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Abstract

In this paper we first introduce the domain decomposition B2hnique into non-
intrusive reduced order modelling for complex non-lineaidfldynamics problems.
The computational domain is partitioned into subdomaipsasenting dferent phys-
ical and flow features, such as shock waves, moving fronteddies. A set of local
basis functions for each subdomain is constructed usingrtyer orthogonal decom-
position (POD) method. The radial basis function (RBF) rodthare then used to
generate a set of local hypersurfaces for each subdomaigseTlbcal hypersurfaces
can represent not only the fluid dynamics over the subdorhbeiangs to, but also the
interaction between this subdomain and the surroundindsuhins.

Specifically, we have developed a domain decompositioninusive reduced
order model (DDNIROM) for the Navier-Stokes equations. Pleeformance of this
DDNIROM is numerically illustrated by two examples, flow pascylinder and street
canyon, respectively. The results show that the DDNIROMlathgood agreement
with the high fidelity full model while the computational ¢as reduced by several
orders of magnitude. By using the DD method, the DDNIROM canvigle the details
of local non-linear flow features isolated within each subdm, for example, eddies
around the cylinder and within the street canyons. It alsviges the flexibility to
choose dferent numbers of local basis functions for each subdontais,ieducing the
need for large multidimensional hypersurfaces represegritie fluid dynamics using
the global NIROM.

Keywords: domain decomposition, reduced order modelling, non-giNg) proper
orthogonal decomposition

1. Introduction

Reduced order modelling (ROM) is a powerful tool for reahdi analysis as it of-
fers the potential to reduce dimensionality of large compglgstems. ROM has been
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successfully applied to various fields, for example, freetaodelling [L], fluid dynam-
ics [2, 3,4, 5, 6, 7], air pollution [8], molecular dynamicsq], aerospace desigi (],
parameter optimizatiorifl] and haemodynamic4 p]. Proper orthogonal decomposi-
tion (POD) in combination with Galerkin projection is the saigpopular method used
for deriving a reduced order model. However, this methocejzethdent on the original
source code and has some disadvantages such as instatalitpa-linear infficiency
[13, 14, 15, 16, 17]. To tackle those issues, a number of stabilisation metihads
been presented, for example, Petrov-Galerkin meti&19], calibration PO, 21],
regularisation22] and Fourier expansior2f]. Also, various non-linearity model re-
duction methods have been proposed such as empirical addign method (EIM)
[24], discrete EIM (DEIM) [L6], residual DEIM (RDEIM) R5], Petrov-Galerkin pro-
jection [20], Gauss-Newton with approximated tensors (GNADR{ and the quadratic
expansion method[f].

More recently, the non-intrusive reduced order modelliNgROM) is becoming
popular in various research and engineering fields as itéeimgntation is indepen-
dent of the original source code. The applications includil foroblems 28, 29,
30, 31, 32, fluid-structure interaction problem83, 34] and multiphase porous media
flows [35, 36]. Xiao et al. [37] also presented a parameterized NIROM for general
time-dependent nonlinear partiafigirential equations. However, POD ROM has its
difficulty in capturing every location traversed by a moving digmuity, which re-
quires larger number of basis functions and larger amoudatd in order to capture
the energy 38]. This motivates the development of subdomain ROM techmofor
complex flows é.g. turbulent flows) and localized complex physical problemsg,
traffic, chemistry, greening, particles and radiation. Using [ppraach allows us to
construct diferent local basis functions based on details of local flowtgmis over
each subdomains.

The domain decomposition method originated in the work aéRrieniecki B9]. It
has been applied to various fields, such as parallel proagii), 41], shear bandsi2],
stochastic multiphysics system&3] and hydrodynamics44]. Lucia et al. [3§] first
introduced the DD method to reduced order modelling for eatiely tracking a moving
strong shock wave. Baiges al. [45], Amsallemet al. [46] and Chaturantabutl[/]
applied the DD method to non-linear model reduction. Kddriet al. [48] proposed
a partitioned ROM strategy for nonlinear fracture problefauet al. [49, 50] used
the POD mapping method to construct ROMs for fine-resoluiigar basin models.

This paper presents a new subdomain non-intrusive reducked model for fluid
problems using the POD and radial basis function (RBF) ndghd@he key idea un-
derpinning this DDNIROM is to introduce the DD method to oecently developed
non-intrusive reduced order modelling technique basederRBF. It is a robust and
efficient approach for model reduction of general linear andliragar time-dependent
flow dynamical systems, even when source code is unavaildblag the RBF method,
a set of local hypersurfaces for each subdomain is consttuigtsuch a way as to rep-
resent the underlying reduced flow dynamics from both thixiemain and its neigh-
boring subdomains.

In DDNIROM, during the d¢fline computational procedure, the solutions to the
high fidelity model are recorded as a sequence of snapshetsttoy computational
domain and thus partitioned into subdomains accordingdallffow features. From



the local solution snapshots over each subdomain, a nurhlmeabbasis functions are

generated using POD. The RBF multi-dimensional interpatamethod is then used

to construct a set of local hypersurfaces representingttead fluid dynamics over this

subdomain. When constructing the local hypersurfacedimsubdomain, the energy
of the surrounding subdomains associated to this subddm&iken into account.

During the online computational procedure, for each sulainnthe solution of the
DDNIROM at the currenttime level can be obtained by prowidime reduced solutions
at the previous time level over the current subdomain, a$ agethat at the current
time level over its surrounding subdomains into the locaddrgurface functions. The
performance of the new DDNIROM has been assessed througfitigs test cases:
flow past a cylinder and street canyon test cases. Compatistween the high fidelity
full model and the proposed DDNIROM have been carried ouatmate the accuracy
of the new DDNIROM.

The structure of the present paper is as follows. Se@ipresents the governing
equations of fluid problems. Secti@mescribes the general theory of the non-intrusive
reduced order model (NIROM). Sectidrderives the methods of constructing a sub-
domain non-intrusive reduced order model (DDNIROM) fordkiproblems. Section
5 demonstrates the performance of the DDNIROM for two nuna¢dases: flow past
a cylinder and street canyon test cases. Finally in seélisanmmary and conclusions
are presented.

2. Governing equations for fluid dynamics

This work uses the non-hydrostatic Navier-Stokes equatiordescribe the fluid
dynamics, namely,

V.u = 0, 1)
ou
E+u-Vu+fk><u = -Vp+V-.1, (2

whereu = (u,v,w)" is the velocity vectorp is the perturbation pressurg (= p/po, po
is the constant reference density)represents the Coriolis inertial force, akds an
unit vector along the vertical direction. The stress tensarthe difusion term is used
to represent the viscous terms and is defined in terms of tleerdation rate tensd®
as

Tij = 20iiSij, - Sij =5

1(ou ou) 1 3\ du

oxj 0%

where u is the kinematic viscosity. In the previous definition, wewase no summa-
tion over repeated indices. In this paper, the horizontaikiatic viscositiesuf 1, u22)
and vertical kinematic viscosityugs) assume constant values with th-diagonal

components of defined byuij = (uiij;)*2.

3. Non-intrusive model reduction method

The essence of the non-intrusive model reduction methaaksists in constructing
a set of hypersurfaces that represent the reduced systétDmmethods, any variable



Y (for example, velocity and pressure) can be expressed:

¥+ Zmla’i(bi, (4)

i=1

where,¥ is the mean of the variables over the simulation period, rhésnumber of
POD basis functions; represents the POD cfiieients needed to be calculated over the
reduced space (solutions of the ROM) ahdepresents the POD basis functions. The
POD basis functions can be obtained by performing the Sand{adlue Decomposition
(SVD) procedure.

The POD co#icientsa can be derived by a multi-dimensional radial basis function
interpolation method. In RBF multi- dimensional interpaa, a functionf (x) can be
approximated by the linear combination of a number of RBEgntered aN points.
There are various types of RBFs such as: multi-quadrice@ptine, Gaussian and
inverse multi-quadric. In this paper we use the Gaussian, RBich has a form of
o(r) = e (/o) (o being the shape parameter andeing the radius). In NIROM, the
POD codficientse} associated to thig" POD basis function at any time levetan be
obtained R9:

a = f.(a/1 ,atz ... ,atrﬁl), (5)
The hypersurfac can be approximated by a linear combination of a number ofRBF

[29:
filal ™ bt 1)—Zw.,¢,(||(ozl Ja5th e - ¢, (6)

where,N is the number of data points, the cent&is chosen to be the origin of the
input data. After obtaining the hypersurfafiethe solutions at current time level can
be obtained by inputting the solutions at previous timellg28].

4. Domain decomposition non-intrusive model reduction stategy

This section describes the strategy of deriving a generall[OM. In the newly
proposed DDNIROM, the computational dom@&iis divided intoS subdomain€d, d e
{1,2,---,S} and each subdomain has local unknow#idse RY, L = Ly +---+ L9 +

.-+ Ls. In this method, the variable solutions at nodes within tiedemainQd are
used for forming a set of local POD basis functi@b$ The local basis functions can
be extended into global basis functions by assigning zeothter subdomains,

0

O = (I>d , deRS, ieR™ (7)



thereby ensuring orthonormality of the basis functionse Variables of solutions in
the global domain then can be expressed by:

S
Y= W (8)
d=1
W=+ Y afaf, 9)
i=1

wheremy is the numbers of basis functions for each subdorf4in

For each subdomaif2¥, we construct a set of hypersurfacl?éto represent the
underlying dynamical system associated to this subdonmaintee surrounding subdo-
mains over the reduced space. Each hypersurface has theform

o = i@ o), (10)

where vecton®t! denotes the complete set of POD fiaments (for example, velocity
ay, pressuray,) at previous time level — 1 for the subdomaif)?, &% denotes the
complete set of POD c(igcients at time level for the surrounding subdomains. In a
2-D case, the number of surrounding subdomains assoctistsubdomai® is
between 2 and 4, see a simple example in figurehich shows a maximum of four
surrounding subdomains (labelled sd) connected with the@mainQd.

Figure 1: The figure shows a simple subdomain example, wisieh colour to show theftierent subdomains
clearly. The domainl has four surrounding subdomains-labelkzti

The RBFPOD NIROM method is then used to construct a set of hypersesftor
each POD coficient at each subdomain. The procedure can be describegbirithims
1 (offline) and 2 (online), respectively. Algorithm 1 describesdfiline computational
procedure on how to construct a set of local hyper-surfamesdch subdomain while
algorithm 2 details the online computation of DDNIROM whéhe interaction be-
tween a subdomain and its surrounding subdomains is takeadcount.



Algorithm 1: Offline: constructing a set of hyper-surfaces for DDNIROM

(1) Generate a number of snapshots over the time peridd iy solving the fluid
dynamics problem;

(2) Divide the computational domafn into S subdomains;

(3) Generate a number of POD basis functidgsand®, via performing SVD on the
shapshots matrix of the subdomain;

(4) Obtain the functional valugg at the data pointsx®-1, @5%!) via the solutions
from the high fidelity model, wheree {1,2,...T};

(5) Obtain a set of hypersurfaces through the following loop

for d = 1to Sdo
for i = 1to mdo

(i) Calculate the Weightng by solving equationi);
AW =yl jefl 2, N,

where A is a matrix associated with the radiAss ¢(r).

(i) Obtain a set of hyper surfacefsj"((atl‘l, ayt, - afhh) by substituting the
weight values obtained in the above step into equatid) (

N

de.d d d dt-1 dt-1

i (el af) = > whiod((ef' ot o, g™ - ),
j=1

N

de.d d d dt-1 _dt-1

foi(ad,a8) = > Wl ([, L a5, o) - ),
i=1

L endfor
L endfor




Algorithm 2 : Online DDNIROM calculation for the fluid problem

for it = 1t0 Nieration dO
for d = 1to Sdo

(1) Obtain the surrounding subdomairssl {n figure 1) for the subdomaid
according to the locations.

(2) Initialisation.
for i = 1to mdo

| Initialize POD codficients for subdomaid (®°, @%°

wi> p,);
(3) Calculate solutions at current time step:
fort=1toTdo

for i = 1to mdo

(i) Obtain the POD cadcients for associated surrounding subdomains. If there
are no solutions for this surrounding subdomain, then igtiois
surrounding subdomain at this iteratibn

(i) Evaluate the hypersurfacd§ at the previous time stefp- 1 by using the
1 _dt-1 _sdt _sdt.

complete set of POD cdiécientsa’~ AT s

dt-1 _dt-1 _sdt _sdt

dt-1 _dt-1 _sdt _ sdt
ui ’ap,i >ud T pli a )’ (11)

wi , a

d
)’ fp,i(_(a pi > ui i

fl‘ii — (a
(iii)y Calculate the POD cd#cientsa/, andatp at the current time stefpusing the
following equations:

T T
aff = el afi= Y w0, 42
t=1

t=1

for d = 1to Sdo
Calculate the solutions*' andp! for each subdomaid on the full space
for each time stepby projectingagfj andagfj onto the full space.

In algorithm?2, the iteration loopfor it = 1 to Nieration) guarantees the hypersurface
traverses the flow dynamics oyacross the subdomaihand also all the surrounding
subdomainsd. It ensures that the hypersurface represents the flow dysaouer the
subdomaird, especially the flow interaction between the subdomain baaéighbor-
ing surrounding subdomains.

For example, when we solve the DDNIROM for each subdorm@irat time level
t, at the first iteration, we need the solutions over the sulziopa®t-! and @541



over the associated surrounding subdomains at the pretinadevelt — 1. After the
subdomain loogdor d = 1 to S for the first iteration in algorithn2, the solutions at
current time level for each subdomain can be obtained. Ifial@ving iteration, the
solutionsa*% over surrounding subdomains at current time lavate updatedozid’t
can be obtained by inputting™~* anda3 into the hypersurface.

5. Numerical examples

5.1. Case 1: flow past a cylinder

The DDNIROM is first validated in a dimensionless test cagev ftast a cylinder,
which is composed of a cylinder with a radius of 0.05 in the patational domain
(2.2x 0.41), see figur@. The center of the cylinder is located at (0.25, 0.25). Aptinl
velocity of 1 is applied to the the left of the domain. The Relggls numberRé is set
to be 3200. No normal flow and zero shear (slip) boundary ¢immdi are applied to the
cylinder and both lateral sides. There are 3213 nodes indimpatational domain. In
this example, the global domain is divided into 1&elient subdomains, see figute
The simulational period is set to,[6] with a time step size oft = 0.01. 60 snapshots
(solutions obtained by running the high fidelity model) aken at a regularly spaced
time interval of O1.

Figure3 shows the global and local singular eigenvalues (assaktatthe global
and 15 subdomains respectively) in logarithmic scale ireoaf decreasing magni-
tude. The local basis function associated to a larger eaeecaptures more energy
in the original flow dynamic system over the subdomain. It barseen in figur&
that the local singular eigenvalues decrease faster tieagidbal singular eigenvalues.
Thus, in comparison to the global NIROM, a smaller numbeioctl basis functions
is required for capturing most of energy in the original floyndmical system. This
correspondingly reduces the dimension of hypersurfacpsned for NIROM. To ac-
curately represent the details of the flow around the cylirtle subdomain 7 is further
divided into %2 subdomains on average-labelled 16-19. Figisbows the eigenval-
ues of the subdomain 7 and its sub-subdomains 16-19. Figuaerd6 show the first
four leading basis functions associated to the global ahd@mains 2, 7, 8 and 14.
Again it can be seen that the local basis functions over tfmsesubdomains capture
more energy than the global basis functions.

Figure 3 provides us a criterion for choosing the number of local asnctions
for each subdomain. The number of local basis functionsdohesubdomain (labeled
in figure2) is chosen in such a way that 99% of energy over the subdomaapitured
by these selected local basis functions.

Figure7 shows the velocity solutions obtained from the high fiddlitfmodel and
DDNIROM (the numbers of local basis functions for each subdin are labeled i)
at time level 5.0. As shown in the figure, the solutions from BFDNIROM are close
to those from the high fidelity full model. The velocity sabris at a particular point
(x = 0.7184y = 0.28652) are shown in figurg As one can see from this figure, the
DDNIROM with only 12 basis functions performs better thaa tiobal NIROM with
18 basis functions.

Figure 9 presents the root-mean-square error (RMSE) and the ctioreleodti-
cient of solutions between the high fidelity full model andfbof the global NIROM
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Figure 2: Case 1 - flow past a cylinder: the graphs shows theputational domain, number of basis
functions distribution for each subdomain and 15 subdosairthe flow past a cylinder case.
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Figure 3: Case 1 - flow past a cylinder: the global and locajdar eigenvalues associated to the global
domain and 15 subdomains respectively.

and DDNIROM. We can see the correlation from the DDNIROM gsl2 local ba-
sis functions is in closer agreement with the high fidelit}f faodel than the global
NIROM using 18 basis functions although there is no mudledkénce in RMSE.

5.2. Case 2: urban street canyon test case

In the second example the DDNIROM is applied to the simutatiba 2D urban
street canyon test case. The computational domain is shovigure 10, consisting
of a street canyon between two buildings. The domain has ardilanless size of 2
x 1 and comprises of an unstructured finite element mesh witld 82des, see figure
10. A uniform velocity of 1 is given to the left side of the comptibnal domain as the
inflow boundary condition. The top and bottom boundary ctods are free-slip and
non-slip respectively. No-slip boundary conditions aresgribed to all the building
surfaces. The kinematic viscosity is<110* and the Reynolds number based on the
tallest building height is X 10*. The high fidelity full model was simulated for a time
interval of [Q 0.8] with a time step size ait = 0.01. Forty snapshots were taken at
regularly spaced time levels ofd®. In this example, the global domain was partitioned
into 15 diferent subdomains, see figuré
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Figure 4: Case 1 - flow past a cylinder: the singular eigemsmbver subdomain 7 and the subdomains inside

the subdomain 7.
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Figure 5: Case 1 - flow past a cylinder: the first and secondfasctions of the subdomain 2, 7, 8, 14 and
global domain of velocity (including all components u andedpectively.
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Figure 6: Case 1 - flow past a cylinder: the third and fourthisbsctions of the velocity field over the

global as well as the subdomain 2, 7, 8 and 14.
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Figure 7: Case 1 - flow past a cylinder: the velocity solutiohtined from the full model and DDNIROM
at time level 5.0. Note that the numbers of local basis fanstifor each subdomain are labelled®?in
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Figure 8: Case 1 - flow past a cylinder: the velocity solutiobtained from the high fidelity full model and
global NIROM with 18 basis functions and DDNIROM (with 15 sldmains) with 12 basis functions at a
particular point (0.7184, y¥0.28652).

Figure11 shows the global and local singular eigenvalues over thieadldomain
and 15 subdomains respectively. Figli&shows the singular eigenvalues over subdo-
main 8 and the subdomains (16-21) inside the subdomain 8aWsthe eigenvalues
of subdomains (16-21) decay faster than those of subdomeaid 8he global domain.
Different numbers of local basis functions are thus chosen fi@reint subdomains in
an optimal way that most of energy is captured. Figl®avhich shows the distribu-
tion of the number of basis functions for each subdomain. graphs of the first four
leading basis functions over the global domain and subduwi7, 8 and 12 are dis-
played in figuresl3and14. These figures show that the local basis functions capture
more energy and details than the global basis functions. déén that the flow struc-
ture within subdomain 8 is complex. To capture the detailsdtfies, subdomain 8 is
further subdivided into % 2 subdomains-labelled 16-21, see figlife

Figurel5 presents the velocity solutions at time level 0.6, as obthfrom the full
model and DDNIROM (using the numbers of local functions emfor each subdo-
main shown in figurel0). It is minor visual diferences of solutions between the two
models. It can be seen from figui® that the DDNIROM captures well the small
structures of the flow around the two buildings.

To further demonstrate the capability of the DDNIROM, onlyecand two local
basis functions for all the subdomains are used to constinecDDNIROM. Figure
16 shows the velocity solutions at time level 0.4, calculatexif the full model and
both of the global NIROM and the DDNIROM. Figurés$ (f) and (g) show the er-
ror of velocity solutions from the NIROM and DDNIROM with 3 bia functions at
time level 0.4. It can be seen that the DDNIROM captures wedl ¢ddies above
the two buildings even using only 3 basis functions, and ger§ better than the
global NIROM. This is further confirmed by the velocity satirts at a particular point
(x = 0.33221y = 0.32814) shown in figurd7. With increased number of basis

12
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Figure 9: Case 1: RMSE and correlation ftment of velocity solutions between the high fidelity full oel
and both of the global NIROM with 18 basis function and the DRAM with 12 basis functions.

functions, the accuracy of solutions from the NIROMs hasliegroved. Again the
DDNIROM with only 12 basis functions provides better restiftan the global NIROM
with 18 basis functions, especially around the perturlngpieak at = 0.04. This is
also highlighted by the correlation déieient of velocity solutions, see figuls. The
reduction of basis functions required for NIROMs leads taeardased dimension of
hypersurfaces, thus decreasing the computational cost.

The computational cost of the DDNIROM isheient. The CPU cost includes the
offline and the online costs. Théfine cost involves forming the basis functions and
constructing the hypersurfaces. The CPU cost of formingoteds functions for the
DDNIROM is almost equal to that of the global NIROM. The CPWtof constructing
the hypersurfaces can be ignored. Tlfiiree process is precomputed. The online CPU
cost involves the time for solving the DDNIROM and projegtithe reduced order
results onto the full space. The online CPU cost required@NIROM only 0.016
second while 158 seconds for the fidelity full model. For éacgmplex problems, the
CPU time can be reduced by several orders of magnitude eshfdr the fidelity full
model.
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Figure 10: Case 2 - urban street canyon test case: the 2D stlewt canyon case: (a) the computational
domain and 15 subdomains; (b) the number of POD basis fursctibosen for each subdomain; and (c) 6
sub-subdomains within subdomain 8.
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Figure 11: Case 2 - urban street canyon test case: the globadbeal singular eigenvalues over the global
domain and 15 subdomains respectively.
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Figure 12: Case 2 - urban street canyon test case: the sirgigénvalues associated to subdomain 8 and
the subdomains inside the subdomain 8.
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Figure 13: Case 2 - urban street canyon test case: the firstemud basis functions and global functions

of velocity (including all components u and v).
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Figure 14: Case 2 - urban street canyon test case: the thitdoamth basis functions and global basis
functions of velocity (including all components u and v).
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Figure 15: Case 2 - urban street canyon test case: the yeswtittions from the full model and DDNIROM
at time level 5.The numbers of local functions chosen foheatbdomain are shown in figut®
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Figure 16: Case 2 - urban street canyon test case: figureggpshow the velocity solutions at time level
0.4, as calculated from the high fidelity full model and bofthtee global NIROM and DDNIROM with 1
basis function and 3 basis functions for all the subdomaind; figures (f) and (g) show the velocity errors
from both the global NIROM and DDNIROM with 3 basis functioaistime level 0.4.
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Figure 18: Case 2 - urban street canyon test case: RMSE aredatimn codficient of velocity solutions.
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6. Conclusion

Inthis article, a domain decomposition non-intrusive e&tliorder model (DDNIROM)
is presented. The motivation of this work is to improve thpatality of our recently
developed NIROM 28, 34] for complex flow problems over widely varying range of
scales (for example, from building, street to city scald)isican be done by partition-
ing the whole spatial computational domain into subdomaimss capturing the details
of local flow features characterized by these subdomaingsgUROD, the local basis
functions are generated based on the local solution snepskier each subdomain.
The RBF is then used for constructing a set of local hypeased for each subdomain.
These hypersurfaces include the fluid dynamics not only fresubdomain itself, but
also from the neighboring subdomains.

The DDNIROM has been applied to two numerical test cases: fflast a cylinder
and street canyon. Berent number of basis functions were used for the subdomains
A comparison between the high fidelity full model, NIROM anBBIROM has been
conducted. The numerical results show that the DDNIROM kaghicomprehensive
good agreement with the high fidelity full model and used feb&sis functions to
attain same accuracy as the global NIROM.

This subdomain non-intrusive reduced order modelling i®@aegic and fficient
approach for model reduction of general linear and noralitine-dependent flow dy-
namical systems, even if where the source code is not alail@lver existing global
ROMs, the DDNIROM proposed here is able to (1) provide motaitieof local flows
since local POD basis functions are generated based onflosadolutions over each
subdomain and associated surrounding domains; (2) retecested for large multi-
dimensional hypersurfaces representing the fluid dynaastsy the global NIROM,;
and (3) reduce the size of the singular value decompositidipaovide a greater scope
for parallelization of the SVD. This is an essential stepamig applying NIROMs to
a real-life scenario with arbitrarily complex physiesg. traffic, chemistry, greening,
particles and radiation.

Acknowledgments

The authors are grateful for the support of the EPSRC graahadging Air for Green
Inner Cities (MAGIC)(EPN01022%1) and the EPSRC MEMPHIS multi-phase flow
programme grant (R0039761) and funding from the European Union Seventh Frame
work Programme (FR20072013) under grant agreement No.603663 for the research
project PEARL (Preparing for Extreme And Rare events in tadasgions).

20



References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

(9]

(10]

(11]

J Oliver, M Caicedo, AE Huespe, JA Hernandez, and E RouBReduced order
modeling strategies for computational multiscale fraet@omputer Methods in
Applied Mechanics and Engineeringll3:560-595, 2017.

Bernd R Noack, Konstantin Afanasiev, Marek Morzynskile@d Tadmor, and
Frank Thiele. A hierarchy of low-dimensional models for trensient and post-
transient cylinder wakelournal of Fluid Mechanics497:335-363, 2003.

Bernd R Noack, Witold Stankiewicz, Marek Morzyhski,daReter J Schmid. Re-
cursive dynamic mode decomposition of transient and pasistent wake flows.
Journal of Fluid Mechanics309:843-872, 2016.

Xuping Xie, David Wells, Zhu Wang, and Traian lliescu. prpximate decon-
volution reduced order modelingcomputer Methods in Applied Mechanics and
Engineering313:512-534, 2017.

Stefano Lorenzi, Antonio Cammi, Lelio Luzzi, and GiaiguRozza. Pod-
galerkin method for finite volume approximation of navigekes and rans equa-
tions. Computer Methods in Applied Mechanics and Engineerdid:151-179,
2016.

Yuepeng Wang, lonel M Navon, Xinyue Wang, and Yue Cherntjb@rgers equa-
tion with large reynolds number using pdeéim and calibration.International
Journal for Numerical Methods in Fluigd82(12):909-931, 2016.

B. R. Noack, M. Morzynski, and G. TadmoReduced-Order modelling for flow
control, volume 528. Springer, 2011.

F Fang, T Zhang, D Pavlidis, C.C. Pain, AG Buchan, and INdvon. Reduced
order modelling of an unstructured mesh air pollution maated application in
2d/3d urban street canyonatmospheric Environmen®6:96—106, 2014.

K.C. Hoang, Y. Fu, and J.H. Song. An hp-proper orthogatedomposition-
moving least squares approach for molecular dynamics ationl Computer
Methods in Applied Mechanics and Engineerig§8:548 — 575, 2016.

Andrea Manzoni, Filippo Salmoiraghi, and Luca Helt&educed basis isoge-
ometric methods (rb-iga) for the real-time simulation ofeial flows about
parametrized naca airfoilsComputer Methods in Applied Mechanics and Engi-
neering 284:1147-1180, 2015.

H Al Akhras, T Elguedj, A Gravouil, and M Rochette. Towaran automatic iso-
geometric analysis suitable trivariate models generapiptication to geometric
parametric analysisComputer Methods in Applied Mechanics and Engineering
2016.

21



[12] Francesco Ballarin, Elena Faggiano, Sonia Ippolitedea Manzoni, Alfio Quar-
teroni, Gianluigi Rozza, and Roberto Scrofani. Fast sitmhg of patient-
specific haemodynamics of coronary artery bypass grafest@asa pod—galerkin
method and a vascular shape parametrizatioarnal of Computational Physics
315:609-628, 2016.

[13] Michael Schlegel and Bernd R. Noack. On long-term baahekss of Galerkin
models.Journal of Fluid Mechanics765:325-352, 2 2015.

[14] Jan Osth, Bernd R. Noack, SiniAa Krajnovi, Diogo Batrasd Jacques Bore.
On the need for a nonlinear subscale turbulence term in PO@ela@s exem-
plified for a high-Reynolds-number flow over an Ahmed bodgurnal of Fluid
Mechanics747:518-544,5 2014.

[15] Leopoldo P. Franca and Sergio L. Frey. Stabilized finleanent methods: li. the
incompressible Navier-Stokes equatio@Bemputer Methods in Applied Mechan-
ics and Engineeringd9(2-3):209-233, 1992.

[16] S. Chaturantabut and D.C. Sorensen. Nonlinear modklicteon via discrete
empirical interpolationSIAM J. Sci. CompuB2:2737-2764, 2010.

[17] Dunhui Xiao. Non-intrusive reduced order models and their applicatioR&D
thesis, Imperial College London, 2016.

[18] F.Fang, C.Pain, I.M. Navon, A.H. Elsheikh, J. Du, andiao. Non-linear
Petrov-Galerkin methods for Reduced Order Hyperbolic Eigna and Discon-
tinuous Finite Element Methodslournal of Computational Physic234:540—
559, 2013.

[19] D. Xiao, F. Fang, J. Du, C.C. Pain, I.M. Navon, A. G. Buoh&.H. EISheikh,
and G. Hu. Non-linear Petrov-Galerkin methods for reduagéiomodelling of
the Navier-Stokes equations using a mixed finite element@amputer Methods
In Applied Mechanics and Engineerin@gb5:147-157, 2013.

[20] C. Bou-Mosleh K. Carlberg and C. FarhatffiEient non-linear model reduction
via a least-squares petrov-galerkin projection and cosgire tensor approxima-
tions. International Journal for Numerical Methods in Engineeg;i86:155-181,
2011.

[21] M. Serpas Y. Chu and J. Hahn. State-preserving nonlimealel reduction pro-
cedure.Chemical Engineering Sciendg@6:3907-3913, 2011.

[22] Alireza Jafarpour Feriedoun SabetghadarRegularization of the POD-Galerkin
dynamical systems of the Kuramoto-Sivashinsky equatigplied Mathematics
and Computation218:6012—-6026, 2012.

[23] Karen Willcox and Alexandre Megretski. Model reductifor large-scale linear
applications. IrProc. of 13th IFAC Symposium on System Identification, Rotte
dam, Netherlandgages 1431-1436, 2003.

22



(24]

(25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. Anggrical interpolation
method: application toficient reduced-basis discretization of partidfetiential
equationsC. R. Acad. Sci. Paris, Se839:667-672, 2004.

D. Xiao, F. Fang, A. G. Buchan, C.C. Pain, I.M. Navon*Dd, , and G. Hu. Non-
linear model reduction for the Navier-Stokes equationsgifResidual DEIM
method.Journal of Computational Physic263:1-18, 2014.

Kevin Carlberg, Charbel Farhat, Julien Cortial, and/idsAmsallem. The GNAT
method for nonlinear model reductionffective implementation and application
to computational fluid dynamics and turbulent flowkurnal of Computational
Physics242:623-647, 2013.

Juan Du, Fangxin Fang, Christopher C Pain, I.M. Nav@ng/Zhu, and David A
Ham. POD reduced-order unstructured mesh modeling apioligd and 3d fluid
flow. Computers and Mathematics with Applicatip65(3):362-379, 2013.

D. Xiao, F. Fang, A.G. Buchan, C.C. Pain, |.M. Navon, #&ndMuggeridge. Non-
intrusive reduced order modelling of the Navier—Stokesatiqns. Computer
Methods in Applied Mechanics and Engineerig§3:552-541, 2015.

D. Xiao, F. Fang, C. Pain, and G. Hu. Non-intrusive rezthorder modelling of
the Navier-Stokes equations based on RBF interpolatioternational Journal
for Numerical Methods in Fluids9(11):580-595, 2015.

S Walton, O Hassan, and K Morgan. Reduced order modgitinunsteady fluid
flow using proper orthogonal decomposition and radial bfasistions. Applied
Mathematical Modelling37(20):8930-8945, 2013.

C.Audouze, F.D.Vuyst, and P.B.Nair. Nonintrusive wedd-order modeling of
parametrized time-dependent partiafeiential equationsNumerical Methods
for Partial Differential Equations29(5):1587-1628, 2013.

DA Bistrian and IM Navon. Randomized dynamic mode deposition for non-
intrusive reduced order modellintnternational Journal for Numerical Methods
in Engineering 2016.

D Xiao, P Yang, F Fang, J Xiang, CC Pain, and IM Navon. Nandsive reduced
order modeling of fluid-structure interactior@omputer Methods in Applied Me-
chanics and Engineerin@®03:35-54, 2016.

D Xiao, P Yang, F Fang, J Xiang, CC Pain, IM Navon, and M &hé\ non-
intrusive reduced-order model for compressible fluid aadtfrred solid coupling
and its application to blastinglournal of Computational Physic830:221-244,
2017.

D Xiao, Z Lin, F Fang, C C Pain, lonel M Navon, P Salinasjd &nMuggeridge.
Non-intrusive reduced-order modeling for multiphase permedia flows using
smolyak sparse gridsinternational Journal for Numerical Methods in Fluids
83(2):205-219, 2017.

23



[36] D Xiao, F Fang, C Pain, IM Navon, and A Muggeridge. Notriisive reduced or-
der modelling of waterflooding in geologically heterogengceservoirs. IfEC-
MOR XV-15th European Conference on the Mathematics of @ibRey 2016.

[37] D. Xiao, F. Fang, C.C. Pain, and .M. Navon. A parametdinon-intrusive re-
duced order model and error analysis for general time-ddgr@monlinear partial
differential equations and its applicatio@amputer Methods in Applied Mechan-
ics and Engineering317:868-889, 2017.

[38] David J Lucia, Paul | King, and Philip S Beran. Reducedesrmodeling of a
two-dimensional flow with moving shock&€omputerst Fluids, 32(7):917-938,
2003.

[39] Janusz S Przemieniecki. Matrix structural analysisuddstructuresAlAA Jour-
nal, 1(1):138-147, 1963.

[40] IM Navon and Y Cai. Domain decomposition and parall@qassing of a finite
element model of the shallow water equatiorSomputer methods in applied
mechanics and engineering06(1-2):179-212, 1993.

[41] Y Cai and IM Navon. Parallel block preconditioning teatues for the numerical
simulation of the shallow water flow using finite element noeth Journal of
Computational Physi¢4.22(1):39-50, 1995.

[42] Luc Berger-Vergiat and Haim Waisman. An overlappingmdin decomposition
preconditioning method for monolithic solution of sheantda. Computer Meth-
ods in Applied Mechanics and Engineerj33.8:33-60, 2017.

[43] Sgren Taverniers and Daniel M Tartakovsky. A tighthupled domain-
decomposition approach for highly nonlinear stochastidtiptwsics systems.
Journal of Computational Physic830:884-901, 2017.

[44] Xin Bian, Zhen Li, and George Em Karniadakis. Multi-oagtion flow simula-
tions by smoothed particle hydrodynamics via domain deamsitipn. Journal of
Computational Physi¢297:132-155, 2015.

[45] Joan Baiges, Ramon Codina, and Sergio Idelsohn. A dodeiomposition strat-
egy for reduced order models. application to the incomjbkssavier—stokes
equations.Computer Methods in Applied Mechanics and Engineer@&y:23—
42,2013.

[46] David Amsallem, Matthew J Zahr, and Charbel Farhat. Idear model order re-
duction based on local reduced-order baseternational Journal for Numerical
Methods in Engineering®2(10):891-916, 2012.

[47] Saifon Chaturantabut. Temporal localized nonlineadei reduction with a priori
error estimateApplied Numerical Mathematic2017.

24



(48]

[49]

[50]

Pierre Kerfriden, Olivier Goury, Timon Rabczuk, an@fiane Pierre-Alain Bor-
das. A partitioned model order reduction approach to ratisea computational
expenses in nonlinear fracture mechan@smputer methods in applied mechan-
ics and engineering?56:169-188, 2013.

George Shu Heng Pau, Chaopeng Shen, William J Riley,Yamihg Liu. Ac-
curate and &icient prediction of fine-resolution hydrologic and carbgmamic
simulations from coarse-resolution modélgater Resources Reseay@016.

GSH Pau, G Bisht, and WJ Riley. A reduced-order modedipgroach to rep-
resent subgrid-scale hydrological dynamics for landamafsimulations: ap-
plication in a polygonal tundra landscap&eoscientific Model Development
7(5):2091-2105, 2014.

25



	1 Introduction
	2 Governing equations for fluid dynamics
	3 Non-intrusive model reduction method
	4 Domain decomposition non-intrusive model reduction strategy
	5 Numerical examples
	5.1 Case 1: flow past a cylinder
	5.2 Case 2: urban street canyon test case

	6 Conclusion

