minimisation problems.
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