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A B S T R A C T

In this article, we describe a novel non-intrusive reduction model for three-dimensional (3D) free surface flows.
However, in this work we limit the vertical resolution to be a single element. So, although it does resolve some
non-hydrostatic effects, it does not examine the application of reduced modelling to full 3D free surface flows,
but it is an important step towards 3D modelling. A newly developed non-intrusive reduced order model
(NIROM) (Xiao et al., 2015a) has been used in this work. Rather than taking the standard POD approach using
the Galerkin projection, a Smolyak sparse grid interpolation method is employed to generate the NIROM. A set
of interpolation functions is constructed to calculate the POD coefficients, where the POD coefficients at
previous time steps are the inputs of the interpolation function. Therefore, this model is non-intrusive and does
not require modifications to the code of the full system and is easy to implement.

By using this new NIROM, we have developed a robust and efficient reduced order model for free surface
flows within a 3D unstructured mesh finite element ocean model. What distinguishes the reduced order model
developed here from other existing reduced order ocean models is (1) the inclusion of 3D dynamics with a free
surface (the 3D computational domain and meshes are changed with the movement of the free surface); (2) the
incorporation of wetting-drying; and (3) the first implementation of non-intrusive reduced order method in
ocean modelling. Most importantly, the change of the computational domain with the free surface movement is
taken into account in reduced order modelling. The accuracy and predictive capability of the new non-intrusive
free surface flow ROM have been evaluated in Balzano and Okushiri tsunami test cases. This is the first step
towards 3D reduced order modelling in realistic ocean cases. Results obtained show that the accuracy of free
surface problems relative to the high fidelity model is maintained in ROM whilst the CPU time is reduced by
several orders of magnitude.

1. Introduction

The numerical simulation of ocean modelling is important to a wide
range of applications such as atmosphere, sea ice, climate prediction,
biospheric management and especially natural disasters (for example,
flood and tsunami). The natural disasters often cause big losses and
tragic consequences. In order to reduce the losses, a real-time, early-
warning and rapid assessment model is required. In comparison to 2D
modelling, 3D ocean modelling provides better understanding and
much more information about local flow structures, vertical inertia,
water level changes, unsteady dynamic loads on structure interacting
with fluids, flow structures close to islands and dikes etc. However, the
majority of existing 3D ocean models suffer from an intensive
computational cost and cannot respond rapidly for tsunami forecast-
ing. In this case, model reduction technology has been presented to

mitigate the expensive CPU computational cost since the model
reduction technology offers the potential to simulate complex systems
with substantially increased computation efficiency.

Among existing model reduction techniques, the proper orthogonal
decomposition (POD) method has proven to be an efficient means of
deriving the reduced basis functions for high-dimensional nonlinear
flow systems. The POD method and its variants have been successfully
applied to a number of research fields, for example, signal analysis and
pattern recognition (Fukunaga, 1990), statistics (Pearson, 1901),
geophysical fluid dynamics and meteorology (Crommelin and Majda,
2004), ocean modelling (Xiao et al., 2013, 2015a, 2015b; Cao et al.,
2007), large-scale dynamical systems (Antoulas, 2005), ecosystem
modelling (Pelc et al., 2012), data assimilation of wave modelling
(Wahle et al., 2015; Altaf et al., 2015), ground-water flow (Vermeulen
et al., 2004), air pollution modelling (Fang et al., 2014), shape
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optimisation (Diez et al., 2015), aerospace design (Manzoni et al.,
2015; Iuliano and Quagliarella, 2013), lithium-ion batteries convective
Boussinesq flows (San and Borggaard, 2015), mesh optimisation model
(Fang et al., 2010) and also shallow water equations. This includes the
work of Stefanescu and Navon (2013); Stefanescu et al. (2014); Daescu
and Navon (2008); Bistrian and Navon (2015); Chen et al., (2011,
2012); Du et al. (2013) as well as Fang et al., (2013, 2009b).

However, the standard reduced order modelling is usually gener-
ated through POD and Galerkin projection method, which means it
suffers from instability and non-linearity efficiency problems. Various
methods for improving numerical instability have been developed such
as regularisation method (Jafarpour and Feriedoun, 2012), Xiao et al.
(2013); Fang et al. (2013), method of introducing a diffusion term
(Bou-Mosleh et al., 2011; Serpas et al., 2011) and Fourier expansion
(Willcox and Megretski, 2003). For non-linear efficiency problems, a
number of methods have been proposed including empirical interpola-
tion method (EIM) (Barrault et al., 2004) and discrete empirical
interpolation method (DEIM) (Chaturantabut and Sorensen, 2010),
residual DEIM (RDEIM) (Xiao et al., 2014), Gauss-Newton with
approximated tensors (GNAT) method (Carlberg et al., 2013), least
squares Petrov-Galerkin projection method (Bou-Mosleh et al., 2011),
and quadratic expansion method (J Du et al., 2013; Juan Du et al.,
2013; Fang et al., 2009b).

However, those methods are still dependent on the full model
source codes. In many contexts, the source codes governed by partial
differential equations need to be modified and maintained. Developing
and maintaining these modifications are cumbersome (Chen, 2012). To
circumvent these shortcomings, non-intrusive approaches have been
introduced into ROMs. Chen presented a black-box stencil interpola-
tion non-intrusive method (BSIM) based on machine learning methods
(Chen, 2012). D. Wirtz et al. proposed the kernel methods where the
learning methods are based on both support vector machines and a
vectorial kernel greedy algorithm (Wirtz et al., 2013; Wirtz and
Haasdonk, 2012). Audouze et al. proposed a non-intrusive reduced
order modelling method for nonlinear parametrized time-dependent
PDEs using the radial basis function approach and POD (Audouze
et al., 2013, 2009). Klie used a three-layer radial basis function neural
network combined with POD/DEIM to predict the production of
petroleum reservoirs (Klie et al., 2013). Walton et al. developed a
NIROM for unsteady fluid flows using the radial basis function (RBF)
interpolation and POD (Walton et al., 2013). Noori et al. (2013) and
Noack et al. (2011) applied a neural network to construct the ROM.
Xiao et al. presented a non-intrusive reduced order modelling method
for Navier-Stokes equations based on POD and the RBF interpolation
(Xiao et al., 2015b) and applied it successfully into fluid-structure
interaction problems (Xiao et al., 2016, 2017). The CPU computational
times are reduced by several orders of magnitude by using this POD-
RBF method. Xiao et al. also introduced the Smolyak sparse grid
interpolation method into model reduction to construct the NIROM
(Xiao et al., 2015a).

POD ROM approaches have been applied to ocean problems (Fang
et al., 2009a, 2009b; Ha et al., 2008; Zokagoa and Soulaïmani, 2012).
Ha et al. introduced ROM into tsunami forecasting (Ha et al., 2008),
and Zokagoa and Soulaïmani (2012) used POD/ROM for Monte-Carlo-
type applications. In their work, the POD-based reduced-order models
were constructed for the shallow water equations. In shallow water
modelling, however there are some errors in results when involving
ocean problems like radical topography changes, short waves and local
flows around the buildings or mountains. The work of Fang et al.
(2009a, 2009b); Du et al. (2013), and Xiao et al. (2013) introduced
POD ROM for 2D/3D Navier-Stokes unstructured mesh finite element
fluid modelling. However 3D free surface flow examples were not
included in their work due to the difficulty in implementation of
intrusive POD-ROMs. The implementation difficulty was caused by the
change of both the computational domain and 3D unstructured meshes

with free surface movement. However, NIROM is capable of handling
this issue easily.

This paper, for the first time, constructs a NIROM for free surface
flows within the framework of an unstructured mesh finite element
ocean model. This is achieved by using the Smolyak sparse grid
interpolation method. The Smolyak sparse grid method is a widely
used interpolation method and is used to overcome the curse of
dimensionality. It was also used for uncertainty quantification for
electromagnetic devices (Sumant et al., 2012) where the Smolyak
sparse grid was used to calculate statistically varying material and
geometric parameters which were the inputs of the ROM. Xiao et al.
first used Smolyak sparse grids to construct ROM (Xiao et al., 2015a)
and it has been shown to be a promising non-intrusive method for
representing complex physical system using a set of hyper-surface
interpolating functions. The NIROM can be treated as a black box,
which uses a set of hypersurfaces constructed based on the Smolyak
sparse grid collocation method to replace the traditional reduced order
model. The errors in the NIROMs come from: the POD function
truncation error (the ability of the basis functions to represent the
solution), the error associated with having just a certain number of
solution snapshots (rather than the solution at all time steps) and the
error from the calculation of the NIROM solution (for more details,
please see Xiao et al., 2017) using, for example, sparse grids or Radial
Basis Functions.

In this work, the newly presented NIROM method based on
Smolyak sparse grids is applied to complex ocean free surface flows.
The capability of newly developed NIROM for 3D free surface flows are
numerically tested and illustrated in Balzano and Okushiri tsunami test
cases. The main novelty of this work is the inclusion of 3D flow
dynamics with a free surface and the wetting-drying front. The
solutions from the full fidelity ocean model are recorded as a sequence
of snapshots, and from these snapshots appropriate basis functions are
generated that optimally represent the flow dynamics. The Smolyak
sparse grid interpolation method is then used to form a hyper-surface
that represents the ROM. Once the hyper-surface has been constructed,
the POD coefficient at current time step can be obtained by providing
the POD coefficients at previous time steps to this hyper-surface.
Numerical comparisons between the high fidelity model and this
NIROM are made to investigate the accuracy of this novel NIROM
for free surface flows.

The structure of the paper is as follows. Section 2 presents the
governing equations of free surface flows. Section 3 presents the
derivation of the POD model reduction and re-formulation of the
governing equations using the Smolyak sparse grid method. Section 4
illustrates the methodology derived above via two numerical examples.
This is based on two test problems where the Balzano test case and
Okushiri tsunami test case are numerically simulated. Finally in
Section 5 conclusions are presented and the novelty of the manuscript
is fully summarized and illuminated.

2. Three dimensional governing equations for free surface
flows

2.1. 3D Navier-Stokes equations

The three dimensional incompressible Navier-Stokes equations
with Boussinesq approximation and the conservative equation of mass
are used in this work:

u∇·→ = 0, (1)

u
t

u u p τ∂→

∂
+ →·∇→ = − ∇ + ∇· .

(2)

where the terms u u u u→ ≡ ( , , )x y z
T are the velocity vector, p the

perturbation pressure (p p ρ ρ≔ / ,0 0 is the constant reference density).
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The stress tensor τ represents the viscous forces:
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where μ denotes the kinematic viscosity. The no-normal flow boundary
condition is applied on the bottom and sides of the computational
domain:

u n→·→ = 0, (4)

where n→ denotes the unit normal vector on boundary surface.

2.2. Combining kinematic free surface condition

The kinematic free surface boundary condition is expressed as
follows:

η
t

u η u Ω∂
∂

= − → ·∇ + on ∂ ,H z η H z z η s= = (5)

where η is the free surface elevation, Ω Ω∂ ⊂ ∂s is the free surface
boundary, x y∇ ≡ (∂/∂ , ∂/∂ )H

T , and u→H is the horizontal component of u→.
Using the fact that the normal vector n→ at the free surface is
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, Eq. (5) can be reformulated to

η
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n k

∂
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(6)

where k
→

= (0, 0, 1) is the vertical standard basis vector. Note that in

spherical geometries k
→

is replaced with r θ ϕ θ ϕ θ→ = (sin cos , sin sin , cos )
where ϕ and θ are the azimuthal and co-latitudinal angles respectively.

Taking into account p ρ gη= 0 on the free surface Ω∂ s, gives the
combining kinematic free surface boundary condition:

n k
ρ g

p
t

n u→·
→ 1 ∂

∂
= →·→.

0 (7)

In a wetting and drying scheme, a threshold value d0 is introduced to
define the wet and dry areas/interface. In order to prevent a non-physical
flow, a thin layer is kept equal to the threshold value d0 in dry areas. In
wetting and drying, different boundary conditions are applied on the free
surface. A no normal flow boundary condition is applied on dry areas
while a kinematic free surface boundary condition is used on wet areas.

3. POD/Smolyak non-intrusive reduced order formulation

In this section, the method of constructing the NIROM for free
surface flow problems is described. The essence of this method lies in
how to construct a set of interpolation functions or hyper surfaces that
represent the reduced free surface problem system using the Smolyak
sparse grid method. Firstly, the solutions from the high fidelity ocean
model are recorded as a number of snapshots where the details of 3D
free surface dynamics (wetting-drying front, free surface heights, waves
etc) are included. Secondly, from these snapshots a number of basis
functions, that optimally represent the free surface flow dynamics, are
then generated. Thirdly, the Smolyak sparse grid interpolation method
is used to form a set of hyper-surfaces that represent the reduced
system. Once the hyper-surfaces have been constructed, the solution of
the NIROM, at the current time level, can be obtained from reduced
solution at the previous time level using the hyper-surface functions.

3.1. The Proper Orthogonal Decomposition method

In this section, the POD theory is briefly described. The objective of

the POD method presented here is to extract a set of P optimal basis
functions from the snapshots recorded solutions of velocity and
pressure (free surface) at a number of different time levels. In this
work the snapshots are obtained by solving the discretised form of
equations (2), which considers the free surface boundary condition.
Four separate matrices U U U, ,x y z and Up representing velocity from
different coordinates directions and pressure (free surface) are formed
from the snapshots. Each matrix will be treated in an identical way, so
for the sake of simplicity of presentation, a general matrix U is used for
representing the four matrices. The dimension of the matrix U is F S× ,
where F and S denote the number of nodes on the finite element mesh
and the number of snapshots respectively. The mean of the snapshots
is defined as:

∑
S

i FU U= 1 , ∈ {1, 2, …, }.i
j

S

j i
=1

,
(8)

Taking the mean from the matrix U yields a new matrix U͠j i, , which is
used for performing Singular Value Decomposition (SVD):

i F j SU U U= − , ∈ {1, 2, …, }, ∈ {1, 2, …, }.͠
j i j i i, , (9)

Computing the SVD of the matrix U͠j i, has the form,

UΣVU = ,͠ T (10)

where matrix U has a size of F F× and it is constructed by the

eigenvectors UU͠ ͠ T
. Matrix V has a size of S S× and it is constructed by

the eigenvectors U U͠ ͠T
. They are unitary matrices and the matrix Σ is a

diagonal matrix of size F S× . The non zero values of Σ are the singular
values of matrix U͠ and are listed in decreasing order. The singular
values provide a criteria (truncation point) for choosing the number of
optimal basis functions P. A formulation is given to calculate the energy
captured from the full system:

E
λ

λ
=

∑

∑
,i

P
i

i
S

i

=1

=1 (11)

where the E represents the energy of snapshots captured by the first P
POD basis functions. If the singular values decay fast, most of the
’energy’ in the original dynamic system can be captured only by a small
number of leading POD basis functions provided we satisfy the
Kolmogorov n-width condition.

The POD basis functions can be defined as the column vectors of
the matrix U (Chaturantabut, 2008):

Φ U j S= , for ∈ {1, 2… }.j j:, (12)

These functions are optimal in the sense that no other rank P set of
basis functions can be closer to the matrix U͠ in the Frobenius norm.
That is, if the first P basis functions are used, the resulting matrix is the
closest possible to the matrix U͠ in the relevant norm. In addition, the
POD basis functions are orthonormal since the matrix U is unitary.
After obtaining the POD basis functions, the solution of velocity u and
pressure (free surface) p can be represented by the expansion:

∑ ∑α Φ α Φu u p p= + , = + ,
j

P

j j
j

P

j ju u p p, , , ,
(13)

where α denote the expansion coefficients.

3.2. The Smolyak sparse grid interpolation algorithm

In this work, the Smolyak sparse grid interpolation method is used
to construct a set of hyper-surfaces representing the reduced fluid
system. In this section, the sparse grid interpolation presented by
Sergey (1963) is described. The Smolyak sparse grid interpolation
algorithm is an efficient method that is used to approximate a high
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dimensional function. The advantage of using Smolyak sparse grid is
that it selects only a small number of nodes from the full tensor-
product grid, thus resulting in computational efficiency. It uses a
parameter, approximation level l to control number of Smolyak sparse
nodes R.

For one dimensional problems, a function f can be approximated by
the formulae,

∑U f f ξ ω ξ( )( ) = ( ). ( ( )),l

i

O

i
l

i
l

=1

l

(14)

where Ol is the number of nodes at this dimension, superscript l is the
approximation level, ω is a weighting coefficient and f ξ( )i denotes the
value of the function f at location ξi.

For d-dimensional problem, a function f can be approximated using
a full tensor product, that is, has a form of,

∑ ∑U U f f ξ ξ ω ω( ⊗ ⋯ ⊗ )( ) = ⋯ ( , …, ). ( ⊗ ⋯ ⊗ ),l l
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(15)

where O O O, …l l ld1 2
are number of nodes used in dimension d(1, 2… )

respectively, f ξ ξ( , …, )i
l

i
l
d
d

1
1 represents the function value at a point

ξ ξ( , …, )i
l

i
l
d
d

1
1 on the full tensor product grid. The number of Old can be

determined by the Clenshaw-Curtis quadrature rule, and O = 2 + 1l
l −1

d
d

(Gerstner and Griebel, 1998). However, the full tensor product inter-
polation suffers from the problem of ‘curse of dimensionality’, that is, the
number of nodes O O× … ×l ld1

increases exponentially with the number
of dimensions d, thus resulting in an intensive computational cost. The
Smolyak sparse grid interpolation algorithm is a method to deal with the
issue of ‘curse of dimensionality’. The key idea of this method is that it
selects the important nodes rather than all the nodes on tensor product
grid. The interpolant has the following expression:

⎛
⎝⎜

⎞
⎠⎟∑f d l d d

d l U UI( + , ) = ( − 1) · − 1
+ − | | ( ⊗ ⋯ ⊗ ),

max d l d l

d l l l

I

I

{ , +1}≤ ≤ +

+ −| | d1

(16)

where I II| | = + ⋯ + d1 , I is a point index on each dimension, and for
each I i d, ∈ {1, 2, … }i , it has a maximum value of number of nodes in
this dimension i, that is, I O1 ≤ ≤i li. The Smolyak interpolation uses the
following formulation to choose nodes (Judd et al., 2014),

d I I I d l≤ + + ⋯ + ≥ + .d1 2 (17)

The number of the Smolyak sparse grid points R is determined by the
approximation level l and the dimension size d (for 2D examples, see

Fig. 1) and R d≃
l

l2
!

d
(Geletu, 2010). The Smolyak formulation generates

Fig. 1. The figure shows the 2-D smolyak sparse grid with level 1 (left), 2-D smolyak sparse grid with level 2 (middle) and full tensor product grid (right).

Fig. 2. The flow chart of the NIROM.

Fig. 3. Balzano case: the computational domain and mesh used in Balzano case.

Fig. 4. Balzano case: the graphs shows the singular values in order of decreasing
magnitude.
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sparse grid points upon which the function f is evaluated on the Smolyak
sparse points, thus increasing the computational efficiency in compar-
ison with the tensor product evaluations.

3.3. Constructing a NIROM for free surface flows using Smolyak
sparse grid

This section describes the method for constructing a NIROM for
free surface flows using POD and Smolyak sparse grid interpolation
method described in Sections 4.1 and 4.2. The flow chart of construct-
ing and solving the NIROM is graphically presented in Fig. 2. The
process can be essentially divided into the steps below:

(1) Form a number of POD basis functions for velocity and pressure
(free surface) which are used to construct the reduced order spaces;

(2) Construct the NIROM where the Smolyak sparse grid interpolation

Fig. 5. Balzano case: the solutions of pressure from the full model and NIROM at time instances 10.2 (left panel) and 25 (right panel). Top panel: the full model; middle panel: NIROM
using 2 POD bases; and bottom panel: NIROM using 6 POD bases.

Fig. 6. Balzano case: the difference of pressure solutions between the full model and NIROM, using 2 and 6 POD bases at time instances s10.2 (left panel) and s25 (right panel).

Fig. 7. Balzano case: the pressure solutions from the full model and NIROM at location:
x m y m z( = 296.8 , = 686.25 , = 0).

Fig. 8. Balzano case: the RMSE errors of pressure solutions between the full high fidelity and non-intrusive reduced order models.(b) is an enlargement of (a).
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method is used to generate a set of hyper-surfaces;
(3) Solve the NIROM at each time step and project the POD

coefficients onto the full space, that is, the velocity, pressure and
free surface height at each time step;

(4) Update 3D unstructured elements as the free surface moves at each
time step.

The key of the NIROM lies in the second step, that is, constructing a
set of Smolyak interpolation functions (hyper-surfaces)
f j P( , ∈ {1, 2, … })j , which has the form of

α f α α α α α α j P= ( , , …, , , , …, ), ∈ {1, 2, … },j
n

j
n n

P
n n n

P
n

u u u p p p
+1

,1 ,2 , ,1 ,2 ,

(18)

where P is the number of POD bases. The input variables of the
Smolyak interpolation function fj is complete set of POD coefficients

α α α α α α α= ( , , …, , , , …, )n n n
P

n n n
P

n
u u u p p p,1 ,2 , ,1 ,2 , at the previous times step n.

The output of the Smolyak interpolation function fj is the jth POD

coefficient αn+1 at time step n + 1. A detailed algorithm describing the
steps of constructing the NIROM for free surface flows is outlined in
Algorithm 1, where, the interpolation function values need to be
determined only at the Smolyak sparse grid nodes rather than on the
full tensor product grid, thus resulting in an impressive computational
economy. The online Algorithm 2 presents the process of obtaining
solutions using NIROM. After obtaining the POD coefficients, the
solutions can be obtained by projecting back the POD coefficients on
the full space. Then, the last step is to update the free surface values at
all finite element nodes and 3D mesh locations, this is achieved by
keeping the coordinates of x and y of each node in mesh unchanged and
replacing the z-direction with the new free surface value at each node.

Fig. 9. Balzano case: the correlation coefficient of pressure solutions between the full
and non-intrusive reduced order models.

Fig. 10. Balzano case: the comparison of pressure solutions between the full model and
solutions predicted by NIROM model constructed during time period [0, 70000 s] at
location x m y m z( = 2217.9 , = 475.14 , = 0) where the training period is [0, 50000 s]

(time steps from 0 to 100) and the predictive period is [50000, 70000 s] (time steps from
100 to 140).

Fig. 11. Okushiri tsunami case: water level profile resembling the tsunami input wave.

Fig. 12. Okushiri tsunami case: the computational domain and unstructured meshes
used.

Fig. 13. Okushiri tsunami case: the graphs shows the singular values in order of
decreasing magnitude.
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Algorithm 1. POD-Smolyak NIROM algorithm for free surface flows.

Algorithm 2. Online algorithm of NIROM for free surface flows
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4. Numerical examples

The capability of the new non-intrusive reduced order model for 3D
free surface flows is numerically illustrated in this section. This
illustration is based on two numerical test problems: a Balzano test
case and a Okushiri tsunami test case (Funke et al., 2011). A pressure/
free-surface kinematic boundary condition is enforced in the wetting
zones and a no-normal flow and positive water level boundary
conditions are applied to the drying zones. The free surface movement
is represented by vertical mesh shifting. Evaluation of accuracy of the
NIROM for 3D free surface flows was carried out through comparison
of POD solutions with those obtained from the high fidelity model. The
high fidelity model solutions were obtained through the use of an
unstructured mesh finite element method ocean model (Fluidity,
developed by the Applied Modelling and Computation Group at
Imperial College London (Pain et al., 2005)).

From these full model simulations the snapshots of the solution
variables were taken. Snapshots are recorded at certain time levels, for
example, every five time levels or every ten time levels. The larger the
number of snapshots, the higher the accuracy of the NIROM. In realistic
applications, the use of too larger a number of snapshots may result in a
computationally unafordable method. This has motivated the optimal
selections of the time levels used as the snapshots, in for example Kunisch
and Volkwein (2010); Siade et al. (2010). The optimal time levels are
chosen in such a way that the error between the high fidelity model and
NIROM is minimised. Through these snapshots, the reduced order
models were then formed and used to re-solve the problems.

4.1. Case 1: Balzano test cases

The first example used for validation of the new NIROM was the
Balzano test case (proposed by Balzano in 1998 (Balzano, 1998) for
benchmarking different wetting and drying methods). S.W. Funke
et al.. extended the benchmarks to a 3D problem to test a wetting
and drying algorithm using Fluidity (Funke et al., 2011). In this work, a
slope with a linear ascending test case was chosen to show the
capability of the NIROM developed here for free surface flows. The
geometry of the problem was first constructed with a 2D domain
consisting of a slope with size of 13.8 km and a depth of zero meter at
one end and five meters at the other end. In order to obtain a 3D

domain, this 2D domain was extruded to a width of 1 km (see Fig. 3).
A sinusoidal water level changes with a magnitude of two meters

and 12 h is applied to the five meters end (deep end of the computa-
tional domain) to trigger the flows. No normal flow boundary condi-
tions are applied at both sides, the bottom and the shallow end of the

slope. A Manning-Strickler drag with smn = 0.02
1
3 is applied at the

bottom. The gravity is ms9.81 −2.
The problem was simulated for a period of 50000 s, and a time step

size of t sΔ = 500 was used. From the full simulation by running
Fluidity, with an unstructured finite element mesh of 180 nodes and
354 elements, 100 snapshots were obtained at equally spaced time
intervals for each of the ux, uy, uz and p solution variables during the
simulation period. A P P−1 1 finite element pair was used. The NIROM
was constructed from the 100 snapshots (taking a snapshot every time
step) and then used to test the problem during the simulation period.

Fig. 4 shows the singular values in decreasing order. It can be seen
that the singular eigenvalue curve decreases drastically between the
first two leading POD basis functions, i.e. satisfying Kolmogorov
condition (Kolmogorov, 1936). In this case, 98% of ’energy’ in the
original flow dynamic system is captured with use of only three POD
basis functions with 100 snapshots. In this work, two and six POD basis
functions were chosen to generate the reduced order model using the
Smolyak sparse grid method described above.

Fig. 5 shows the solutions of pressure from the full model and
NIROM using 2 and 6 POD basis functions at time instances s10.2 and

s25 . A good agreement is achieved between the high fidelity full
solutions and reduced order results. To further estimate the accuracy
of NIROM, the pressure solutions at a particular location
x m y m z( = 296.8 , = 686.25 , = 0) within the domain (black point in
Fig. 3) are plotted in Fig. 7. Again, it can be seen that the results of
NIROM with both 2 and 6 POD basis functions are in agreement with
those from the full model.

To evaluate the accuracy of NIROM solutions, Fig. 6 shows the
error of pressure solutions between the full model and NIROM with 2
and 6 POD basis functions at time instances 10.2 and 25 s . It is shown
that the error of pressure solutions from NIROM using 6 POD basis
functions is smaller than that using 2 POD basis functions. The error of
pressure solutions at all nodes is further analysed by RMSE and
correlation coefficient. The RMSE and correlation coefficient of pres-

Fig. 14. Okushiri tsunami case: Wetting and drying front (dark line) at time instances 15.60 (left panel) and 18.75 (right panel) seconds.
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sure solutions are given in Figs. 8 and 9 respectively, which shows the
accuracy of NIROM is improved by increasing the number of POD basis
functions. The RMSE line of NIROM using 6 POD basis functions in
Fig. 8 (a) looks like a straight line since the error is small. In order to
see it clearly, it has been zoomed in, as shown in Fig. 8 (b). It can be
seen in Fig. 9, the correlation coefficient line of NIROM with 6 POD
basis functions is more closer to 1 than that with 2 POD basis
functions. The correlation coefficient is a statistical number of the
strength of a relationship between two variables. If it is close to 1, it
means that the two variables are strongly correlated.

To further demonstrate the predictive capability of NIROMs, the
simulation period is extended from 50000 s to 70000 s. In Fig. 10, the
pressure solutions at a particular point x m y m( = 2217.9 , = 475.14 ,
z = 0) , obtained from both the high fidelity model and NIROM, are
given during the period s[0, 70000 ]. It is shown that the NIROM, built-up
on the full solution during the training period s[0, 50000 ] is able to
provide promising results during the predictive period s s[50000 , 70000 ].
More recently, we have further extended the NIROMs proposed in this
work to parameterized physical problems (Xiao et al., 2017). In that work,
we used another hyper-surface to represent the varying parameter space.
The NIROMs are then constructed at the Smolyak sparse grid points in

the parameter space. The predictive capability has been assessed by
varying the boundary conditions and initial conditions, see Xiao et al.
(2017).

4.2. Case 2: Okushiri tsunami test case

The second case is a Okushiri tsunami test case. In 1993, the Okushiri
tsunami struck Okushiri Island and generated huge run-up heights of
almost 30 m and currents of order of approximate 10–18 m per second in
Okushiri, Japan, which was a natural disaster. A 1/400 laboratory model
of this area was constructed at Central Research Institute for Electric
Power Industry in Abiko, Japan (Liu et al., 2008). The laboratory data
resembles closely the realistic bathymetry. S.W. Funke et al. used this
laboratory model as a benchmark to set up a model using Fluidity (Funke
et al., 2011). The computational domain is m m5.448 × 3.402 in hor-
izontal and the free surface is extruded to the bathymetry and coastal
topography in vertical (see Fig. 12). A water height representing a tsunami
wave is imposed to the left boundary and no normal flow boundary
conditions are enforced to the bottom and other sides resembling the solid
boundaries. The tsunami input wave boundary conditions were deter-
mined from a surface elevation profile, see Fig. 11. The threshold value of

Fig. 15. Okushiri tsunami case: The solutions and errors of pressure from the full model and NIROM at time instances 10.2 (left panel) and 15.2 (right panel). Top panel: the full model;
middle panel: the NIROM using 18 POD basis functions; bottom panel: error between the full model and NIROM using 18 POD basis functions.
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wetting and drying (d0) is set to be mm0.5 in dry area to prevent non-
physical flows in numerical simulation. The isotropic kinematic viscosity
is set to be m s0.0025 2 −1. The acceleration of gravity magnitude is

ms9.81 −2. A P P−1 1 finite element pair is used to solve the equations. In
this work, the model which is set up by Fluidity is used to evaluate the
predictive capability of the NIROM.

The tsunami problem was simulated using Fluidity for a period of
26 s, and a time step size of t sΔ = 0.2 was used. From the full model
simulation, with a unstructured finite element mesh of 6830 nodes and
20058 elements, 100 snapshots were obtained at equal time intervals
for each of the ux, uy and p solution variables between the simulation
period. The NIROM was constructed from the 100 snapshots (taking a
snapshot every time step) within an time interval s[0, 20] , a part of the
full modelling run. In this test case, the main tasks were the evaluations
of (1) the accuracy of NIROM during the time period s[0, 20] ; and (2)
the predictive capability of NIROM during the time period s[20, 26] .

Fig. 14 shows the front/interface of wetting and drying. It can be
seen that the shape of the computational domain is changing as the free
surface keeps moving up and down. Fig. 15 shows the solutions of
pressure from the high fidelity model and NIROM using 18 POD basis
functions at time instances t=10.2 and t=15.2. The difference between
the high fidelity model and NIROM using 18 POD basis functions is
also given in this figure. To further evaluate the performance of
NIROM, the absolute error between the high fidelity model and
NIROM using 6, 12 and 18 POD basis functions is given in Fig. 16.
Again, it is shown that the error of the NIROM decreases as the number
of POD basis functions used increases. Fig. 17 shows the solutions of

Fig. 16. Okushiri tsunami case: The difference of pressure solutions between the full model and NIROM, using 6, 12 and 18 POD basis at time instances 10.2 (left panel) and 15.2 (right
panel) seconds.

Fig. 17. Okushiri tsunami case: The comparison of pressure solutions between the full
model and NIROM model at location x y( = 0.6595, = 1.63).
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full model and the NIROM model using different number of POD basis
functions at the point x m y m( = 0.6595 , = 1.63 ) in the domain (point id
688 in Fig. 12). It can be seen that the NIROM using more POD basis
functions gets closer to the solution of the full model.

The more POD basis functions are chosen, the more energy of the
system will be captured. The ratio of energy captured can be quantified
by Eq. (11). This can also be evaluated by Fig. 13 which shows the
singular values of tsunami case in decreasing order of magnitude. The 6
POD basis functions capture 92.8% of the energy and 12 POD basis
functions capture almost 98% of the energy.

In order to assess the prediction capabilities, the NIROM was built
during the time period s[0, 20 ] and it was run further to 26 s Fig. 18
shows solutions of pressure from the high fidelity model and NIROM at
time instances t s= 26 . The comparison of pressure solutions at two

particular points (x m y m= 3.5696 , = 1.6994 , point id 760 in Fig. 12)
and (x m y m= 4.9306 , = 1.9685 , point id 2510 in Fig. 12) are presented
in Fig. 19. It can be seen that the results of NIROM are promising at the
point (x m y m= 4.9306 , = 1.9685 ) during the predictive time period

s s[20 , 26 ] although the error is slightly larger at
x m y m( = 3.5696 , = 1.6994 ). Fig. 20 shows the velocity and pressure
solutions at the point (x m y m= 1.6892 , = 2.1783 , point id 596 in
Fig. 12). Again, the solutions from both the high fidelity and NIROM
solutions are in good agreement. The error in the predictive capability
has been further analysed using the RMSE and correlation coefficient
which consider all nodal values on the computational mesh. The
correlation coefficient of solutions between the high fidelity full model
and NIROM is computed for each time step, and is defined for given
expected values χfull

n and χnirom
n and standard deviations σ χfull

n and σ χnirom
n ,

Fig. 18. Okushiri tsunami case: The solutions of pressure from the full model (top) and NIROM constructed during time period s[0, 20 ] (middle) and s[0, 26 ] (bottom)at time instances

s26 .

Fig. 19. Okushiri tsunami case: The comparison of pressure solutions between the full model, the NIROM constructed during time period [0, 20 ] and [0, 26 ] at locations

x m y m( = 3.5696 , = 1.6994 ) and x m y m( = 4.9306 , = 1.9685 ).
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where E denotes mathematical expectation, cov denotes covariance, σ
denotes standard deviation. The measured error is given by the root
mean square error (RMSE) which is calculated for each time step n by,
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In this expression χfull i
n

, and χnirom i
n

, denote the full and NIROM solutions
at the node i, respectively, and N represents number of nodes on the
full mesh.

The Fig. 21 shows the RMSE and correlation coefficient values

between the high fidelity full model and predicted NIROM. As shown in
the figure, the error is acceptable and the correlation coefficient is
above 90% during the predictive period.

Table 1 shows the online CPU cost required for simulating the high
fidelity full model and NIROM for each time step. It is worth noting
that the online CPU time (seconds) required for running the NIROM
during one time step is only 0.004, while the full model for tsunami
case and Balzano are 30.84992 and 0.7800 respectively. The simula-
tions were performed on 12 cores workstation of an Intel(R) Xeon(R)
X5680 CPU processor with 3.3 GHz and 48 GB RAM. The two cases
were run in serial, which means only one core was used when running
the test cases. The time used for the full model roughly equals to the
time of assembling and solving the discretised matrices in Eq. (2). The
CPU cost of the full model is dependent on the resolution of mesh,

Fig. 20. Okushiri tsunami case: The comparison of velocity and pressure solutions between the full model, the NIROM constructed during time period [0,20] s and [0,26] s at locations
x m y m( = 1.6892 , = 2.1783 ).

Fig. 21. Tsunami case: The RMSE errors of pressure solutions between the full high fidelity and non-intrusive reduced order models. (b) Correlation coefficient.

Table 1
Comparison of the online CPU time (s) required for running the full model and NIROM during one time step.

Cases Model Assembling and solving Projection Interpolation Nonlinear iteration times Total

Okushiri Full model 7.71248 0 0 4 30.84992
tsunami case NIROM 0 0.003 0.001 0 0.0040
Balzano Full model 0.0520 0 0 15 0.7800
case NIROM 0 0.003 0.001 0 0.0040
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which means the computation time increases when finer mesh is used.
The offline cost required includes the time for forming the POD

basis functions and the hypersurfaces. The time for the hypersurfaces
can be ignored. The computational cost for forming the basis functions
is related to the number of nodes, POD basis functions and snapshots.
Table 2 lists the offline CPU cost required for forming the basis
functions using different numbers of POD basis functions.

5. Conclusions

In this work a non-intrusive reduced order model, based on the
Smolyak sparse grid method has been, for the first time, developed for
3D free surface flows and implemented under the framework of
advanced 3D unstructured mesh finite element ocean model
(Fluidity). The Smolyak sparse grid method is used to construct a set
of interpolation functions representing the reduced system. The free
surface flow NIROM is generated from the POD bases derived from the
snapshots. These snapshots are the full solutions recorded at selected
time levels where the details of ocean flow dynamics (velocity, pressure,
waves, eddies, wetting-drying front etc.) are included. The performance
of the new POD-Smolyak 3D free surface flow NIROM is illustrated
using two numerical test cases: Balzano test case and Okushiri tsunami
case. To estimate the accuracy of the NIROM, the results obtained from
the free surface flow NIROM have been compared against those from
the high fidelity ocean model. It is shown that the accuracy of solutions
from free surface flow NIROM is maintained while the CPU cost is
reduced by several orders of magnitude. An error analysis has also been
carried out for the validation of the free surface flow NIROM through
comparing the results with results of high fidelity full model. The
NIROM shows a good agreement with the high fidelity full ocean
model. It was also shown that the accuracy can be improved by
increasing the number of POD bases.

Importantly, the predictive ability of NIROM was tested, for test
case 2, by predicting, with good accuracy, the dynamics of the final part
of the time domain that the NIROM had not seen before. This is a small
step towards showing that NIROM can have ‘predictive skill’. Thus, the
free surface NIROM may have a role to play in applications to
uncertainty analysis, optimisation and data assimilation where massive
numbers (e.g. hundreds or thousands) of runs of the ocean model are
required. This will be our focus in future work. More recently,
parametric ROMs for various parameter inputs (e.g. boundary condi-
tions) have been developed. A hyper-surface can also be constructed for
various parameter inputs using Smolyak sparse grids (for details, see
(Xiao et al., 2017)). This work will be combined, in our future work,
with the NIROM developed here for 3D free surface flows.

Since NIROM works just from the snapshots of the forward solution
it is ideally placed to construct rapid surrogate models from complex
modelling codes (e.g. multi-physics codes) and commercial software
where the source codes are unavailable or difficult to modify. However,
unlike many intrusive ROMs NIROMs may have difficulty in achieving
conservation as there is no underlying conservation equation - just an
approximation to it. In the longer term these conservation issues need
to be addressed. Future work will investigate the effects of applying this
new NIROM to more complex free surface flows (for example, urban
flooding), varying parametric non-intrusive cases and applications to
uncertainty analysis, optimisation control and data assimilation.

Acknowledgments

This work was carried out under funding from Janet Watson
scholarship at Department of Earth Science and Engineering.
Authors would like to acknowledge the support of the UK's Natural
Environment Research Council projects(NER/A/S/2003/00595, NE/
C52101X/1 and NE/C51829X/1), the Engineering and Physical
Sciences Research Council (GR/R60898, EP/I00405X/1 and EP/
J002011/1), and the Imperial College High Performance Computing
Service. Prof. I.M. Navon acknowledges the support of NSF/CMG grant
ATM-0931198. Xiao acknowledges the support of NSFC grant
11502241. Pain and Fang are greatful for the support provided by
BP Exploration. The authors are greatful for the support of the EPSRC
MEMPHIS multi-phase flow programme grant. The research leading to
these results has received funding from the European Union Seventh
Framework Programme (FP7/20072013) under grant agreement No.
603663 for the research project PEARL (Preparing for Extreme And
Rare events in coastaL regions). The authors acknowledge the support
of EPSRC grant: Managing Air for Green Inner Cities (MAGIC)(EP/
N010221/1).

References

Altaf, M.U., Ambrozic, M., McCabe, M.F., Hoteit, I., 2015. A study of reduced-order
4dvar with a finite element shallow water model. International Journal for
Numerical Methods in Fluids.

Antoulas, Athanasios C., 2005. Approximation of large-scale dynamical systems, volume
6. Siam.

Audouze, C., De Vuyst, F., Nair, P.B., 2009. Reduced-order modeling of parameterized
PDEs using time-space-parameter principal component analysis. Int. J. Numer.
Methods Eng. 80 (8), 1025–1057.

Audouze, Christophe, De Vuyst, Florian, Nair, Prasanth B., 2013. Nonintrusive reduced-
order modeling of parametrized time-dependent partial differential equations.
Numer. Methods Partial Differ. Equ. 29 (5), 1587–1628.

Balzano, Andrea, 1998. Evaluation of methods for numerical simulation of wetting and
drying in shallow water flow models. Coast. Eng. 34 (1), 83–107.

Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T., 2004. An empirical interpolation
method: application to efficient reduced-basis discretization of partial differential
equations. C. R. Acad. Sci. Paris Ser. 339, 667–672.

Bistrian, D.A., Navon, I.M., 2015. An improved algorithm for the shallow water equations
model reduction: Dynamic Mode Decomposition vs POD. Int. J. Numer. Methods
Fluids 78 (9), 552–580.

Bou-Mosleh, C., Carlberg, K., Farhat, C., 2011. Efficient non-linear model reduction via a
least-squares Petrov-Galerkin projection and compressive tensor approximations.
Int. J. Numer. Methods Eng. 86, 155–181.

Cao, Y., Zhu, J., Navon, I.M., Luo, Z., 2007. A reduced order approach to four
dimensional variational data assimilation using proper orthogonal decomposition.
Int. J. Numer. Methods Fluids 53, 1571–1583.

Carlberg, Kevin, Farhat, Charbel, Cortial, Julien, Amsallem, David, 2013. The GNAT
method for nonlinear model reduction: effective implementation and application to
computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647.

Chaturantabut, S., Sorensen, D.C., 2010. Nonlinear model reduction via discrete
empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764.

Chaturantabut, S., 2008. Dimension reduction for unsteady nonlinear partial differential
equations via empirical interpolation methods. Master’s thesis, Rice university.

Chen, X., Navon, I.M., Fang, F., 2011. A dual-weighted trust-region adaptive POD4D-Var
applied to a finite-element shallow-water equations model. Int. J. Numer. Methods
Fluids 65 (5), 520–541.

Chen, X., Akella, S., Navon, I.M., 2012. A dual-weighted trust-region adaptive POD 4-
DVar applied to a finite-volume shallow water equations model on the sphere. Int. J.
Numer. Methods Fluids 68 (3), 377–402.

Han, Chen., 2012. Blackbox stencil interpolation method for model reduction. Master’s
thesis, Massachusetts Institute of Technology.

Crommelin, D.T., Majda, A.J., 2004. Strategies for model reduction: Comparing different
optimal bases. J. Atmos. Sci. 61, 2206–2217.

Daescu, D.N., Navon, I.M., 2008. A dual-weighted approach to order reduction in 4D-Var
data assimilation. Mon. Weather Rev. 136 (3), 1026–1041.

Diez, Matteo, Campana, Emilio F., Stern, Frederick, 2015. Design-space dimensionality
reduction in shape optimization by Karhunen-Loève expansion. Comput. Methods
Appl. Mech. Eng. 283, 1525–1544.

Du, J., Fang, F., Pain, C.C., Navon, I.M., Zhu, J., Ham, D.A., 2013. POD reduced-order
unstructured mesh modeling applied to 2D and 3D fluid flow. Comput. Math. Appl.
65, 362–379.

Du, Juan, Fang, Fangxin, Pain, Christopher C., Navon, I.M., Zhu, Jiang, Ham, David A.,
2013. POD reduced-order unstructured mesh modeling applied to 2d and 3d fluid
flow. Comput. Math. Appl. 65 (3), 362–379.

Fang, F., Pain, C.C., Navon, I.M., Piggott, M.D., Gorman, G.J., Farrell, P.E., Allison, P.A.,
Goddard, A.J.H., 2009a. A POD reduced-order 4D-Var adaptive mesh ocean
modelling approach. Int. J. Numer. Methods Fluids 60 (7), 709–732.

Table 2
Offline computational cost (s) required for constructing POD basis functions using
different numbers of POD basis functions.

Number of POD bases 2 6 18 nodes snapshots
Balzano test case 0.143 0.144 0.152 180 100
Number of POD bases 6 12 18 nodes snapshots
tsunami test case 10.59 11.03 11.512 6830 100

D. Xiao et al. Ocean Engineering 140 (2017) 155–168

167

http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref1
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref1
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref1
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref2
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref2
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref2
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref3
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref3
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref4
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref4
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref4
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref5
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref5
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref5
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref6
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref6
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref6
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref7
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref7
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref7
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref8
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref8
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref8
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref9
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref9
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref10
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref10
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref10
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref11
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref11
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref11
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref12
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref12
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref13
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref13
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref14
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref14
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref14
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref15
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref15
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref15
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref16
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref16
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref16
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref17
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref17
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref17


Fang, F., Pain, C.C., Navon, I.M., Piggott, M.D., Gorman, G.J., Allison, P.A., Goddard,
A.J.H., 2009b. Reduced-order modelling of an adaptive mesh ocean model. Int. J.
Numer. Methods Fluids 59 (8), 827–851.

Fang, F., Pain, C.C., Navon, I.M., Gorman, G.J., Piggott, M.D., Allison, P.A., Goddard,
A.J.H., 2010. A POD goal-oriented error measure for mesh optimization. Int. J.
Numer. Methods Fluids 63 (2), 185–206.

Fang, F., Pain, C., Navon, I.M., Elsheikh, A.H., Du, J., Xiao, D., 2013. Non-linear Petrov-
Galerkin methods for reduced order hyperbolic equations and discontinuous finite
element methods. J. Comput. Phys. 234, 540–559.

Fang, F., Zhang, T., Pavlidis, D., Pain, C.C., Buchan, A.G., Navon, I.M., 2014. Reduced
order modelling of an unstructured mesh air pollution model and application in 2D/
3D urban street canyons. Atmos. Environ. 96, 96–106.

Fukunaga, K., 1990. Introduction to statistical recognition(2nd edn). Computer Science
and Scientific Computing Series, Academic Press,Academic Press: Boston, MA.: pp.
5–33.

Funke, S.W., Pain, C.C., Kramer, S.C., Piggott, M.D., 2011. A wetting and drying
algorithm with a combined pressure/free-surface formulation for non-hydrostatic
models. Adv. Water Resour. 34 (11), 1483–1495.

Geletu, Abebe., 2010. Orthogonal Polynomials, Quadratures and Sparse-Grid Methods
for Probability Integrals. Technische Universitt Ilmenau, Institut fr
Automatisierungs- und Systemtechnik Fachgebiet Simulation und Optimale
Prozesse, presentation.

Gerstner, Thomas, Griebel, Michael, 1998. Numerical integration using sparse grids.
Numer. Algorithms 18 (3–4), 209–232.

Ha, Dao My., Tkalich, Pavel Chan, Eng Soon., 2008. Tsunami forecasting using proper
orthogonal decomposition method. Journal of Geophysical Research: Oceans,
113(C6), pp. (1978–2012).

Iuliano, Emiliano, Quagliarella, Domenico, 2013. Proper orthogonal decomposition,
surrogate modelling and evolutionary optimization in aerodynamic design. Comput.
Fluids 84, 327–350.

Jafarpour, Alireza, Feriedoun, Sabetghadam, 2012. α Regularization of the POD-Galerkin
dynamical systems of the Kuramoto-Sivashinsky equation. Applied Mathematics and
Computation, 218: pp. 6012–6026.

Judd, Kenneth L., Maliar, Lilia, Maliar, Serguei, Rafael Valero, S., 2014. Smolyak method
for solving dynamic economic models: Lagrange interpolation, anisotropic grid and
adaptive domain. J. Econ. Dyn. Control 44, 92–123.

Klie, Hector., et al. 2013. Unlocking fast reservoir predictions via nonintrusive reduced-
order models. In: SPE Reservoir Simulation Symposium. Society of Petroleum
Engineers.

Kolmogorov, A.N., 1936. Uber die beste anniiherung von f unktionen einer gegebener
funktionklasse. Ann. Math. 37, 107–111.

Kunisch, Karl, Volkwein, Stefan, 2010. Optimal snapshot location for computing pod
basis functions. ESAIM: Math. Model. Numer. Anal. 44 (03), 509–529.

Liu, P.L.F., Yeh, H.H., Synolakis. C., 2008. Advanced Numerical Models for Simulating
Tsunami Waves and Runup. Advances in coastal and ocean engineering. World
Scientific.

Manzoni, Andrea, Salmoiraghi, Filippo, Heltai, Luca, 2015. Reduced basis isogeometric
methods (RB-IGA) for the real-time simulation of potential flows about parametrized
NACA airfoils. Comput. Methods Appl. Mech. Eng. 284, 1147–1180.

Noack, B.R., Morzynski, M., Tadmor, G., 2011. Reduced-Order modelling for flow
control, volume 528. Springer.

Noori, R., Karbassi, A.R., Ashrafi, Kh., Ardestani, M., Mehrdadi, N., 2013. Development
and application of reduced-order neural network model based on proper orthogonal
decomposition for BOD5 monitoring: active and online prediction. Environ. Prog.
Sustain. Energy 32 (1), 120–127.

Pain, C.C., Piggott, M.D., Goddard, A.J.H., et al., 2005. Three-dimensional unstructured
mesh ocean modelling. Ocean Model. 10, 5–33.

Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philos.
Mag. 2, 559–572.

Pelc, Joanna S., Simon, Ehouarn, Bertino, Laurent, Serafy, Ghada El., Heemink, Arnold
W., 2012. Application of model reduced 4d-var to a 1d ecosystem model. Ocean

Model. 57, 43–58.
San, O., Borggaard, J., 2015. Principal interval decomposition framework for POD

reduced-order modeling of convective Boussinesq flows. Int. J. Numer. Methods
Fluids 78 (1), 37–62.

Smolyak, Sergey A., 1963. Quadrature and interpolation formulas for tensor products of
certain classes of functions. Dokl. Akad. Nauk SSSR 4 (240–243), 123.

Serpas, M., Chu, Y., Hahn, J., 2011. State-preserving nonlinear model reduction
procedure. Chem. Eng. Sci. 66, 3907–3913.

Siade, Adam J., Putti, Mario, Yeh, William W.-G., 2010. Snapshot selection for
groundwater model reduction using proper orthogonal decomposition. Water
Resour. Res. 46 (8).

Stefanescu, Razvan, Navon, I.M., 2013. POD/DEIM nonlinear model order reduction of
an adi implicit shallow water equations model. J. Comput. Phys. 237, 95–114.

Stefanescu, Razvan, Sandu, Adrian, Navon, I.M., 2014. Comparison of POD reduced
order strategies for the nonlinear 2D shallow water equations. Int. J. Numer.
Methods Fluids 76 (8), 497–521.

Sumant, Prasad, Wu, Hong, Cangellaris, Andreas, Aluru, Narayana, 2012. Reduced-order
models of finite element approximations of electromagnetic devices exhibiting
statistical variability. IEEE Trans. Antennas Propag. 60 (1), 301–309.

Vermeulen, P.T.M., Heemink, A.W., Te Stroet, C.B.M., 2004. Low-dimensional modelling
of numerical groundwater flow. Hydrol. Process. 18 (8), 1487–1504.

Wahle, Kathrin, Staneva, Joanna, Guenther, Heinz, 2015. Data assimilation of ocean
wind waves using neural networks. a case study for the german bight. Ocean
Modelling.

Walton, S., Hassan, O., Morgan, K., 2013. Reduced order modelling for unsteady fluid
flow using proper orthogonal decomposition and radial basis functions. Appl. Math.
Model. 37 (20), 8930–8945.

Willcox, Karen, Megretski, Alexandre, 2003. Model reduction for large-scale linear
applications. In: Proceedings of the 13th IFAC Symposium on System Identification,
Rotterdam, Netherlands, pp. 1431–1436.

Wirtz, D., Haasdonk, Bernard, 2012. Efficient a-posteriori error estimation for nonlinear
kernel-based reduced systems. Syst. Control Lett. 61 (1), 203–211.

Wirtz, D., Karajan, N., Haasdonk, B., 2013. Model order reduction of multiscale models
using kernel methods. Technical Report SRC SimTech, University of Stuttgart.

Xiao, D., Fang, F., Du, J., Pain, C.C., Navon, I.M., Buchan, A.G., ElSheikh, A.H., Hu, G.,
2013. Non-linear Petrov-Galerkin methods for reduced order modelling of the
Navier-Stokes equations using a mixed finite element pair. Comput. Methods Appl.
Mech. Eng. 255, 147–157.

Xiao, D., Fang, F., Buchan, A.G., Pain, C.C., Navon*, I.M., Du, J., Hu, G., 2014. Non-
linear model reduction for the Navier-Stokes equations using Residual DEIM
method. J. Comput. Phys. 263, 1–18.

Xiao, D., Fang, F., Buchan, A.G., Pain, C.C., Navon, I.M., Muggeridge, A., 2015a. Non-
intrusive reduced order modelling of the Navier-Stokes equations. Comput. Methods
Appl. Mech. Eng. 293, (552–541).

Xiao, D., Fang, F., Pain, C., Hu, G., 2015b. Non-intrusive reduced order modelling of the
Navier-Stokes equations based on RBF interpolation. Int. J. Numer. Methods Fluids
79 (11), 580–595.

Xiao, D., Yang, P., Fang, F., Xiang, J., Pain, C.C., Navon, I.M., 2016. Non-intrusive
reduced order modelling of fluidstructure interactions. Comput. Methods Appl.
Mech. Eng. 303, 35–54.

Xiao, D., Fang, F., Pain, C.C., Navon, I.M., 2017. A parameterized non-intrusive reduced
order model and error analysis for general time-dependent nonlinear partial
differential equations and its applications. Computer Methods in Applied Mechanics
and Engineering, (minor revision).

Xiao, D., Yang, P., Fang, F., Xiang, J., Pain, C.C., Navon, I.M., Chen, M., 2017. A non-
intrusive reduced-order model for compressible fluid and fractured solid coupling
and its application to blasting. J. Comput. Phys. 330, 221–244.

Zokagoa, Jean-Marie, Soulaïmani, Azzeddine, 2012. A POD-based reduced-order model
for free surface shallow water flows over real bathymetries for monte-carlo-type
applications. Comput. Methods Appl. Mech. Eng. 221, 1–23.

D. Xiao et al. Ocean Engineering 140 (2017) 155–168

168

http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref18
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref18
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref18
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref19
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref19
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref19
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref20
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref20
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref20
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref21
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref21
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref21
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref22
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref22
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref22
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref23
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref23
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref24
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref24
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref24
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref25
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref25
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref25
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref26
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref26
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref27
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref27
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref28
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref28
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref28
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref29
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref29
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref29
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref29
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref30
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref30
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref31
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref31
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref32
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref32
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref32
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref33
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref33
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref33
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref34
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref34
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref35
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref35
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref36
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref36
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref36
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref37
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref37
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref38
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref38
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref38
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref39
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref39
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref39
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref40
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref40
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref41
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref41
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref41
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref42
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref42
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref43
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref43
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref43
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref43
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref44
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref44
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref44
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref45
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref45
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref45
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref46
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref46
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref46
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref47
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref47
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref47
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref48
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref48
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref48
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref49
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref49
http://refhub.elsevier.com/S0029-8018(17)30273-1/sbref49

	Towards non-intrusive reduced order 3D free surface flow modelling
	Introduction
	Three dimensional governing equations for free surface flows
	3D Navier-Stokes equations
	Combining kinematic free surface condition

	POD/Smolyak non-intrusive reduced order formulation
	The Proper Orthogonal Decomposition method
	The Smolyak sparse grid interpolation algorithm
	Constructing a NIROM for free surface flows using Smolyak sparse grid

	Numerical examples
	Case 1: Balzano test cases
	Case 2: Okushiri tsunami test case

	Conclusions
	Acknowledgments
	References




