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ABSTRACT

A set of four-dimensional variational data assimilation (4D-Var) experiments were conducted using both a
standard method and an incremental method in an identical twin framework. The full physics adjoint model of
the Florida State University global spectral model (FSUGSM) was used in the standard 4D-Var, while the adjoint
of only a few selected physical parameterizations was used in the incremental method. The impact of physical
processes on 4D-Var was examined in detail by comparing the results of these experiments. The inclusion of
full physics turned out to be significantly beneficial in terms of assimilation error to the lower troposphere during
the entire minimization process. The beneficial impact was found to be primarily related to boundary layer
physics. The precipitation physics in the adjoint model also tended to have a beneficial impact after an intermediate
number (50) of minimization iterations. Experiment results confirmed that the forecast from assimilation analyses
with the full physics adjoint model displays a shorter precipitation spinup period. The beneficial impact on
precipitation spinup did not result solely from the inclusion of the precipitation physics in the adjoint model,
but rather from the combined impact of several physical processes. The inclusion of full physics in the adjoint
model exhibited a detrimental impact on the rate of convergence at an early stage of the minimization process,
but did not affect the final convergence.

A truncated Newton-like incremental approach was introduced for examining the possibility of circumventing
the detrimental aspects using the full physics in the adjoint model in 4D-Var but taking into account its positive
aspects. This algorithm was based on the idea of the truncated Newton minimization method and the sequential
cost function incremental method introduced by Courtier et al., consisting of an inner loop and an outer loop.
The inner loop comprised the incremental method, while the outer loop consisted of the standard 4D-Var method
using the full physics adjoint. The limited-memory quasi-Newton minimization method (L-BFGS) was used for
both inner and outer loops, while information on the Hessian of the cost function was jointly updated at every
iteration in both loops. In an experiment with a two-cycle truncated Newton-like incremental approach, the
assimilation analyses turned out to be better than those obtained from either the standard 4D-Var or the incremental
4D-Var in all aspects examined. The CPU time required by this two-cycle approach was larger by 35% compared
with that required by the incremental 4D-Var without almost any physics in the adjoint model, while the CPU
time required by the standard 4D-Var with the full physics adjoint model was more than twice that required by
the incremental 4D-Var. Finally, several hypotheses concerning the impact of using standard 4D-Var full physics
on minimization convergence were advanced and discussed.

1. Introduction
Four-dimensional variational data assimilation (4D-

Var) is used for generating estimates of model variables,
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taking into account both information about the dynamics
and physics from a numerical model, and available in-
formation about the true state of the atmosphere con-
tained in the observations and the background. Usually,
a cost function is defined measuring the distance be-
tween a model trajectory and the observations over an
assimilation time window. 4D-Var is implemented
mathematically by minimizing the defined cost function
with respect to the control variables. The minimization
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algorithm used in 4D-Var employs the adjoint equations
for the computation of the gradient of the cost function
with respect to control variables.

Thus, a successful 4D-Var system hinges upon three
main aspects: the use of observations and background
information, the accuracy of the assimilation model
used, and the efficiency of the minimization algorithm.
Theoretically, improvement in any aspect may improve
the 4D-Var system. A sizable progress has been accom-
plished in every one of the above aspects during the
last decade. However, due to the enormous size of me-
teorological problems, such improvement is greatly re-
stricted by presently available computer platforms.

In the present study, we focus on how to use a full
physics adjoint model in 4D-Var. The inclusion of the
totality of the physical processes in the adjoint model
is a required step toward obtaining a better defined cost
function. Thus this research aims to address improve-
ments in the second aforementioned aspect, along with
a discussion of associated computational CPU require-
ments. Issues related to model errors are not discussed
here.

4D-Var was first applied to simple models (Le Dimet
and Talagrand 1986; Lewis and Derber 1985; Courtier
and Talagrand 1987; Talagrand and Courtier 1987), be-
fore being tested in the context of adiabatic primitive
equation models (Thepaut and Courtier 1991; Navon et
al. 1992b; Chao and Chang 1992; M. Zupanski 1993).
Recently, increasingly sophisticated physical parame-
terizations have been introduced into 4D-Var (e.g., Zou
et al. 1993a; Zou and Kuo 1996; Zou 1997; Tsuyuki
1997; Zupanski and Mesinger 1995; D. Zupanski 1993;
Mahfouf and Rabier 1998, manuscript submitted to
Quart. J. Roy. Meteor. Soc.). These studies have pro-
vided encouraging evidence that the inclusion of physics
in the adjoint may improve the performance of 4D-Var.

In the context of an operational environment, Rabier
et al. (1997, 1998), Rabier et al. (1998, manuscript sub-
mitted to Quart. J. Roy. Meteor. Soc.) and Klinker et
al. (1998, manuscript submitted to Quart. J. Roy. Me-
teor. Soc.) used the European Centre for Medium-Range
Weather Forecasts (ECMWF) 4D-Var incremental as-
similation system to examine the influence of physical
processes. The inclusion of physics was found to have
the largest impact on the analysis of humidity fields. A
positive impact was also found on the performance of
analyses in the Tropics, with a reduction of the spinup
of precipitation in the subsequent forecast, and im-
proved wind scores. Also, an improvement in extra-
tropical scores was noted. It should be pointed out that
the physics in the ECMWF’s adjoint model consists of
a simplified version of the physics package used in the
nonlinear forecasting model (Mahfouf et al. 1996; Mah-
fouf 1999, Mahfouf and Rabier 1998, manuscript sub-
mitted to Quart. J. Roy. Meteor. Soc.).

While recent research has shown a beneficial impact
of adjoint physics on the quality of assimilated data, the
effect of nonlinearities in physical processes on the con-

vergence rate of 4D-Var minimization is still not ade-
quately understood. Theoretically, an adjoint model with
full physics should be completely consistent with the
nonlinear forecasting model, thus providing exact gra-
dients. However, physical parameterizations display
much stronger nonlinearities than the model dynamical
part, even when they do not contain discontinuities or
on-off switches. Due to the presence of strong nonli-
nearities in physical parameterizations, the accurate
gradient and Hessian matrix may still not provide an
effective descent direction for a minimization process.

The 4D-Var experiments in the present research will
show that, for an intermediate number of minimization
iterations at the early stages of the minimization process,
relatively large errors in the assimilation analysis are
found to be closely related to precipitation when full
physics is included in the adjoint model, and these errors
are larger than those present in assimilation analyses
where almost no physics is included in the adjoint mod-
el. On the other hand, previous studies (e.g., Zou and
Kuo 1996; Zou 1997) showed that strong nonlinearities,
even on-off switches, may not pose a negative impact
on final convergence of the minimization process, and
thus the inclusion of physics in the adjoint model has
an overall beneficial impact on assimilation results.

Therefore, the inclusion of full physics in the adjoint
model requires a 4D-Var algorithm capable of overcom-
ing the negative effect of strong nonlinearities present
in physics at the early stages of the minimization pro-
cess, while being able to take advantage of the positive
aspects resulting from consistency between the fore-
casting nonlinear model and adjoint model.

Several approaches have been proposed for mitigating
the negative effect of strong nonlinearities in physical
processes included in the adjoint model by either direct
modifications or simplifications to physical parameter-
izations themselves. Zupanski and Mesinger (1995) and
Tsuyuki (1997) showed a beneficial effect when smooth-
ing formulas are used to replace those with disconti-
nuities. This technique is applicable for dealing with
various nonlinearities. ECMWF uses simplified physics
in the adjoint model (Mahfouf et al. 1996; Rabier et al.
1997).

An alternative approach is to deal with the nonlinear
problem of physical processes in the adjoint model in
the framework of the minimization procedure. In 4D-
Var, physical processes are indeed of secondary impor-
tance for large-scale problems, compared with the dy-
namical processes for short-span assimilation windows
(less than 24 h). This fact was validated by the success
obtained by 4D-Var at ECMWF, where only simple hor-
izontal and vertical diffusions are the sole physical pro-
cesses included in the adjoint model used (Rabier et al.
1997, 1998). Further, physical processes are controlled
by dynamical processes to a large degree for large-scale
dynamics. These features allow us to deal with physical
processes in a fashion differing from that used with
dynamical processes. This basic view constitutes the
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foundation of this research. As an immediate conse-
quence of this tenet, we naturally resort to the idea of
a progressive inclusion of physical processes in 4D-Var
as the minimization process proceeds, an idea first pro-
posed by Courtier et al. (1994).

The progressive inclusion of physical processes can
be implemented in 4D-Var using the incremental ap-
proach proposed by Courtier et al. (1994). In this ap-
proach, the minimization is performed with respect to
increments. An increment is defined as a deviation from
a background (guess) trajectory. The background tra-
jectory is computed with the full nonlinear forecasting
model that has a high-resolution and comprehensive
physics. A simplified linear model with low-resolution
and/or simplified physics is used for solving the mini-
mization problem in the vicinity of the trajectory. This
method is further extended by defining a sequence of
cost functions for different stages of the minimization
process. Then the approach allows a progressive inclu-
sion of physical processes, for instance, using simplified
physics adjoint models during the initial stages and full
physics adjoint models toward the final stages of the
minimization process. Due to the fact that effects of
nonlinearities are weaker for perturbations of smaller
sizes, this sequential cost function incremental method
offers an alternative approach for alleviating effects of
strong nonlinearities present in physics. This assertion
will be validated using 4D-Var experiments designed in
this research work.

Courtier et al. (1994) mentioned that there is no guar-
antee for convergence of the incremental approach using
a sequence of cost functions. Also, the convergence rate
may be negatively affected by using different cost func-
tions in the course of a minimization iteration procedure.
Minimization algorithms used in 4D-Var usually belong
to limited-memory quasi-Newton methods. The basic
motivation behind limited memory quasi-Newton meth-
ods is to try obtaining the rapid convergence associated
with Newton’s method without explicitly evaluating the
Hessian of a cost function at every iteration. This is
accomplished by constructing approximations to the in-
verse Hessian based on information gathered during the
descent process prior to the current iteration (Liu and
Nocedal 1989). In 4D-Var, the minimization is termi-
nated after a number of iterations much smaller than the
dimension of the problem. Using a sequence of cost
functions may cause additional difficulties for obtaining
a good approximation to the inverse Hessian.

The truncated Newton minimization method has been
extensively investigated and applied to various research
areas (e.g., Dembo and Steihaug 1983; Nash 1985; Nash
and Nocedal 1991; Schlick and Fogelson 1992). It has
also been applied to meteorological problems (Navon
et al. 1992a; Zou et al. 1993b; Wang et al. 1992, 1995).
The standard truncated Newton method consists of nest-
ed iterations: an outer iteration and inner iteration. The
theoretical framework of truncated Newton methods
presents a suitable tool for examining performance of

the incremental method using a sequence of cost func-
tions. In fact, the incremental method using a sequence
of cost functions can be viewed as an algorithmic variant
of the truncated Newton method. As such, we expect
to refine the sequential cost function algorithm and bet-
ter analyze its convergence properties by using the the-
oretical framework of truncated Newton methods.

The aforementioned effort requires a specific and de-
tailed understanding of the impact of physical processes
in the adjoint model on 4D-Var. Here we use an adjoint
model with full physics based on The Florida State Uni-
versity global spectral model (FSUGSM). This model
has been successfully applied to carry out both 4D-Var
and optimal parameter estimation by Zhu and Navon
(1998, 1999) and Tsuyuki (1997, 1996). Having a full
physics adjoint model at our disposal, we can use it as
a benchmark with which to compare other adjoint mod-
els with partial physical processes. Carrying out such
comparisons enables us to examine how physical pro-
cesses in the adjoint model impact on the minimization
process in 4D-Var.

The outline of this paper is as follows. In section 2,
we briefly summarize the essential features of the
FSUGSM model and its full physics adjoint model. Sec-
tion 3 presents a description of a standard 4D-Var ap-
proach using the full physics adjoint model and an in-
cremental method that involves very simple physics in
the adjoint. Section 4 details comparisons between re-
sults obtained via the incremental 4D-Var and those
obtained using the standard 4D-Var, followed by dis-
cussions on the effect of physical processes on 4D-Var.
Section 5 examines the incremental method with a se-
quence of cost functions, and a new truncated Newton-
like incremental method is presented and tested. Finally,
section 6 discusses and summarizes the numerical re-
sults obtained in this study.

2. A brief description of FSUGSM and its adjoint

FSUGSM has been used in numerical weather fore-
casts for operational purposes for more than a decade.
Forecasts using this model especially emphasize tropical
aspects such as monsoon and tropical storms (e.g.,
Krishnamurti et al. 1991).

The model has a comprehensive advanced physical
parameterization package. The main physical parame-
terizations include a fourth-order horizontal diffusion
(Kanamitsu et al. 1983), a modified Kuo-type convec-
tive scheme (Krishnamurti et al. 1993), dry convective
adjustment, large-scale condensation (Kanamitsu et al.
1983), surface flux via similarity theory (Businger et al.
1971), vertical distribution of fluxes utilizing diffusive
formulation where the exchange coefficients are func-
tions of the Richardson number (Louis 1979), longwave
and shortwave radiative fluxes based on a band model
(Harshvardan and Corsetti 1984; Lacis and Hansen
1974), computation of low, middle, and high clouds
based on threshold relative humidity for radiative cal-
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culation, and surface energy balance coupled to the sim-
ilarity theory (Krishnamurti et al. 1991).

The adjoint system of FSUGSM has been developed
as a result of several years efforts. The adjoint system
includes the dynamic core (Wang 1993) and all above-
mentioned physical parameterizations (Tsuyuki 1996;
Zhu and Navon 1997). To improve the performance of
the corresponding linearized model, based on which the
adjoint model was derived, a number of smoothing tech-
niques were introduced to remove discontinuities in
some physical parameterization formulations prior to
derivation of the adjoint model (Tsuyuki 1996, 1997;
Zhu and Navon 1997).

The dependent variables of the forecasting model as
well as the adjoint model include vorticity, divergence,
the logarithm of surface pressure, temperature, and dew-
point depression that is defined as the difference be-
tween temperature and dewpoint temperature. In the fol-
lowing variational data assimilation experiments, the
spectral expansion of the model variables is triangularly
truncated at the wavenumber 42 (T42). A sigma (s)
coordinate is used in the vertical and the vertical res-
olution consists of 12 layers roughly between 100 and
1000 hPa.

3. Formulation descriptions

a. Standard 4D-Var

The standard 4D-Var minimizes the cost (objective)
function J that measures the weighted sum of squares
of distances to the background state xb and to the ob-
servations yo distributed over a time interval [t0, tn] (Ide
et al. 1997; Lorenc 1986),

1
b T 21 bJ[x(t )] 5 [x(t ) 2 x (t )] B [x(t ) 2 x (t )]0 0 0 0 0 02

n1
o T 21 o1 (y 2 y ) R (y 2 y ), (3.1)O i i i i i2 i50

where x is the control variable vector, and yi 5 Hi[x(ti)].
Here Hi is an observation operator that maps model state
variables to the observed quantity. If the state variables
are observed directly, then Hi is just an interpolation
operator. Here B is the error-covariance matrix of xb,
and R the error-covariance matrix of yo. The minimi-
zation of the cost function (3.1) is carried out with re-
spect to the initial state x(t0).

The evaluation of J involves time integrations of a
nonlinear forecasting model from t0 to ti,

x(ti) 5 M(ti, t0)x(t0), (3.2)

where M is a nonlinear operator. Efficient algorithms
available for performing minimization of J require avail-
ability of its gradient with respect to x(t0). Efficient
computation of the gradient requires integrating the ad-
joint model backward in time from ti to t0 (e.g., see Le
Dimet and Talagrand 1986; Talagrand and Courtier
1987).

We carry out experiments with the standard 4D-Var
using the full physics adjoint model, that is, the adjoint
model is consistent with the forecasting model. The re-
sult serves as a benchmark for comparison with results
obtained from simplified forms of 4D-Var. One purpose
of this research is to examine the impact of physical
processes on minimization processes and on errors in
resulting assimilation analyses at different stages of
minimization processes.

To examine errors in the assimilation analyses, the
experiments are designed in an identical twin frame-
work. Thus assimilation errors are just the differences
between assimilation analyses and observations. A ref-
erence forecast is carried out from t0 5 0 to t1 5 6 h
using the full physics forecasting model, and the initial
field and the results of the forecast at t1 5 6 h are used
as ‘‘observations’’. The 4D-Var is carried out to recover
the state at time t0. The initial condition of the reference
forecast is the initialized analysis valid at 0000 UTC 3
September 1996. The guess initial condition (or the
background field) is constructed by adding random per-
turbations with a mean-root-square error of 2.5 3 1025

s21 for vorticity, 1.6 3 1025 s21 for divergence, 4.0 K
for dewpoint depression, and 2.1 K for temperature.

In the identical twin framework, the cost function
(3.1) is simplified to read as

11
o T 21 oJ [x(t )] 5 [x(t ) 2 y ] R [x(t ) 2 y ]. (3.3)Os 0 i i 0 i i2 i50

Here are all model variables defined on all modeloyi

Gaussian grid points. The covariance matrix of obser-
vation error is defined as a diagonal matrix, the diagonal
elements of which correspond to the variances of ran-
dom errors used to construct the guess initial condition.
In such a case, the exact minimization solution is ,oyi

while Js[x(t0)] 5 0. The experiments have been per-
formed using the limited memory quasi-Newton mini-
mization algorithm (L-BFGS) described by Liu and No-
cedal (1989), which is equivalent to the M1QN3 al-
gorithm used at ECMWF (Gilbert and Lemarechal
1989).

b. Incremental 4D-Var

The incremental method proposed by Courtier et al.
(1994) allows us to perform 4D-Var using a simplified
adjoint model. In the incremental method, an increment
is defined by

dx(t0) 5 x(t0) 2 xb(t0). (3.4)

Here xb(t0) is the background (guess) field at the initial
time t0. Then the incremental 4D-Var is designed to find
the analysis increment dxa(t0) that minimizes a cost
function. This cost function is defined as the function
of dx(t0), instead of x(t0) as in the cost function (3.1)
for the standard 4D-Var (Courtier et al. 1994; see also
Veerse and Thepaut 1998). The assimilation analysis is
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FIG. 1. Accumulated precipitation of the reference forecast (‘‘ob-
servation’’) over the last 3 h within the assimilation window. The
contour interval is 1.0 mm. Values larger than 1.5 mm are shaded.

obtained by adding the analysis increment dxa(t0) to the
background

xa(t0) 5 xb(t0) 1 dxa(t0). (3.5)

The idea central to the incremental method is to use
a simplified and linearized version of the forward fore-
casting model to compute the evolution of the increment
dx(t0), while the evolution of the background is pre-
dicted with the full forward forecasting model. The im-
pact of the simplification and linearization is thus con-
siderably reduced.

In accordance with the cost function (3.3) in the stan-
dard 4D-Var, we define the incremental cost function as

11
T 21J[dx(t )] 5 [dx̃(t ) 2 d ] R [dx̃(t ) 2 d ], (3.6)O0 i i i i i2 i50

where dx̃(ti) 5 x̃(ti 2 x̃b(ti), and the innovation vectors
di 5 2 xb(ti). Here x̃(ti) and x̃b(ti) are governed byoyi

the simplified model

b˜x̃(t ) 5 M(t , t )[x (t ) 1 dx(t )], (3.7)i i 0 0 0

b b˜x̃ (t ) 5 M(t , t )[x (t )]. (3.8)i i 0 0

Here M̃(ti, t0) is the nonlinear operator representing the
time integration of the simplified forecasting model
from time t0 to time ti. It is worth emphasizing that
xb(ti) is predicted by the full forecasting model starting
from xb(t0). In this way, the nonlinearity in the full
forecasting model is partially taken into account. Note
that we do not use the linearized model to compute
dx̃(ti), but use the difference between x̃(ti) and x̃b(ti) as
done by Courtier et al. (1994).

The definition of (3.6) corresponds to the one (re-
ferred to as ) in Courtier et al. (1994). As mentionedP99994D

by Courtier et al. (1994), the practical advantage of this
formulation is that there is little technical development
required once the standard 4D-Var problem has already
been implemented. Another advantage is that (3.6) be-
comes identical to the cost function used in the standard
4D-Var when we switch from the simplified model to
the full model.

In (3.6), x̃b(ti) and di are kept constant during the
minimization process. Only x̃(ti), associated with x̃(t0),
is changed as the minimization iteration proceeds. Cor-
respondingly, only the adjoint model associated with
M̃(ti, t0) is required.

In incremental 4D-Var experiments, the simplified
model does not include physical processes except for
horizontal diffusion and a simple surface drag scheme
as the one used in Tsuyuki (1996, 1997), while all other
aspects remain the same as in the full forecasting model.
Accordingly, the adjoint model includes only the dy-
namic core, the horizontal diffusion, and the simple sur-
face drag scheme.

4. Comparisons between the standard and
incremental 4D-Var

The incremental method provides us with a powerful
tool to examine the impact of inclusion of physical pro-
cesses in the adjoint model on 4D-Var. In the incre-
mental 4D-Var setting, we may define the simplified
model by using a lower model resolution and/or by using
only part of physical processes or their simplified forms
(e.g., Courtier et al. 1994; Rabier et al. 1997; Veerse
and Thepaut 1998). In this section, we are only con-
cerned with the incremental 4D-Var without almost any
physical processes in the adjoint model. With the stan-
dard 4D-Var analysis described in the previous section,
we can compare the difference between the standard
4D-Var and the incremental method. This difference is
due only to the physics package being absent in the
adjoint model. Only when the performance of the stan-
dard 4D-Var is superior to that of the incremental 4D-
Var, does the inclusion of the full physics package in
the adjoint model have a beneficial impact, and vice
versa.

Previous results of some experiments have shown that
4D-Var displays a different behavior in the tropics than
in the extratropics (e.g., Rabier et al. 1997). It is often
assumed that this originates in differences in convective
activities. We analyze the differences between the trop-
ics and extratropics in several aspects of 4D-Var. Figure
1 presents the 3-h accumulated precipitation of the ref-
erence forecast (observations) over the last 3 h within
the assimilation window. The major precipitation events
occur between 308S and 308N. Thus in what follows we
represent the tropics by the region between 308S and
308N, and the extratropics by all the other regions.

a. Convergence of minimization processes in terms of
cost functions

For the standard 4D-Var, Fig. 2 displays the evolution
of the cost function along with its tropical and extra-
tropical parts versus the number of minimization iter-
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FIG. 2. The logarithm (base 10) of the normalized cost function
with number of iterations for the standard 4D-Var, in which the full
physics adjoint model is used. The cost function is partitioned into
the tropical and extratropical parts, which are also displayed. A total
of 70 minimization iterations are carried out, while 75 evaluations
of the cost function and its gradients are required.

FIG. 3. The logarithm (base 10) of the normalized cost function
with the number of iterations for the incremental 4D-Var. The physical
processes are not included in the adjoint model. A total of 70 min-
imization iterations require 75 evaluations of the cost function and
its gradients. The cost function is partitioned into the tropical and
extratropical parts, which are also displayed.

FIG. 4. The logarithm (base 10) of the standard cost function eval-
uated in terms of the update analyses of each iteration of the incre-
mental 4D-Var corresponding to Fig. 3. The values of the standard
cost function are comparable with those obtained via the standard
4D-Var in Fig. 2.

ations. The cost functions have been normalized using
their corresponding initial values. The minimization
process displays a good rate of convergence, even for
the tropics. The value of the cost function decreases by
one order of magnitude after the first 30 iterations, and
decreases to 0.5% of its initial value after 70 minimi-
zation iterations. Thus, the inclusion of physics into the
adjoint model is not detrimental to the final convergence
of the minimization process. It is interesting to note that
the tropical part of the cost function decreases at a slight-
ly slower rate after 20 iterations.

For the incremental 4D-Var, Fig. 3 shows the evo-
lution of the normalized cost function (3.6) versus the
number of minimization iterations. The cost function
displays a satisfactory rate of decrease. After 70 min-
imization iterations, it decreases to 1.3% of its initial
value.

We further compute the values of the standard cost
function defined by (3.3) in terms of the updated anal-
ysis, that is, the sum of the updated increments and
background fields at each iteration of the incremental
4D-Var. These values are appropriate to be compared
directly with those obtained via the standard 4D-Var,
but not the values of the incremental cost function (3.6).
Figure 4 shows the evolution of the normalized standard
cost function values versus the number of minimization
iterations. After 70 minimization iterations, the standard
cost function value of the incremental 4D-Var decreases
to 0.8% of its initial value, which is larger than the final
value obtained using the standard 4D-Var. The incre-
mental 4D-Var also exhibits a satisfactory convergence
rate measured by the standard cost function.

A descent direction obtained by the incremental meth-
od can be found to be a descent direction of the standard
4D-Var at the early stages of the minimization process.
Figure 5 presents the cost function change for every
iteration, defined as the difference between two sub-
sequent iterations k and k 1 1. We note that all the
changes are positive apart from the one at iteration 53.
It is interesting to note that the largest changes occur
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FIG. 5. The cost function changes for each minimization iteration
for the incremental 4D-Var. They are defined as the differences of
values of the standard cost function between two subsequent iterations
k and k 1 1.

FIG. 6. Same as in Fig. 5 but for the standard 4D-Var.

FIG. 7. Differences in the values of the cost function between the
incremental and standard 4D-Var vs the number of minimization it-
erations.

between iteration 5 and iteration 25. This result is con-
sistent with that obtained by Navon et al. (1992b) among
others, that the minimization process balances large
structures during the first 15–20 minimization iterations.
A similar evolution of the cost function changes with
the number of iterations is observed in the standard 4D-
Var (Fig. 6). Qualitatively, the descent process of the
incremental 4D-Var bears a strong similarity to that of
the standard 4D-Var at the early stages of the minimi-
zation process.

By a quantitative examination, we observe that the
cost function displays a faster rate of descent at the early
stage of the minimization process (the first 25 iterations)
in the incremental 4D-Var than in the standard 4D-Var.
Figure 7 illustrates the difference between the incre-
mental and standard 4D-Var versus the number of min-
imization iterations. Prior to iteration 50, the cost func-
tion of the standard 4D-Var is larger than the one of the
incremental 4D-Var. However, after 50 iterations, the
cost function of the standard 4D-Var becomes smaller
than that of the incremental 4D-Var. Thus, when con-
sidered in terms of the decrease in the cost function,
the standard 4D-Var with full physics adjoint does not
perform better than the incremental method without al-
most any physics in the adjoint. However, after the early
stage of the minimization process, the full physics ad-
joint in the standard 4D-Var does present a positive
impact.

b. Assimilation analysis errors
Values of the cost function are spatially summed

quantities. We present here detailed analyses of assim-
ilated analysis error fields.

We first examine the difference between assimilation
errors of the standard and incremental 4D-Var after 21
minimization iterations, when the cost function differ-
ence is near its maximum (Fig. 7). This is intended to
study in depth the stage of the minimization process
where the cost function of the incremental 4D-Var at-
tains smaller values than those of the standard 4D-Var
for the same number of minimization iterations.

Figures 8 and 9 show the vertical distribution of the
assimilation analysis of the root-mean-square (rms) er-
ror along with that of the preforecast rms error at the
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FIG. 8. Vertical distributions of rms errors for the standard 4D-Var after minimization iteration
21 and 6-h preforecasts starting from the assimilation analyses. The full physics adjoint model is
used. Solid lines are for the assimilation analyses, and dashed lines for the 6-h preforecasts.

end of the assimilation window. Here preforecast refers
to forecasts starting from the assimilation analyses at
time t0 within the time window. The rms errors of the
assimilation analyses of the standard 4D-Var are con-
sistently larger than those of the incremental 4D-Var for
all model variables and model levels. Especially, the
rms error of dewpoint depression of the standard 4D-
Var is much larger than that of the incremental 4D-Var
in the lower and middle troposphere. Correspondingly,

the preforecast rms errors of the standard 4D-Var are
also larger than that of the incremental 4D-Var.

Figures 10 and 11 show the assimilation analysis error
of dewpoint depression for the standard and incremental
4D-Var, respectively. The model s level 1 is taken to
represent the levels near the ground, s level 3 the lower
troposphere, and s level 9 the upper troposphere. At s
levels 1 and 3, the largest errors for the standard 4D-
Var are located in South Asia and the western Pacific.
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FIG. 9. Same as in Fig. 8 but for the incremental 4D-Var, where the physical processes are not
included in the adjoint model.

Also, the largest errors are observed to be located in
South America. The areas with the largest errors cor-
respond to areas with a large rate of precipitation (Fig.
1). In fact, strong precipitation centers evidently cor-
respond to centers of large assimilation analysis errors.
Vukicevic and Bao (1998) found a similar local per-
formance of 4D-Var.

A striking feature of the assimilation analysis errors
in the incremental 4D-Var is that they are relatively
small in regions where relatively large errors occur in
the assimilation analyses of the standard 4D-Var. These

regions include the precipitation areas. Further, unlike
the error of the standard 4D-Var, the largest errors in
the incremental 4D-Var at all model levels are not found
in the strong precipitation areas in the tropics, but they
rather appear to be related to special orographic features
such as the Plateau of Tibet and the Rocky Mountains.
Correspondingly, the major large error areas in the in-
cremental 4D-Var are located in the extratropics, and
the errors in these areas are substantially larger than
those in the standard 4D-Var. The relationship between
the large assimilation errors and some special orograph-
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FIG. 10. Errors in the assimilation analysis of dewpoint depression
for the standard 4D-Var at minimization iteration 21. Level 1 rep-
resents model levels near the ground, level 3 in the lower troposphere
and level 9 in the upper troposphere. The contour interval is 0.5 K.
Values larger than 2.0 K are shaded.

FIG. 11. Same as in Fig. 13 but for the incremental 4D-Var.

ic features in the incremental 4D-Var strongly suggests
that the large errors result from the absence of the
boundary layer physical processes in the adjoint model.

These results show that at the early stages of the
minimization the inclusion of the precipitation physics
displays a negative impact on the 4D-Var, and the ab-
sence of the precipitation physics in the adjoint model
does not affect significantly the 4D-Var. However, the
absence of the boundary layer physics in the adjoint
leads to large errors in the assimilation analyses in the
lower troposphere.

We now proceed to analyze the assimilation analysis
errors after 70 minimization iterations, when the stan-

dard 4D-Var attains a smaller value of the cost function
than that of the incremental 4D-Var.

Let us first examine the vertical distribution of the
rms errors in the assimilation analysis and 6-h prefore-
casts. For the standard 4D-Var, the vertical variation of
the rms errors is indeed very small (Fig. 12). Contrary
to the uniform distribution of the standard 4D-Var, the
rms errors of the incremental method display significant
vertical variations (Fig. 13). The rms errors are two to
three times larger at model levels near the ground than
in the middle troposphere for all model variables. Also,
at model levels near the ground the rms errors in the
incremental method are larger than those in the standard
4D-Var. In the middle and upper troposphere, there is
no substantial difference between the standard and in-
cremental 4D-Var in as far as the rms error is concerned.
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FIG. 12. Vertical distributions of rms errors for the standard 4D-Var analyses at minimization
iteration 70 and 6-h preforecasts starting from the assimilation analyses. The full physics adjoint
model is used. The others are the same as in Fig. 8.

These results indicate that the absence of physics in the
adjoint causes substantial errors at model levels in the
lower troposphere.

We now turn to analyze the spatial distribution of
error of the assimilation analyses. Figure 14 illustrates
the spatial distribution of error of the assimilation anal-
ysis of dewpoint depression on representative model s
levels at iteration 70 in the standard 4D-Var. As ex-
pected, the error of the assimilation analysis exhibits a
localized character. The maximal error attains a value

of up to 1.6 K. The errors in vorticity, divergence, and
temperature fields exhibit spatial distributions similar to
that of dewpoint depression, with maxima of 0.7 3 1025,
0.7 3 1025, and 1.2 K, respectively. Thus the mini-
mization does display a slower rate of convergence in
some limited areas.

Intense physical processes such as deep convection,
usually occur in limited regions. The influence of phys-
ical processes on 4D-Var may also be regional. We carry
out a comparison between the error of the assimilation
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FIG. 13. Same as in Fig. 12 but for the incremental 4D-Var analyses at minimization iteration
70 and the 6-h preforecasts starting from the assimilation analyses. The physical processes are
not included in the adjoint model.

analysis in Fig. 14 and the accumulated precipitation in
Fig. 1. The strong precipitation region in South Asia
and the western Pacific corresponds to large errors in
the assimilation analysis. Also, the strong precipitation
region in South America corresponds to large errors in
the assimilation analysis. Furthermore, it is evident that
these isolated strong precipitation centers correspond to
large error centers. The errors that correlate with the
strong precipitation dominate the error field. From the
spatial correlations between precipitation and errors of

assimilation analysis, we conclude that the moisture
physics may lead to large errors in the assimilation anal-
ysis over some limited regions where strong precipi-
tation occurs.

Corresponding to Fig. 14, Fig. 15 illustrates the as-
similation analysis error for the incremental 4D-Var. For
levels 1 and 3, the assimilation analyses of the incre-
mental 4D-Var tend to have relatively small errors in
the regions associated with the areas of the largest error
in the assimilation analyses of the standard 4D-Var. The



680 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 14. Errors in the assimilation analysis of dewpoint depression
for the standard 4D-Var for representative model s levels after 70
minimization iterations. The contour interval is 0.25 K. Values larger
than 0.5 K are shaded. The others are the same as in Fig. 10.

FIG. 15. Same as in Fig. 14 but for the incremental 4D-Var, where
almost no physical process is included into the adjoint model.

error distribution at level 9 is of importance, since the
large errors there evidently correlate with large precip-
itation rates such as over South Asia. Remarkably, most
of the large precipitation areas correspond to large error
centers. Similar to the previous discussion for iteration
21, we conclude that the absence of the boundary layer
physics in the adjoint model leads to the dominant as-
similation error in the lower troposphere, while the ab-
sence of the precipitation physics causes a dominant
assimilation error in the upper troposphere after an in-
termediate number of minimization iterations.

The change in the assimilation analysis errors as the
minimization iteration proceeds exhibits some important
features. For the incremental 4D-Var, the spatial distri-

bution of assimilation analysis errors changes very little
from minimization iteration 21 to iteration 70 at model
levels 1 and 3. Corresponding to the rms error, the error
sizes do not display any reduction. At level 9, the size
of the error is significantly reduced. However, relatively
large error centers appear over some small areas related
to precipitation. These relatively large error centers are
not found at iteration 21. They either display a larger
magnitude or have no counterpart in the standard 4D-
Var. These observations suggest that the assimilation
analysis errors due to the absence of the physics in the
adjoint model cannot be reduced by performing addi-
tional minimization iterations. The errors over some pre-
cipitation areas, especially at middle and high latitudes,
may become dominant in the middle and upper tropo-
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FIG. 16. Errors in 3-h accumulated precipitation for the preforecast
of the last 3 h within the 6-h assimilation window for the incremental
4D-Var. The contour interval is 0.5 mm. Values larger than 0.75 mm
are shaded.

sphere, and have larger sizes than those present in the
standard 4D-Var.

We have carried out two 24-h forecasts starting from
the assimilation analyses after 70 iterations, obtained
from the standard and incremental 4D-Var, respectively.
The difference between the two forecasts does not seem
to be significant in terms of the rms error, but the rms
errors of all the model variables are slightly smaller for
the standard 4D-Var than for the incremental 4D-Var in
the lower troposphere. The major difference is in the
precipitation spinup. The accumulated precipitation of
the forecast in the first 6 h is significantly insufficient
in the incremental 4D-Var. Figure 16 shows the errors
in the 3-h accumulated precipitation during the last 3 h
within the assimilation window. Comparing with Fig.
1, we see that the forecast using the assimilation anal-
yses of the incremental 4D-Var is about 20% less than
the accurate amount, while the error is very small when
using the assimilation analyses of the standard 4D-Var.

5. A 4D-Var strategy using full physics adjoint

As mentioned previously, inclusion of physical pro-
cesses into the adjoint model sizably increases the com-
putational cost of 4D-Var. In this model, the standard
4D-Var requires an amount of CPU time twice as large
as that required by the incremental method that does
not include almost any physics in the adjoint model.
This ratio of CPU time between the standard 4D-Var
and the incremental method is representative of oper-
ational models as estimated by Courtier et al. (1994)
and Rabier et al. (1997). The increase in the CPU time
when the full physics package is included into adjoint
models may preclude the operational implementation of
4D-Var.

We have shown that the inclusion of the full physics
into the adjoint model presents a negative impact on the
assimilation analyses over precipitation regions at the
early stages of the minimization process. Thus, when
full physics is included in the adjoint model, an adequate

4D-Var strategy is necessary in order to circumvent the
above-mentioned negative impact while taking advan-
tage of the positive impact on the final assimilation anal-
yses.

As mentioned in the introduction, the sequential cost
function incremental approach proposed by Courtier et
al. (1994) provides a possible method for alleviating the
effect of nonlinearities and reducing the computational
load due to the inclusion of physics into the adjoint
model. We will discuss this algorithm by comparing it
with the algorithmic features of the truncated Newton
method, and then introduce and test a new algorithm
suitable for dealing with physical processes in the ad-
joint model.

a. The standard truncated Newton method and its
variants

The truncated-Newton method is used to solve the
problem

minimize J(x), (5.1)

where x is a vector. This method computes a search
direction by finding an approximate solution p to the
Newton equation

Hkp 5 2=J(xk), (5.2)

using some iterative method, usually the conjugate-gra-
dient method or the Lanczos method (Dembo and Stei-
haug 1983). Here Hk is the Hessian of J(x) at xk. The
iterative method is stopped (truncated) prior to attaining
the exact solution to the Newton equation. When the
exact solution is obtained, the search direction is just a
Newton direction.

Thus, the standard truncated Newton method consists
of nested iterations. There is an outer iteration (loop)
that corresponds to a general optimization method. At
each outer iteration (loop) we compute a search direction
and perform a line search. The computation of the search
direction uses an inner iteration corresponding to the
iterative method used to solve the Newton equations.

Finding an approximate solution to the Newton equa-
tions corresponds to the computation of the approximate
minimizer of the cost function

1
TJ̃(p) 5 J(x ) 1 =J(x )p 1 p H p, (5.3)k k k2

obtained by approximating J(xk 1 p) by a quadratic
approximation consisting of the first three terms in Tay-
lor expansion, where p 5 x 2 xk. We refer to it as an
inner cost function. The inner cost function has gradient
and Hessian identical to those used in the outer iteration
(we will refer to it as the outer cost function).

Here we do not use (5.3) directly but define instead
another inner cost function Ĵ(x) approximating J̃(x).
This inner cost function Ĵ(x) is required to have the
gradients and Hessian that are an approximation to the
outer cost function; that is,
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=J(xk) 5 =Ĵ(x),21 21ˆH Hk k (5.4)

where Ĥk is the Hessian of Ĵ(x) at xk. Equation (5.4)
guarantees that the Newton descent direction of Ĵ(x) is
also a descent direction of J(x). We refer to a truncated
Newton method as the truncated Newton-like method
whenever Ĵ(x) is used to find a search direction instead
of (5.3).

b. A truncated Newton-like incremental method

A key aspect in the implementation of the truncated
Newton-like method is the selection of the approximate
inner cost function Ĵ(x). We have shown that an im-
portant feature of the incremental cost function (3.6) is
that its descent direction is the descent direction of the
standard cost function (3.3) when the L-BFGS algorithm
is used both in the incremental and in the standard 4D-
Var. The incremental cost function (3.6) is selected to
serve as an inner cost function.

The algorithmic setup of the truncated Newton-like
method can be formulated and outlined in the following
manner:

(a) Use the adjoint model without almost any physics
to carry out a number of minimization iterations in
terms of the incremental cost function (3.6), where
very simple physics is included in the adjoint mod-
el. Here use a limited-memory quasi-Newton meth-
od (Liu and Nocedal 1989). Then obtain an analysis
increment.

(b) Perform a line search in terms of the standard cost
function (3.3), using the analysis increment as the
search direction, and then update the assimilation
analysis.

(c) Carry out a number of minimization iterations of
the outer loop where the full physics adjoint model
is used. Here also use the limited-memory quasi-
Newton method (Liu and Nocedal 1989).

(d) Repeat the cycle consisting of steps a–c.

The standard truncated Newton method does not in-
clude step c. Step c is introduced here in order to take
into account the effect of inclusion of full physics in
the adjoint model. Due to step c, the truncated Newton-
like method can be viewed as a variant of the sequential
cost function incremental approach proposed by Cour-
tier et al. (1994). Thus we refer to this method as a
truncated Newton-like incremental method. We also re-
fer to both steps b and c as being the outer loop. The
number of minimization iterations to be conducted in
each loop should be determined according to the total
number of minimization iterations permitted. Generally,
during the first cycles, a relatively small number or no
iterations at all are conducted in step c, while a relatively
large number of iterations is conducted in step a.

The crucial aspect for speeding up the rates of descent
of this algorithm is the Hessian update information. The
limited-memory quasi-Newton method is based on the

idea of computing the descent direction pk as 2Mgk,
where k is the iteration step, gk is the gradient of the
cost function at xk, and M is an approximation to the
Hessian. The matrix M is a positive-definite matrix ob-
tained by updating a prescribed diagonal matrix with a
limited number (5–7) of quasi-Newton corrections (No-
cedal 1980; Liu and Nocedal 1989). Under the approx-
imation of (5.4), the updating quasi-Newton corrections
gathered in both loops can be used as if they were all
within the same loop.

c. 4D-Var experiments using the truncated
Newton-like incremental method

To avoid the strong effect of nonlinearities in the
physical processes, a relatively large number of itera-
tions in step a should be carried out in the first cycle.
Thus the distance between the updated analysis and the
solution would have been substantially reduced when
the standard 4D-Var starts. This is mandated by the fact
that the standard 4D-Var is subject to nonlinearities, and
smaller perturbations may weaken the effect of nonli-
nearities. We perform 40 minimization iterations in step
a, and 30 minimization iterations in step c. Then only
one cycle of the truncated Newton-like incremental
method is carried out. This experiment is mainly in-
tended to examine the expected benefit of its application
toward alleviating the effect of nonlinearities in the
physics.

Figure 17 shows the normalized cost function versus
the number of iterations. The final normalized cost func-
tion reaches a value 0.4% of its initial value at the end
of the entire cycle. The normalized cost function value
reaches a value of 0.5% of its initial value in the standard
4D-Var using full physics in the adjoint model after 70
iterations, and 0.8% of its initial value in the incremental
method without almost any physics in the adjoint model.
In terms of the rate of decrease of the cost function, the
one cycle truncated Newton-like method is superior to
either the standard 4D-Var or the incremental method.

Figure 18 presents the vertical distribution of the rms
errors of assimilation analyses along with those for the
forecast rms error at the end of the assimilation window.
The rms errors of the one cycle truncated Newton-like
method are smaller than those of the standard 4D-Var.
It is more interesting to compare the results of the one
cycle truncated Newton-like method with the incre-
mental method without almost any physics in the adjoint
model. The assimilation analysis error for model levels
near the ground is much smaller than that in the incre-
mental method. The assimilation analysis error in the
new method is also somewhat smaller for the divergence
field in the upper troposphere compared with the incre-
mental 4D-Var without almost any physics in the adjoint
model. Corresponding to these improvements, the error
in the 3-h accumulated precipitation during the last 3-h
within the assimilation window also become very small,
being close to that obtained from the standard 4D-Var.
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FIG. 17. The logarithm (base 10) of normalized cost function for
the one-cycle truncated Newton-like incremental method vs the num-
ber of minimization iterations. The incremental approach is used for
the first 40 minimization iteration, where almost no physics are in-
cluded in the adjoint model. The standard 4D-Var minimization ap-
proach is used for the last 30 minimization iterations, where the full
physics adjoint model is used. For the solid line, the information on
the Hessian is jointly updated at every iteration in both the inner and
outer loops. For the dotted line, the minimization process is restarted
when the minimization process switches from one to another loop.

It should be pointed out that the error at model levels
near the ground is still considerably larger than the one
present in the standard 4D-Var using full physics in the
adjoint model.

To a large degree, the one cycle truncated Newton-
like incremental method accomplishes the aim of alle-
viating the negative effects of the nonlinearities while
taking into account the influence of physical processes
in a satisfactory manner. The CPU time required in-
creases by only 40% compared with that required by
the incremental method that involves almost no physics
in the adjoint model.

We have assumed that continuously updating Hessian
information at every iteration in both the inner loop and
the outer loop may accelerate the convergence of the
minimization procedure. To verify this point, we have
conducted an experiment in which the minimization is
restarted without using Hessian information in the inner
loop when the outer loop starts. Figure 17 shows that
over the entire outer loop the cost function decreases in
average by 10% faster when the Hessian information is
continuously updated.

The major deficiency in the one cycle truncated New-
ton-like incremental method is that the error at model
levels near the ground is still larger than that present in
the standard 4D-Var. Indeed, the main cause of this de-
ficiency is that the effect of the boundary physics is not
sufficiently taken into account. This is due to the fact
that the boundary physics starts impacting the 4D-Var

from the early stages of the minimization process. To
remedy this deficiency, we devise a two-cycle experi-
ment, in which the inner loop consists of 25 minimi-
zation iterations, and the outer loop consists of 10 min-
imization iterations in the first cycle. In the second cycle,
the inner loop uses 20 minimization iterations and the
outer loop 15 minimization iterations. The computa-
tional cost increases by 35% compared with the incre-
mental method without almost any physics in the adjoint
model.

The resulting assimilation analyses using the two cy-
cle truncated Newton-like incremental method experi-
ence an improvement in all the aspects examined. The
value of the cost function at the end of the minimization
process decreases to 0.3% of its initial value, which is
smaller than the values obtained by either the standard
or the incremental 4D-Var. Figure 19 presents the ver-
tical distribution of the rms errors of assimilation anal-
yses along with those for the forecast rms error at the
end of the assimilation window. As expected, the large
error at model levels near the ground disappears. It is
very encouraging to find that the rms error is consis-
tently smaller than that present in either the standard or
the incremental 4D-Var for every model level and for
all model variables. This advantage is also preserved in
ensuing 24-h forecasts as well as in precipitation spinup,
when using the two cycle truncated Newton-like incre-
mental method.

6. Summary and discussions

In this paper, we presented results of several 4D-Var
experiments. These experiments included both the stan-
dard 4D-Var where full physics was used in the adjoint
model, and versions of incremental 4D-Var where only
selected physical processes were used. The comparison
between these experiments provided us a detailed un-
derstanding of how physical processes act on a 4D-Var
procedure as the minimization process proceeds.

Results obtained showed that at the early stages of
the minimization process, the analysis errors at the stan-
dard 4D-Var were overall larger than those in the in-
cremental 4D-Var analyses where almost no physics was
included in the adjoint model. The major assimilation
analysis errors in the standard 4D-Var were found to be
located over intense precipitation regions. On the con-
trary, for the incremental 4D-Var analyses without al-
most any physics in the adjoint model, the major errors
did not correlate with precipitation, and the analysis
errors over the large precipitation regions were smaller
than those in the standard 4D-Var analyses. After an
intermediate number (about 50 for the experiments in
this research) of minimization iterations, the errors over
some precipitation regions gradually become larger in
the incremental 4D-Var analyses than those in the stan-
dard 4D-Var. Thus, the inclusion of precipitation physics
in the adjoint model appeared to be detrimental to con-
vergence rates of the minimization process at the early
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FIG. 18. Same as in Fig. 8 but for the one-cycle truncated Newton-like incremental method at
the end of the minimization processes.

stages of the minimization process and then gradually
turned out to become beneficial. Interestingly, the 4D-
Var with full physics in the adjoint model did indeed
speedup the precipitation spinup compared with the in-
cremental 4D-Var without almost any physics in the
adjoint model after iteration 70. However, the reduction
of the precipitation spinup period cannot be solely at-
tributed to the inclusion of the precipitation physics in
the adjoint model, but may be the result of the combined
impact of several physical processes.

In the incremental 4D-Var where almost no physics

were involved in the adjoint model, major assimilation
analysis errors were found to be primarily located in the
lower troposphere, and exhibited a correlation with
some special orographic features. Especially, the errors
in the dewpoint depression and temperature analyses
could not be further reduced after 20 minimization it-
erations. These large errors can be primarily attributed
to the absence of the boundary layer physics in the
adjoint model. Further, the major assimilation analysis
errors were always associated with the absence of the
boundary layer physics during the entire minimization
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FIG. 19. Vertical distributions of the rms errors for the two-cycle truncated Newton-like incre-
mental method at the end of the minimization processes. In the first cycle, the incremental approach
is used for the first 25 minimization iterations where almost no physics are included into the
adjoint model, and the standard 4D-Var approach is used for the last 10 minimization iterations
where the full physics adjoint model is used. In the second cycle, the incremental approach is
used for the first 15 minimization iterations, while the standard 4D-Var minimization approach is
used for the last 15 minimization iterations.

procedure. Unlike the precipitation physics, the bound-
ary layer physics in the adjoint model impacted posi-
tively the 4D-Var during the entire minimization pro-
cedure. The importance of including the boundary layer
physics in the adjoint model has been recognized in
several studies (e.g., Buizza 1994; Rabier et al. 1997).

The influence of precipitation physics warrants a de-

tailed discussion. In the experiments, assimilation errors
in the standard 4D-Var using full physics in the adjoint
model did not exhibit a reduction over precipitation re-
gions at least prior to iteration 21. The reduction in
assimilation errors over precipitation regions occurred
at the latest stages of the minimization process. A further
explanation can be provided in terms of the eigenvalue
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spectrum of the Hessian of the cost function. We con-
jecture that precipitation physics is related to eigenvec-
tors of the Hessian associated with smaller eigenvalues.
Since the minimization process generally deals with
smaller eigenvalues at later stages of the minimization
process in the framework of the L-BFGS minimization
algorithm, assimilation errors can be reduced only at
the later stages of the minimization. This also means
that if this mechanism prevails for the 4D-Var with full
physics, then in order to beneficially extract the addi-
tional information provided by the full physics 4D-Var,
a larger number of minimization iterations must be car-
ried out than in the adiabatic case. To alleviate this
situation, an efficient preconditioning approach is man-
datory.

The overall influence of the physical processes in the
adjoint model on 4D-Var was found to exhibit different
behavior between the early and later stages of the min-
imization process. This different behavior was related
to the presence of strong nonlinearities in the precipi-
tation physics. As the minimization process proceeded,
the assimilation analysis became closer to the minimi-
zation solution. The effect of nonlinearities in physics
on the minimization process tended to weaken. At this
stage the advantage of the consistency between the non-
linear forecasting model and the adjoint model thus
started playing a dominant role. Interestingly, the
boundary layer physics in the adjoint model turned out
to be beneficial during the entire minimization process.
This may be attributed in part to the relatively weak
nonlinearities present in the boundary physics.

The results obtained suggest some issues that should
be taken into account in order to maximize the beneficial
impact when 4D-Var uses full physics in the adjoint
model. At the early stages of the minimization process,
the 4D-Var would be better implemented using the in-
cremental method that does not include full physics in
the adjoint model. 4D-Var experiments have shown that
a minimization process generally acts first on the larger
scales (Thepaut and Courtier 1991b; Navon et al. 1992b;
Tanguay et al. 1995). Thus the small scales can be dealt
with only during the last stage of the minimization pro-
cess as in Veerse and Thepaut (1998). We suggest avoid-
ing using full physics in the adjoint model at the early
stages of the minimization process in order to avoid the
detrimental effect of the strong nonlinearities, which
does not mean that physics have little impact on the
4D-Var at this stage. To take into account the impact of
full physics, we should use full physics in the adjoint
model repeatedly after the early stages of the minimi-
zation. Here we have proposed to avoid using contin-
uously the full physics package in the adjoint model
during the entire minimization process, a suggestion jus-
tified theoretically by the recognition that physical pro-
cesses are controlled to a large degree by dynamical
processes. This observation is validated by the numer-
ical experiments presented in this research.

The above-mentioned requirements have been ful-

filled using the new truncated Newton-like incremental
method. The algorithm is a variant of the incremental
method using a sequence of cost functions. It consists
of an inner loop and an outer loop. The incremental
method including almost no physics in the adjoint model
comprises the inner loop, while the outer loop consists
of the standard 4D-Var using the full physics adjoint
model. In the standard truncated Newton method a line
search is performed when the minimization process
moves from the inner loop to the outer loop, while pre-
conditioning is used in the inner loop. We used the L-
BFGS algorithm for both the outer and inner loops. This
allowed updating the Hessian continuously at every
minimization iteration in both the outer and inner loops.
A two-cycle truncated Newton-like incremental exper-
iment was performed. In the first cycle, 25 minimization
iterations were conducted in the inner loop using the
adjoint model without almost any physics and 10 min-
imization iterations in outer loop using the full physics
adjoint model. In the second cycle, 20 minimization
iterations were conducted in the inner loop and 15 min-
imization iterations in outer loop. The results obtained
showed the quality of the assimilation analyses to be
better than that obtained from either the standard 4D-
Var or the incremental 4D-Var after 70 iterations in all
the aspects examined. This two-cycle truncated Newton-
like incremental method accomplishes the aim of alle-
viating the negative effects of the nonlinearities in the
physics along with satisfactorily taking into account the
impact of physical processes. The CPU time required
increased by only 35% compared with that required by
the incremental method that involves almost no physics
in the adjoint model.

We recognize that the way in which various physical
mechanisms operate is highly model dependent. Some
of the conclusions derived in this study may be restricted
to the particular model used here, namely the FSUGSM.
There are still many other open problems to consider.
We used only a simple scaling method to precondition
the minimization. Better preconditioning methods are
available such as those of Courtier et al. (1994), Yang
et al. (1996), and Zupanski (1996) to cite but a few. We
do not know if better preconditioning methods available
will reduce the detrimental effect of the strong nonli-
nearities present in the physics at the early stages of the
minimization process. In this research, we used only
observations of wind, temperature, dewpoint depres-
sion, and surface pressure fields in a twin experiment
frame. Observations sensitive to physics were not used,
such as precipitation amount and total precipitable wa-
ter, or other observations from satellite platforms. Es-
pecially, benefits of precipitation data have been dem-
onstrated in 4D-Var (Zupanski and Mesinger 1995; Zou
and Kuo 1996; Tsuyuki 1996), but the adjoint precip-
itation physics is necessary when precipitation data are
assimilated. It may be more interesting to investigate
possibilities that observational data sensitive to physics
be appropriately assimilated, when they are introduced
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only at some stages of the minimization process. These
problems require a more in-depth investigation.
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