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Abstract

In this paper we first introduce the domain decomposition (DD) technique into non-
intrusive reduced order modelling for complex non-linear fluid dynamics problems.
The computational domain is partitioned into subdomains representing different phys-
ical and flow features, such as shock waves, moving fronts andeddies. A set of local
basis functions for each subdomain is constructed using theproper orthogonal decom-
position (POD) method. The radial basis function (RBF) methods are then used to
generate a set of local hypersurfaces for each subdomain. These local hypersurfaces
can represent not only the fluid dynamics over the subdomain it belongs to, but also the
interaction between this subdomain and the surrounding subdomains.

Specifically, we have developed a domain decomposition non-intrusive reduced
order model (DDNIROM) for the Navier-Stokes equations. Theperformance of this
DDNIROM is numerically illustrated by two examples, flow past a cylinder and street
canyon, respectively. The results show that the DDNIROM exhibits good agreement
with the high fidelity full model while the computational cost is reduced by several
orders of magnitude. By using the DD method, the DDNIROM can provide the details
of local non-linear flow features isolated within each subdomain, for example, eddies
around the cylinder and within the street canyons. It also provides the flexibility to
choose different numbers of local basis functions for each subdomain, thus reducing the
need for large multidimensional hypersurfaces representing the fluid dynamics using
the global NIROM.

Keywords: domain decomposition, reduced order modelling, non-intrusive, proper
orthogonal decomposition

1. Introduction

Reduced order modelling (ROM) is a powerful tool for real-time analysis as it of-
fers the potential to reduce dimensionality of large complex systems. ROM has been
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successfully applied to various fields, for example, fracture modelling [1], fluid dynam-
ics [2, 3, 4, 5, 6, 7], air pollution [8], molecular dynamics [9], aerospace design [10],
parameter optimization [11] and haemodynamics [12]. Proper orthogonal decomposi-
tion (POD) in combination with Galerkin projection is the most popular method used
for deriving a reduced order model. However, this method is dependent on the original
source code and has some disadvantages such as instability and non-linear inefficiency
[13, 14, 15, 16, 17]. To tackle those issues, a number of stabilisation methodshave
been presented, for example, Petrov-Galerkin method [18, 19], calibration [20, 21],
regularisation [22] and Fourier expansion [23]. Also, various non-linearity model re-
duction methods have been proposed such as empirical interpolation method (EIM)
[24], discrete EIM (DEIM) [16], residual DEIM (RDEIM) [25], Petrov−Galerkin pro-
jection [20], Gauss−Newton with approximated tensors (GNAT) [26] and the quadratic
expansion method [27].

More recently, the non-intrusive reduced order modelling (NIROM) is becoming
popular in various research and engineering fields as its implementation is indepen-
dent of the original source code. The applications include fluid problems [28, 29,
30, 31, 32], fluid-structure interaction problems [33, 34] and multiphase porous media
flows [35, 36]. Xiao et al. [37] also presented a parameterized NIROM for general
time-dependent nonlinear partial differential equations. However, POD ROM has its
difficulty in capturing every location traversed by a moving discontinuity, which re-
quires larger number of basis functions and larger amount ofdata in order to capture
the energy [38]. This motivates the development of subdomain ROM technology for
complex flows (e.g. turbulent flows) and localized complex physical problems,e.g.
traffic, chemistry, greening, particles and radiation. Using DD approach allows us to
construct different local basis functions based on details of local flow solutions over
each subdomains.

The domain decomposition method originated in the work of Przemieniecki [39]. It
has been applied to various fields, such as parallel processing [40, 41], shear bands [42],
stochastic multiphysics systems [43] and hydrodynamics [44]. Lucia et al. [38] first
introduced the DD method to reduced order modelling for accurately tracking a moving
strong shock wave. Baigeset al. [45], Amsallemet al. [46] and Chaturantabut [47]
applied the DD method to non-linear model reduction. Kerfridenet al. [48] proposed
a partitioned ROM strategy for nonlinear fracture problems. Pauet al. [49, 50] used
the POD mapping method to construct ROMs for fine-resolutionriver basin models.

This paper presents a new subdomain non-intrusive reduced order model for fluid
problems using the POD and radial basis function (RBF) methods. The key idea un-
derpinning this DDNIROM is to introduce the DD method to our recently developed
non-intrusive reduced order modelling technique based on the RBF. It is a robust and
efficient approach for model reduction of general linear and non-linear time-dependent
flow dynamical systems, even when source code is unavailable. Using the RBF method,
a set of local hypersurfaces for each subdomain is constructed in such a way as to rep-
resent the underlying reduced flow dynamics from both this subdomain and its neigh-
boring subdomains.

In DDNIROM, during the offline computational procedure, the solutions to the
high fidelity model are recorded as a sequence of snapshots over the computational
domain and thus partitioned into subdomains according to local flow features. From
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the local solution snapshots over each subdomain, a number of local basis functions are
generated using POD. The RBF multi-dimensional interpolation method is then used
to construct a set of local hypersurfaces representing the local fluid dynamics over this
subdomain. When constructing the local hypersurfaces for the subdomain, the energy
of the surrounding subdomains associated to this subdomainis taken into account.

During the online computational procedure, for each subdomain, the solution of the
DDNIROM at the current time level can be obtained by providing the reduced solutions
at the previous time level over the current subdomain, as well as that at the current
time level over its surrounding subdomains into the local hypersurface functions. The
performance of the new DDNIROM has been assessed through twofluids test cases:
flow past a cylinder and street canyon test cases. Comparisons between the high fidelity
full model and the proposed DDNIROM have been carried out to validate the accuracy
of the new DDNIROM.

The structure of the present paper is as follows. Section2 presents the governing
equations of fluid problems. Section3 describes the general theory of the non-intrusive
reduced order model (NIROM). Section4 derives the methods of constructing a sub-
domain non-intrusive reduced order model (DDNIROM) for fluids problems. Section
5 demonstrates the performance of the DDNIROM for two numerical cases: flow past
a cylinder and street canyon test cases. Finally in section6, summary and conclusions
are presented.

2. Governing equations for fluid dynamics

This work uses the non-hydrostatic Navier-Stokes equations to describe the fluid
dynamics, namely,

∇ · u = 0, (1)
∂u
∂t
+ u · ∇u + f k × u = −∇p+ ∇ · τ, (2)

whereu ≡ (u, v,w)T is the velocity vector,p is the perturbation pressure (p := p/ρ0, ρ0

is the constant reference density),f represents the Coriolis inertial force, andk is an
unit vector along the vertical direction. The stress tensorτ in the diffusion term is used
to represent the viscous terms and is defined in terms of the deformation rate tensorS
as

τi j = 2µi j Si j , Si j =
1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

−
1
3

3
∑

k=1

∂uk

∂xk
, 1 ≤ i, j ≤ 3, (3)

where,µ is the kinematic viscosity. In the previous definition, we assume no summa-
tion over repeated indices. In this paper, the horizontal kinematic viscosities (µ11, µ22)
and vertical kinematic viscosity (µ33) assume constant values with the off-diagonal
components ofτ defined byµi j = (µiiµ j j )1/2.

3. Non-intrusive model reduction method

The essence of the non-intrusive model reduction methods consists in constructing
a set of hypersurfaces that represent the reduced system. InPOD methods, any variable
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Ψ (for example, velocity and pressure) can be expressed:

Ψ = Ψ +

m
∑

i=1

αiΦi , (4)

where,Ψ is the mean of the variables over the simulation period, m is the number of
POD basis functions,α represents the POD coefficients needed to be calculated over the
reduced space (solutions of the ROM) andΦ represents the POD basis functions. The
POD basis functions can be obtained by performing the Singular Value Decomposition
(SVD) procedure.

The POD coefficientsα can be derived by a multi-dimensional radial basis function
interpolation method. In RBF multi- dimensional interpolation, a functionf (x) can be
approximated by the linear combination of a number of RBFsφ centered atN points.
There are various types of RBFs such as: multi-quadric, plate spline, Gaussian and
inverse multi-quadric. In this paper we use the Gaussian RBF, which has a form of
φ(r) = e−(r/σ)2

(σ being the shape parameter andr being the radius). In NIROM, the
POD coefficientsαt

i associated to theith POD basis function at any time levelt can be
obtained [29]:

αt
i = fi(αt−1

1 , α
t−1
2 , · · · , α

t−1
m ), (5)

The hypersurfacefi can be approximated by a linear combination of a number of RBFs
[29]:

fi(αt−1
1 , α

t−1
2 , · · · , α

t−1
m ) =

N
∑

j=1

wi, jφ j(
∥

∥

∥(αt−1
1 , α

t−1
2 , · · · , α

t−1
m ) − C

∥

∥

∥), (6)

where,N is the number of data points, the centerC is chosen to be the origin of the
input data. After obtaining the hypersurfacef j , the solutions at current time level can
be obtained by inputting the solutions at previous time level [29].

4. Domain decomposition non-intrusive model reduction strategy

This section describes the strategy of deriving a general DDNIROM. In the newly
proposed DDNIROM, the computational domainΩ is divided intoS subdomainsΩd, d ∈
{1, 2, · · · ,S} and each subdomain has local unknownsΨd ∈ R

Ld
, L = L1 + · · · + Ld +

· · · + LS. In this method, the variable solutions at nodes within the subdomainΩd are
used for forming a set of local POD basis functionsΦd. The local basis functions can
be extended into global basis functions by assigning zero toother subdomains,

Φi =
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, d ∈ RS, i ∈ Rm, (7)
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thereby ensuring orthonormality of the basis functions. The variables of solutions in
the global domain then can be expressed by:

Ψ =

S
∑

d=1

Ψ
d, (8)

Ψd = Ψ
d
+

md
∑

i=1

αd
i Φ

d
i , (9)

wheremd is the numbers of basis functions for each subdomainΩd.
For each subdomainΩd, we construct a set of hypersurfacesf d

i to represent the
underlying dynamical system associated to this subdomain and the surrounding subdo-
mains over the reduced space. Each hypersurface has the formof,

αd,t
i = f d

i (αd,t−1,αsd,t), (10)

where vectorαd,t−1 denotes the complete set of POD coefficients (for example, velocity
αu, pressureαp) at previous time levelt − 1 for the subdomainΩd, αsd,t denotes the
complete set of POD coefficients at time levelt for the surrounding subdomains. In a
2-D case, the number of surrounding subdomains associated to this subdomainΩd is
between 2 and 4, see a simple example in figure1, which shows a maximum of four
surrounding subdomains (labelled sd) connected with the subdomainΩd.

Figure 1: The figure shows a simple subdomain example, which uses colour to show the different subdomains
clearly. The domaind has four surrounding subdomains-labelledsd.

The RBF/POD NIROM method is then used to construct a set of hypersurfaces for
each POD coefficient at each subdomain. The procedure can be described in algorithms
1 (offline) and 2 (online), respectively. Algorithm 1 describes the offline computational
procedure on how to construct a set of local hyper-surfaces for each subdomain while
algorithm 2 details the online computation of DDNIROM wherethe interaction be-
tween a subdomain and its surrounding subdomains is taken into account.
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Algorithm 1 : Offline: constructing a set of hyper-surfaces for DDNIROM

(1) Generate a number of snapshots over the time period [0,T] by solving the fluid
dynamics problem;

(2) Divide the computational domainΩ into S subdomains;

(3) Generate a number of POD basis functionsΦu andΦp via performing SVD on the
snapshots matrix of the subdomain;

(4) Obtain the functional valuesyt at the data points (αd,t−1,αsd,t) via the solutions
from the high fidelity model, wheret ∈ {1, 2, . . .T};

(5) Obtain a set of hypersurfaces through the following loop:

for d = 1 to Sdo
for i = 1 to mdo

(i) Calculate the weightswd
t, j by solving equation (11);

Adwd
i, j = yd

i, j, j ∈ {1, 2, . . . ,N},

where A is a matrix associated with the radius,A = φ(r).

(ii) Obtain a set of hyper surfaces (f d
j (αt−1

1 , α
t−1
2 , · · · , α

t−1
m )) by substituting the

weight values obtained in the above step into equation (11);

f d
u,i(α

d
u, α

d
p) =

N
∑

j=1

wd
i, jφ

d
j (
∥

∥

∥(αd,t−1
u ,αd,t−1

p ,αsd,t
u ,α

sd,t
p ) − C

∥

∥

∥),

f d
p,i(α

d
u, α

d
p) =

N
∑

i=1

wd
i, jφ

d
j (
∥

∥

∥(αd,t−1
u ,αd,t−1

p ,αsd,t
u ,α

sd,t
p ) − C

∥

∥

∥),

endfor
endfor
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Algorithm 2 : Online DDNIROM calculation for the fluid problem

for it = 1 to Niteration do
for d = 1 to Sdo

(1) Obtain the surrounding subdomains (sd in figure1) for the subdomaind
according to the locations.

(2) Initialisation.
for i = 1 to mdo
Initialize POD coefficients for subdomaind (αd,0

u, j ,α
d,0
p, j );

(3) Calculate solutions at current time step:
for t = 1 to T do
for i = 1 to mdo

(i) Obtain the POD coefficients for associated surrounding subdomains. If there
are no solutions for this surrounding subdomain, then ignore this
surrounding subdomain at this iterationit.

(ii) Evaluate the hypersurfacesf d at the previous time stept − 1 by using the
complete set of POD coefficientsαd,t−1

u,i ,α
d,t−1
p,i ,α

sd,t
u,i ,α

sd,t
p,i :

f d
u,i ← (αd,t−1

u,i ,α
d,t−1
p,i ,α

sd,t
u,i ,α

sd,t
p,i ), f d

p,i ← (αd,t−1
u,i ,α

d,t−1
p,i ,α

sd,t
u,i ,α

sd,t
p,i ), (11)

(iii) Calculate the POD coefficientsαt
u andαt

p at the current time stept using the
following equations:

αd,t
u,i =

T
∑

t=1

wd
t,iφ

d
t, j(r), α

d,t
p,i =

T
∑

t=1

wd
t,iφ

d
t,i(r), (12)

for d = 1 to Sdo
Calculate the solutionsud,t andpd,t for each subdomaind on the full space
for each time stept by projectingαd,t

u, j andαd,t
p, j onto the full space.

ud,t = ū +
m

∑

j=1

α
d,t
u, jΦ

d
u, j , pd,t = p̄+

m
∑

j=1

α
d,t
p, jΦ

d
p, j ,

In algorithm2, the iteration loop (for it = 1 to Niteration) guarantees the hypersurface
traverses the flow dynamics over/across the subdomaind and also all the surrounding
subdomainssd. It ensures that the hypersurface represents the flow dynamics over the
subdomaind, especially the flow interaction between the subdomain and the neighbor-
ing surrounding subdomains.

For example, when we solve the DDNIROM for each subdomainαd,t
i at time level

t, at the first iteration, we need the solutions over the subdomain, αd,t−1 andαsd,t−1
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over the associated surrounding subdomains at the previoustime levelt − 1. After the
subdomain loopfor d = 1 to S for the first iteration in algorithm2, the solutions at
current time level for each subdomain can be obtained. In thefollowing iteration, the
solutionsαsd,t over surrounding subdomains at current time levelt are updated.αd,t

i
can be obtained by inputtingαd,t−1 andαsd,t into the hypersurface.

5. Numerical examples

5.1. Case 1: flow past a cylinder
The DDNIROM is first validated in a dimensionless test case: flow past a cylinder,

which is composed of a cylinder with a radius of 0.05 in the computational domain
(2.2× 0.41), see figure2. The center of the cylinder is located at (0.25, 0.25). An inlet
velocity of 1 is applied to the the left of the domain. The Reynolds number (Re) is set
to be 3200. No normal flow and zero shear (slip) boundary conditions are applied to the
cylinder and both lateral sides. There are 3213 nodes in the computational domain. In
this example, the global domain is divided into 15 different subdomains, see figure2.
The simulational period is set to [0, 6] with a time step size of∆t = 0.01. 60 snapshots
(solutions obtained by running the high fidelity model) are taken at a regularly spaced
time interval of 0.1.

Figure3 shows the global and local singular eigenvalues (associated to the global
and 15 subdomains respectively) in logarithmic scale in order of decreasing magni-
tude. The local basis function associated to a larger eigenvalue captures more energy
in the original flow dynamic system over the subdomain. It canbe seen in figure3
that the local singular eigenvalues decrease faster than the global singular eigenvalues.
Thus, in comparison to the global NIROM, a smaller number of local basis functions
is required for capturing most of energy in the original flow dynamical system. This
correspondingly reduces the dimension of hypersurfaces required for NIROM. To ac-
curately represent the details of the flow around the cylinder, the subdomain 7 is further
divided into 2×2 subdomains on average-labelled 16-19. Figure4 shows the eigenval-
ues of the subdomain 7 and its sub-subdomains 16-19. Figures5 and6 show the first
four leading basis functions associated to the global and subdomains 2, 7, 8 and 14.
Again it can be seen that the local basis functions over thesefour subdomains capture
more energy than the global basis functions.

Figure3 provides us a criterion for choosing the number of local basis functions
for each subdomain. The number of local basis functions for each subdomain (labeled
in figure2) is chosen in such a way that 99% of energy over the subdomain is captured
by these selected local basis functions.

Figure7 shows the velocity solutions obtained from the high fidelityfull model and
DDNIROM (the numbers of local basis functions for each subdomain are labeled in2)
at time level 5.0. As shown in the figure, the solutions from the DDNIROM are close
to those from the high fidelity full model. The velocity solutions at a particular point
(x = 0.7184, y = 0.28652) are shown in figure8. As one can see from this figure, the
DDNIROM with only 12 basis functions performs better than the global NIROM with
18 basis functions.

Figure9 presents the root-mean-square error (RMSE) and the correlation coeffi-
cient of solutions between the high fidelity full model and both of the global NIROM
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(a) subdomain number

(b) distribution of number of POD (c) subdomain 7

Figure 2: Case 1 - flow past a cylinder: the graphs shows the computational domain, number of basis
functions distribution for each subdomain and 15 subdomains of the flow past a cylinder case.
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Figure 3: Case 1 - flow past a cylinder: the global and local singular eigenvalues associated to the global
domain and 15 subdomains respectively.

and DDNIROM. We can see the correlation from the DDNIROM using 12 local ba-
sis functions is in closer agreement with the high fidelity full model than the global
NIROM using 18 basis functions although there is no much difference in RMSE.

5.2. Case 2: urban street canyon test case

In the second example the DDNIROM is applied to the simulation of a 2D urban
street canyon test case. The computational domain is shown in figure10, consisting
of a street canyon between two buildings. The domain has a dimensionless size of 2
× 1 and comprises of an unstructured finite element mesh with 8264 nodes, see figure
10. A uniform velocity of 1 is given to the left side of the computational domain as the
inflow boundary condition. The top and bottom boundary conditions are free-slip and
non-slip respectively. No-slip boundary conditions are prescribed to all the building
surfaces. The kinematic viscosity is 1× 10−4 and the Reynolds number based on the
tallest building height is 1× 104. The high fidelity full model was simulated for a time
interval of [0, 0.8] with a time step size of∆t = 0.01. Forty snapshots were taken at
regularly spaced time levels of 0.02. In this example, the global domain was partitioned
into 15 different subdomains, see figure10.
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Figure 4: Case 1 - flow past a cylinder: the singular eigenvalues over subdomain 7 and the subdomains inside
the subdomain 7.

(a) 1st basis function of subdomain 2. (b) 2nd basis function of subdomain 2.

(c) 1st basis function of subdomain 7. (d) 2nd basis function of subdomain 7.

(e) 1st basis function of subdomain 8. (f) 2nd basis function of subdomain 8.

(g) 1st basis function of subdomain 14. (h) 2nd basis function of subdomain 14.

(i) 1st global basis function of velocity. (j) 2nd global basis function of velocity.

Figure 5: Case 1 - flow past a cylinder: the first and second basis functions of the subdomain 2, 7, 8, 14 and
global domain of velocity (including all components u and v)respectively.
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(a) 3rd basis function of subdomain 2. (b) 4th basis function of subdomain 2.

(c) 3rd basis function of subdomain 7. (d) 4th basis function of subdomain 7.

(e) 3rd basis function of subdomain 8. (f) 4th basis function of subdomain 8.

(g) 3rd basis function of subdomain 14. (h) 4th basis function of subdomain 14.

(i) 3rd global basis function of velocity. (j) 4th global basis function of velocity.

Figure 6: Case 1 - flow past a cylinder: the third and fourth basis functions of the velocity field over the
global as well as the subdomain 2, 7, 8 and 14.

(a) full model, t = 5.0 (b) DDNIROM, t = 5.0

Figure 7: Case 1 - flow past a cylinder: the velocity solutionsobtained from the full model and DDNIROM
at time level 5.0. Note that the numbers of local basis functions for each subdomain are labelled in2.
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Figure 8: Case 1 - flow past a cylinder: the velocity solutionsobtained from the high fidelity full model and
global NIROM with 18 basis functions and DDNIROM (with 15 subdomains) with 12 basis functions at a
particular point (x=0.7184, y=0.28652).

Figure11 shows the global and local singular eigenvalues over the global domain
and 15 subdomains respectively. Figure12shows the singular eigenvalues over subdo-
main 8 and the subdomains (16-21) inside the subdomain 8. Visually, the eigenvalues
of subdomains (16-21) decay faster than those of subdomain 8and the global domain.
Different numbers of local basis functions are thus chosen for different subdomains in
an optimal way that most of energy is captured. Figure10 which shows the distribu-
tion of the number of basis functions for each subdomain. Thegraphs of the first four
leading basis functions over the global domain and subdomains 2, 7, 8 and 12 are dis-
played in figures13 and14. These figures show that the local basis functions capture
more energy and details than the global basis functions. It is seen that the flow struc-
ture within subdomain 8 is complex. To capture the details ofeddies, subdomain 8 is
further subdivided into 3× 2 subdomains-labelled 16-21, see figure10.

Figure15presents the velocity solutions at time level 0.6, as obtained from the full
model and DDNIROM (using the numbers of local functions chosen for each subdo-
main shown in figure10). It is minor visual differences of solutions between the two
models. It can be seen from figure15 that the DDNIROM captures well the small
structures of the flow around the two buildings.

To further demonstrate the capability of the DDNIROM, only one and two local
basis functions for all the subdomains are used to constructthe DDNIROM. Figure
16 shows the velocity solutions at time level 0.4, calculated from the full model and
both of the global NIROM and the DDNIROM. Figures16 (f) and (g) show the er-
ror of velocity solutions from the NIROM and DDNIROM with 3 basis functions at
time level 0.4. It can be seen that the DDNIROM captures well the eddies above
the two buildings even using only 3 basis functions, and performs better than the
global NIROM. This is further confirmed by the velocity solutions at a particular point
(x = 0.33221, y = 0.32814) shown in figure17. With increased number of basis

12



0 1 2 3 4 5
Time

0.06

0.08

0.1

0.12

0.14
R

M
S

E
NIROM, 18 basis functions
DDNIROM, 12 basis functions

0 1 2 3 4 5
Timestep

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

co
rr

el
at

io
n 

co
ef

fic
ie

nt

NIROM, 18 basis functions
DDNIROM, 12 basis functions

(a) RMSE (b) Correlation coefficient

Figure 9: Case 1: RMSE and correlation coefficient of velocity solutions between the high fidelity full model
and both of the global NIROM with 18 basis function and the DDNIROM with 12 basis functions.

functions, the accuracy of solutions from the NIROMs has been improved. Again the
DDNIROM with only 12 basis functions provides better results than the global NIROM
with 18 basis functions, especially around the perturbation peak att = 0.04. This is
also highlighted by the correlation coefficient of velocity solutions, see figure18. The
reduction of basis functions required for NIROMs leads to a decreased dimension of
hypersurfaces, thus decreasing the computational cost.

The computational cost of the DDNIROM is efficient. The CPU cost includes the
offline and the online costs. The offline cost involves forming the basis functions and
constructing the hypersurfaces. The CPU cost of forming thebasis functions for the
DDNIROM is almost equal to that of the global NIROM. The CPU cost of constructing
the hypersurfaces can be ignored. The offline process is precomputed. The online CPU
cost involves the time for solving the DDNIROM and projecting the reduced order
results onto the full space. The online CPU cost required forDDNIROM only 0.016
second while 158 seconds for the fidelity full model. For large complex problems, the
CPU time can be reduced by several orders of magnitude required for the fidelity full
model.
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(a)subdomain number

(b) distribution of number of POD (c) street canyon subdomain 8

Figure 10: Case 2 - urban street canyon test case: the 2D urbanstreet canyon case: (a) the computational
domain and 15 subdomains; (b) the number of POD basis functions chosen for each subdomain; and (c) 6
sub-subdomains within subdomain 8.
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Figure 11: Case 2 - urban street canyon test case: the global and local singular eigenvalues over the global
domain and 15 subdomains respectively.
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Figure 12: Case 2 - urban street canyon test case: the singular eigenvalues associated to subdomain 8 and
the subdomains inside the subdomain 8.
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(a) 1st basis function of subdomain 2. (b) 2nd basis function of subdomain 2.

(c) 1st basis function of subdomain 7. (d) 2nd basis function of subdomain 7.

(e) 1st basis function of subdomain 8. (f) 2nd basis function of subdomain 8.

(g) 1st basis function of subdomain 12. (h) 2nd basis function of subdomain 12.

(i) 1st global basis function of velocity. (j) 2nd global basis function of velocity.

Figure 13: Case 2 - urban street canyon test case: the first andsecond basis functions and global functions
of velocity (including all components u and v).
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(a) 3rd basis function of subdomain 2. (b) 4th basis function of subdomain 2.

(c) 3rd basis function of subdomain 7. (d) 4th basis function of subdomain 7.

(e) 3rd basis function of subdomain 8. (f) 4th basis function of subdomain 8.

(g) 3rd basis function of subdomain 12. (h) 4th basis function of subdomain 12.

(i) 3rd global basis function of velocity. (j) 4th global basis function of velocity.

Figure 14: Case 2 - urban street canyon test case: the third and fourth basis functions and global basis
functions of velocity (including all components u and v).
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(a) full model, t = 5.0 (b) DDNIROM, t = 5.0

Figure 15: Case 2 - urban street canyon test case: the velocity solutions from the full model and DDNIROM
at time level 5.The numbers of local functions chosen for each subdomain are shown in figure10

(a) Full model at time level 0.4.

(b) NIROM with 1 global basis function. (c) NIROM with 3 global basis function.

(d) DDNIROM with 1 basis functions. (e) DDNIROM with 3 basis functions.

(f) Error of NIROM with 3 basis functions. (g) Error of DDNIROM with 3 basis functions.

Figure 16: Case 2 - urban street canyon test case: figures (a) -(e) show the velocity solutions at time level
0.4, as calculated from the high fidelity full model and both of the global NIROM and DDNIROM with 1
basis function and 3 basis functions for all the subdomains;and figures (f) and (g) show the velocity errors
from both the global NIROM and DDNIROM with 3 basis functionsat time level 0.4.

18



0 0.1 0.2 0.3 0.4 0.5 0.6
Time

0

0.5

1

1.5

2

2.5

V
el

oc
ity

Full model
NIROM, 1 global basis function
NIROM, 3 global basis functions
NIROM, 18 global basis functions
DDNIROM, 1 basis function
DDNIROM, 3 basis functions
DDNIROM, 12 basis functions

Figure 17: Case 2 - urban street canyon test case: the velocity solutions of the high fidelity full model, the
global NIROM with 1, 3 and 18 global basis functions, as well as the DDNIROM with 1, 3 and 12 basis
functions at a particular point (x=0.33221, y=0.32814).
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Figure 18: Case 2 - urban street canyon test case: RMSE and correlation coefficient of velocity solutions.
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6. Conclusion

In this article, a domain decomposition non-intrusive reduced order model (DDNIROM)
is presented. The motivation of this work is to improve the capability of our recently
developed NIROM [28, 34] for complex flow problems over widely varying range of
scales (for example, from building, street to city scale). This can be done by partition-
ing the whole spatial computational domain into subdomains, thus capturing the details
of local flow features characterized by these subdomains. Using POD, the local basis
functions are generated based on the local solution snapshots over each subdomain.
The RBF is then used for constructing a set of local hypersurfaces for each subdomain.
These hypersurfaces include the fluid dynamics not only fromthe subdomain itself, but
also from the neighboring subdomains.

The DDNIROM has been applied to two numerical test cases: flowpast a cylinder
and street canyon. Different number of basis functions were used for the subdomains.
A comparison between the high fidelity full model, NIROM and DDNIROM has been
conducted. The numerical results show that the DDNIROM exhibits comprehensive
good agreement with the high fidelity full model and used fewer basis functions to
attain same accuracy as the global NIROM.

This subdomain non-intrusive reduced order modelling is a generic and efficient
approach for model reduction of general linear and non-linear time-dependent flow dy-
namical systems, even if where the source code is not available. Over existing global
ROMs, the DDNIROM proposed here is able to (1) provide more details of local flows
since local POD basis functions are generated based on localflow solutions over each
subdomain and associated surrounding domains; (2) reduce the need for large multi-
dimensional hypersurfaces representing the fluid dynamicsusing the global NIROM;
and (3) reduce the size of the singular value decomposition and provide a greater scope
for parallelization of the SVD. This is an essential step towards applying NIROMs to
a real-life scenario with arbitrarily complex physics,e.g. traffic, chemistry, greening,
particles and radiation.
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cursive dynamic mode decomposition of transient and post-transient wake flows.
Journal of Fluid Mechanics, 809:843–872, 2016.

[4] Xuping Xie, David Wells, Zhu Wang, and Traian Iliescu. Approximate decon-
volution reduced order modeling.Computer Methods in Applied Mechanics and
Engineering, 313:512–534, 2017.

[5] Stefano Lorenzi, Antonio Cammi, Lelio Luzzi, and Gianluigi Rozza. Pod-
galerkin method for finite volume approximation of navier–stokes and rans equa-
tions. Computer Methods in Applied Mechanics and Engineering, 311:151–179,
2016.

[6] Yuepeng Wang, Ionel M Navon, Xinyue Wang, and Yue Cheng. 2d burgers equa-
tion with large reynolds number using pod/deim and calibration.International
Journal for Numerical Methods in Fluids, 82(12):909–931, 2016.

[7] B. R. Noack, M. Morzynski, and G. Tadmor.Reduced-Order modelling for flow
control, volume 528. Springer, 2011.

[8] F Fang, T Zhang, D Pavlidis, C.C. Pain, AG Buchan, and I.M.Navon. Reduced
order modelling of an unstructured mesh air pollution modeland application in
2d/3d urban street canyons.Atmospheric Environment, 96:96–106, 2014.

[9] K.C. Hoang, Y. Fu, and J.H. Song. An hp-proper orthogonaldecomposition-
moving least squares approach for molecular dynamics simulation. Computer
Methods in Applied Mechanics and Engineering, 298:548 – 575, 2016.

[10] Andrea Manzoni, Filippo Salmoiraghi, and Luca Heltai.Reduced basis isoge-
ometric methods (rb-iga) for the real-time simulation of potential flows about
parametrized naca airfoils.Computer Methods in Applied Mechanics and Engi-
neering, 284:1147–1180, 2015.

[11] H Al Akhras, T Elguedj, A Gravouil, and M Rochette. Towards an automatic iso-
geometric analysis suitable trivariate models generationapplication to geometric
parametric analysis.Computer Methods in Applied Mechanics and Engineering,
2016.

21



[12] Francesco Ballarin, Elena Faggiano, Sonia Ippolito, Andrea Manzoni, Alfio Quar-
teroni, Gianluigi Rozza, and Roberto Scrofani. Fast simulations of patient-
specific haemodynamics of coronary artery bypass grafts based on a pod–galerkin
method and a vascular shape parametrization.Journal of Computational Physics,
315:609–628, 2016.

[13] Michael Schlegel and Bernd R. Noack. On long-term boundedness of Galerkin
models.Journal of Fluid Mechanics, 765:325–352, 2 2015.

[14] Jan Osth, Bernd R. Noack, SiniÅa Krajnovi, Diogo Barros, and Jacques Bore.
On the need for a nonlinear subscale turbulence term in POD models as exem-
plified for a high-Reynolds-number flow over an Ahmed body.Journal of Fluid
Mechanics, 747:518–544, 5 2014.

[15] Leopoldo P. Franca and Sergio L. Frey. Stabilized finiteelement methods: Ii. the
incompressible Navier-Stokes equations.Computer Methods in Applied Mechan-
ics and Engineering, 99(2-3):209–233, 1992.

[16] S. Chaturantabut and D.C. Sorensen. Nonlinear model reduction via discrete
empirical interpolation.SIAM J. Sci. Comput, 32:2737–2764, 2010.

[17] Dunhui Xiao. Non-intrusive reduced order models and their applications. PhD
thesis, Imperial College London, 2016.

[18] F.Fang, C.Pain, I.M. Navon, A.H. Elsheikh, J. Du, and D.Xiao. Non-linear
Petrov-Galerkin methods for Reduced Order Hyperbolic Equations and Discon-
tinuous Finite Element Methods.Journal of Computational Physics, 234:540–
559, 2013.

[19] D. Xiao, F. Fang, J. Du, C.C. Pain, I.M. Navon, A. G. Buchan, A.H. ElSheikh,
and G. Hu. Non-linear Petrov-Galerkin methods for reduced order modelling of
the Navier-Stokes equations using a mixed finite element pair. Computer Methods
In Applied Mechanics and Engineering, 255:147–157, 2013.

[20] C. Bou-Mosleh K. Carlberg and C. Farhat. Efficient non-linear model reduction
via a least-squares petrov-galerkin projection and compressive tensor approxima-
tions. International Journal for Numerical Methods in Engineering, 86:155–181,
2011.

[21] M. Serpas Y. Chu and J. Hahn. State-preserving nonlinear model reduction pro-
cedure.Chemical Engineering Science, 66:3907–3913, 2011.

[22] Alireza Jafarpour Feriedoun Sabetghadam.αRegularization of the POD-Galerkin
dynamical systems of the Kuramoto-Sivashinsky equation.Applied Mathematics
and Computation, 218:6012–6026, 2012.

[23] Karen Willcox and Alexandre Megretski. Model reduction for large-scale linear
applications. InProc. of 13th IFAC Symposium on System Identification, Rotter-
dam, Netherlands, pages 1431–1436, 2003.

22



[24] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An empirical interpolation
method: application to efficient reduced-basis discretization of partial differential
equations.C. R. Acad. Sci. Paris, Ser, 339:667–672, 2004.

[25] D. Xiao, F. Fang, A. G. Buchan, C.C. Pain, I.M. Navon*, J.Du, , and G. Hu. Non-
linear model reduction for the Navier-Stokes equations using Residual DEIM
method.Journal of Computational Physics, 263:1–18, 2014.

[26] Kevin Carlberg, Charbel Farhat, Julien Cortial, and David Amsallem. The GNAT
method for nonlinear model reduction: effective implementation and application
to computational fluid dynamics and turbulent flows.Journal of Computational
Physics, 242:623–647, 2013.

[27] Juan Du, Fangxin Fang, Christopher C Pain, I.M. Navon, Jiang Zhu, and David A
Ham. POD reduced-order unstructured mesh modeling appliedto 2d and 3d fluid
flow. Computers and Mathematics with Applications, 65(3):362–379, 2013.

[28] D. Xiao, F. Fang, A.G. Buchan, C.C. Pain, I.M. Navon, andA. Muggeridge. Non-
intrusive reduced order modelling of the Navier–Stokes equations. Computer
Methods in Applied Mechanics and Engineering, 293:552–541, 2015.

[29] D. Xiao, F. Fang, C. Pain, and G. Hu. Non-intrusive reduced order modelling of
the Navier-Stokes equations based on RBF interpolation.International Journal
for Numerical Methods in Fluids, 79(11):580–595, 2015.

[30] S Walton, O Hassan, and K Morgan. Reduced order modelling for unsteady fluid
flow using proper orthogonal decomposition and radial basisfunctions. Applied
Mathematical Modelling, 37(20):8930–8945, 2013.

[31] C.Audouze, F.D.Vuyst, and P.B.Nair. Nonintrusive reduced-order modeling of
parametrized time-dependent partial differential equations.Numerical Methods
for Partial Differential Equations, 29(5):1587–1628, 2013.

[32] DA Bistrian and IM Navon. Randomized dynamic mode decomposition for non-
intrusive reduced order modelling.International Journal for Numerical Methods
in Engineering, 2016.

[33] D Xiao, P Yang, F Fang, J Xiang, CC Pain, and IM Navon. Non-intrusive reduced
order modeling of fluid-structure interactions.Computer Methods in Applied Me-
chanics and Engineering, 303:35–54, 2016.

[34] D Xiao, P Yang, F Fang, J Xiang, CC Pain, IM Navon, and M Chen. A non-
intrusive reduced-order model for compressible fluid and fractured solid coupling
and its application to blasting.Journal of Computational Physics, 330:221–244,
2017.

[35] D Xiao, Z Lin, F Fang, C C Pain, Ionel M Navon, P Salinas, and A Muggeridge.
Non-intrusive reduced-order modeling for multiphase porous media flows using
smolyak sparse grids.International Journal for Numerical Methods in Fluids,
83(2):205–219, 2017.

23



[36] D Xiao, F Fang, C Pain, IM Navon, and A Muggeridge. Non-intrusive reduced or-
der modelling of waterflooding in geologically heterogeneous reservoirs. InEC-
MOR XV-15th European Conference on the Mathematics of Oil Recovery, 2016.

[37] D. Xiao, F. Fang, C.C. Pain, and I.M. Navon. A parameterized non-intrusive re-
duced order model and error analysis for general time-dependent nonlinear partial
differential equations and its applications.Computer Methods in Applied Mechan-
ics and Engineering, 317:868–889, 2017.

[38] David J Lucia, Paul I King, and Philip S Beran. Reduced order modeling of a
two-dimensional flow with moving shocks.Computers& Fluids, 32(7):917–938,
2003.

[39] Janusz S Przemieniecki. Matrix structural analysis ofsubstructures.AIAA Jour-
nal, 1(1):138–147, 1963.

[40] IM Navon and Y Cai. Domain decomposition and parallel processing of a finite
element model of the shallow water equations.Computer methods in applied
mechanics and engineering, 106(1-2):179–212, 1993.

[41] Y Cai and IM Navon. Parallel block preconditioning techniques for the numerical
simulation of the shallow water flow using finite element methods. Journal of
Computational Physics, 122(1):39–50, 1995.

[42] Luc Berger-Vergiat and Haim Waisman. An overlapping domain decomposition
preconditioning method for monolithic solution of shear bands.Computer Meth-
ods in Applied Mechanics and Engineering, 318:33–60, 2017.

[43] Søren Taverniers and Daniel M Tartakovsky. A tightly-coupled domain-
decomposition approach for highly nonlinear stochastic multiphysics systems.
Journal of Computational Physics, 330:884–901, 2017.

[44] Xin Bian, Zhen Li, and George Em Karniadakis. Multi-resolution flow simula-
tions by smoothed particle hydrodynamics via domain decomposition.Journal of
Computational Physics, 297:132–155, 2015.

[45] Joan Baiges, Ramon Codina, and Sergio Idelsohn. A domain decomposition strat-
egy for reduced order models. application to the incompressible navier–stokes
equations.Computer Methods in Applied Mechanics and Engineering, 267:23–
42, 2013.

[46] David Amsallem, Matthew J Zahr, and Charbel Farhat. Nonlinear model order re-
duction based on local reduced-order bases.International Journal for Numerical
Methods in Engineering, 92(10):891–916, 2012.

[47] Saifon Chaturantabut. Temporal localized nonlinear model reduction with a priori
error estimate.Applied Numerical Mathematics, 2017.

24



[48] Pierre Kerfriden, Olivier Goury, Timon Rabczuk, and Stephane Pierre-Alain Bor-
das. A partitioned model order reduction approach to rationalise computational
expenses in nonlinear fracture mechanics.Computer methods in applied mechan-
ics and engineering, 256:169–188, 2013.

[49] George Shu Heng Pau, Chaopeng Shen, William J Riley, andYaning Liu. Ac-
curate and efficient prediction of fine-resolution hydrologic and carbon dynamic
simulations from coarse-resolution models.Water Resources Research, 2016.

[50] GSH Pau, G Bisht, and WJ Riley. A reduced-order modelingapproach to rep-
resent subgrid-scale hydrological dynamics for land-surface simulations: ap-
plication in a polygonal tundra landscape.Geoscientific Model Development,
7(5):2091–2105, 2014.

25


	1 Introduction
	2 Governing equations for fluid dynamics
	3 Non-intrusive model reduction method
	4 Domain decomposition non-intrusive model reduction strategy
	5 Numerical examples
	5.1 Case 1: flow past a cylinder
	5.2 Case 2: urban street canyon test case

	6 Conclusion

