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ABSTRACT

Variational four-dimensional (4D ) data assimilation is performed using an adiabatic version of the National
Meteorological Center (NMC) baroclinic spectral primitive equation model with operationally analyzed fields
as well as simulated datasets. Two limited-memory quasi-Newton minimization techniques were used to iteratively
find the minimum of a cost function, with the NMC forecast as a constraint. The cost function consists of a
weighted square sum of the differences between the model forecast and observations over a time interval. In all
the experiments described in this paper, observations are available for all degrees of freedom of the model. The
derivation of the adjoint of the discretized adiabatic NMC spectral model is presented. The creation of this
adjoint model allows the gradient of the cost function with respect to the initial conditions to be computed
using a single backward-in-time integration of the adjoint equations.

As an initial evaluation of the variational data-assimilation procedure, an assimilation system with a low-
resolution version of the NMC spectral model was tested using fields from a Rossby-Haurwitz-wave solution
as observations. The results were encouraging, with a significant reduction in the magnitudes of both the cost
function and the norm of its gradient during the minimization process. In particular, the high-frequency noise
exhibited in the rms of the divergence field, produced by random perturbation in the initial conditions, is largely
eliminated after the variational data assimilation.

The performance of the assimilation scheme was examined in a mare realistic configuration using the adiabatic
NMC spectral model truncated at T40. Both operationally analyzed observations, consisting of vorticity, di-
vergence, temperature, surface pressure and moisture fields (distributed at two time levels separated by a 6-h
time interval), and model-generated data were variationally assimilated. The effect of the number of observation
fields in time on the convergence rate of the minimization and the impacts due to the inclusion of the horizontal
diffusion and the surface drag in the model and its adjoint on the convergence rate and the accuracy of the

retrieval are addressed.

1. Introduction

Numerical weather prediction (NWP) is based on
the integration of a dynamic system of partial differ-
ential equations modeling the behavior of the atmo-
sphere. Therefore, discrete initial conditions describing
the state of the atmosphere have to be provided prior
to the integration, since they, along with the model
equations, control the evolution of the solution trajec-
tory in space and time.

In the last few years several important developments
have taken place in NWP directed mainly in two dif-
ferent directions:
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(a) The advent of more powerful computers has al-
lowed the development of higher-resolution models
including an ever-increasing number of physical pro-
cesses and parameterizations of subgrid phenomena.

(b) New sources of data, such as satellite data, radar,
profilers, and other remote-sensing devices, have be-
come available. These data characteristically have a
heterogeneous distribution in space and time as well
as a nonrandom error structure.

Because of these advances in modeling and the ob-
servation networks, a need for an improved assimila-
tion system has developed. There are many techniques
used in data assimilation (Ghil et al. 1981; Ghil and
Malanotte-Rizzoli 1991). Recently, considerable at-
tention has been focused on variational methods for
four-dimensional (4D) data assimilation (LeDimet and
Talagrand 1986; Derber 1985; Lewis and Derber 1985;
Hoffman 1986; Talagrand and Courtier 1987; Courtier
and Talagrand 1987). This technique not only has
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broad applications for the assimilation of meteorolog-
ical and oceanographical observations but is also ap-
plicable to sensitivity analysis (e.g., Cacuci 1981; Hall
and Cacuci 1982, 1983), as well as to parameter esti-
mation (e.g., Smedstad and O’Brien 1991).

The objective of variational data assimilation is to
determine the optimal solution of an NWP model by
fitting the model dynamics to data over an interval of
time, where the optimality is measured by a cost func-
tion that expresses the degree of discrepancy between
the model and the data. A direct approach for finding
the optimal solution, suggested by Hoffman (1986),
was found to be impractical for operational NWP
models implemented on present-day computers. The
expense of the variational assimilation can be reduced
by using the adjoint of the assimilating model to cal-
culate all of the components of the gradient of the cost
function with respect to the initial conditions by one
time integration. The adjoint model arises from the
theory of optimization and optimal control of partial
differential equations (developed over the last 30 years
by mathematicians) (see, e.g., Pontryagyn et al. 1962;
Lions 1971, 1988; Glowinski 1984), and whose appli-
cations are progressively propagating in various fields.

The use of adjoint equations in meteorology was
pioneered by Marchuk (1974, 1982) and Penenko and
Obraztsov (1976) and described by Kontarev (1980)
and LeDimet and Talagrand (1986). Hall and Cacuci
(1983) used the method to study the sensitivity of nu-
merical models with respect to physical parameters.
Courtier (1984 ) presented an adjoint variational data-
assimilation method for the shallow-water equations
model. Lewis and Derber (1985) used the adjoint
method to solve a variational adjustment problem with
advective constraints, while Derber (1985) used the
adjoint method for a variational 4D data assimilation
using the equations of a quasigeostrophic model as
constraints. LeDimet and Talagrand (1986) used the
method for data assimilation with a shallow-water
equations model in all cases. The gradient of the cost
function is computed by first integrating the forecast
model forward and then by integrating the adjoint-
model equations backward in time. During the back-
ward integration of the adjoint equations, forcing terms
are added to the adjoint equations at times when ob-
servational data is available. This method appears to
be promising, especially for large dimensional data-
assimilation problems. The calculation of the gradient
of the cost function with respect to the initial condition
vector requires less than twice the computer time of
the integration of the forecast model for the dynamics-
only model used in this paper. For more nonlinear
problems, such as those contained in some physical
parameterizations, the computational expense will in-
crease, but the adjoint equations still represent the most
efficient technique for calculating the gradient of the
cost function.
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Once the values of cost function and its gradient are
available, different minimization methods can be em-
ployed to find the optimal solution. Among the most
useful methods for solving an unconstrained cost func-
tion J of N variables are: (i) Newton’s method and
variations of it (O’Leary 1982; Toint 1981); (ii) con-
jugate-gradient (C-G) methods (Fletcher 1987; Gill et
al. 1981); (iii) quasi-Newton methods (Shanno 1978;
Nocedal 1980; Griewank and Toint 1982; Buckley and
LeNir 1983), and (iv) truncated Newton (TN) meth-
ods (Nash 1984; Schlick and Fogelson 1992). The
Newton and quasi-Newton methods have quadratic
rates of convergence and superlinear rates of conver-
gence, respectively, but require storage of Hessian ma-
trices of size (N X N). For large meteorological models,
it is not yet possible to retain the matrices in direct
memory. The C-G algorithms require storage of only
a few vectors of length N. They have, however, a slower
convergence rate than quasi-Newton methods.

A compromise between the faster convergence of
the quasi-Newton methods and the smaller memory
requirements of the C-G methods are limited memory
quasi-Newton techniques. In these techniques, the ac-
curacy of the Hessian matrix approximated depends
on the available memory. The amount of memory
usage can be controlled by the user. These techniques
can be viewed as either an extension of the C-G method
or as an approximation to the general quasi-Newton
methods.

In this paper, results will be presented for a varia-
tional assimilation system being developed for the
NMC adiabatic spectral model. After a brief description
of the NMC spectral model and its discretization in
space and time, we define the cost function and derive
the adjoint-model equations (section 2). The mini-
mization algorithms used are discussed in section 3,
including issues of stepsize search, scaling, weighting,
and verification of the correctness of the gradient. Re-
sults of variational data-assimilation experiments are
then presented in section 4, including the accuracy of
the retrieval of the meteorological fields, the impact of
observation frequency, and the inclusion of a horizon-
tal diffusion term and surface drag. A summary, general
conclusions, and some of the outstanding problems
are discussed in section 5.

2. Fundamentals of variational data assimilation

a. Briefdescription of the model

The NMC spectral adiabatic model is based on the
primitive equations formulated with a spectral discre-
tization in the horizontal and an Arakawa quadratic
conserving finite differencing in the vertical with 18 «
layers. In order to take advantage of the spectral tech-
nique in the horizontal, a vorticity and divergence rep-
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resentation of the momentum equations is used to
eliminate the difficulties associated with the spectral
representation of vector quantities on a sphere. Along
with a moderate time filter applied to all fields, a semi-
implicit time-integration scheme is applied to the di-
vergence, temperature, and surface pressure equations.
The vorticity and moisture equations are integrated
explicitly. For more details on the NMC model equa-
tions, see Sela (1980).

b. Cost function

The objective of variational 4D assimilation is to
find the solution to the constraining NMC forecast
model that will best fit a series of observational fields
distributed over some space and time interval. One
possible measure of the fit, the cost function J, consists
of a weighted least-squares fit of the model forecast to
the observations. Assuming that the observations are
given by analyzed fields, J is then represented by

R
X () =5 2 [X() = X¥ ()]

r=0
X W()[X(8) — X(8)], (2.1)

where X (¢,) is the N[= M(4K + 1)] component vector
containing values of divergence, vorticity, temperature,
surface pressure, and moisture over all Gaussian grid
points on all levels at time ¢,; M is the number of Gaus-
sian grid points at each level; K is the number of vertical
levels; R is the number of analyzed fields in the assim-
ilation interval; ¢, represents the time when an obser-
vation occurs in the assimilation period window;
X°%(¢,) is the N-component vector of the analyzed val-
ues of X over all Gaussian grid points on all vertical
levels at time ¢,; and W(¢,) is an N X N diagonal
weighting matrix with Wp, W, W, Wy, , and W, as
its diagonal submatrices of the weighting factors for
divergence, vorticity, temperature, surface pressure,
and moisture fields, respectively.

One should notice that the cost function is defined
in physical space rather than in spectral space, despite
the fact that a spectral model is being used. The reason
is that the large variability in the spectral coefficients
of the variables makes the proper scaling of the variables
difficult. Bad scaling will in turn negatively impact on
the convergence of the minimization process due to
the ill-conditioning of the Hessian matrix [matrix of
second derivatives of the cost function with respect to
the X (10)].

¢. Derivation of the gradient of the cost function

To find the minimum of the cost function J, all

efficient minimization algorithms require the calcula-
tion of the gradient of the cost function. This can be
done through the use of the adjoint equations for the
forecast model. In this subsection, the derivation of the
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adjoint equations for the discretized NMC spectral
model is presented. The discrete operations in the for-
ward model have unique corresponding discrete op-
erations in the adjoint model. The following derivation
parallels the coding of the model where the algebraic
operations are carried out by computer instructions.

The NMC implicit spectral model constraints can
be written in the following general form

X(to+ AL) = F1[X(lo)] + L X (%) (2.2a)
X(t+ A =F[X()] + L)Xt — &)

+m()X(¢2), for t>ty+ Af, (2.2b)

where F,(x) and F(x) are nonlinear operators, and L,
L, and m are linear operators (which may depend
ont).

To calculate the gradient of the cost function
VJI[X (20)] with respect to the initial condition X (#),
J’, the change in the cost function resulting from a
small perturbation X'(7¢) about the initial conditions
X (¢p) 1s defined as

J'[X(t0)] = J[X () + X'(£0)] = J[X(2)]. (2.3)

In limit as |X’|| = 0, J' is the directional derivative
in the X’(fy) direction and is given by

TIX (1)1 = {VIIX(2)1} X (o). (2:4)

The function J’ may also be expressed by using (2.3)
and the definition (2.1) of J,

R
X ()] = T {WEHX () — X)X (1)

r=0
(2.5)
where X’(t,) is the perturbation in the forecast resulting

from the initial perturbation, X’(#y). Equating (2.4)
and (2.5) results in

{VIX ()1} "X (20)

R
= 2 {W(@@)[X() = X)X (4). (2:6)

r=0

It is clear that if X’(¢,) can be expressed as a function
of X’(ty), then the gradient of the cost function with
respect to the initial conditions can be found.

To express X'(t,) in terms of X’(¢,), the forecast
model (2.2) is linearized about the current model so-
lution X (¢). The linearized version of the forecast
model (the tangent linear model) can be written as

OF\[X (10)]X (20)
aX
SF[X (N1X'(?)
oX
+ LX"(¢ — A + m(D)X'(2),

X'(tp + Af) = + L, X'(#0) (2.7a)

X'(t+ Af) =

(2.70)
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which may then be rewritten as
X'(2o + At) = D(20)X'(20), (2.8a)
X'(t+ AN =DX’(1) + L{(1)X'(r — Ar). (2.8b)

where the matrices D, and D are operator matrices de-
pending on the values of the model state X (¢), as well
as on the time ¢, and the matrix L on the time ¢ only.
At each time step, the time-varying model state X (¢)
was written out on a storage unit while integrating the
nonlinear NMC model forward and was subsequently
read by a direct access for use in the adjoint model
integration in reverse order. In this way the computer
time required to skip data is saved. Note that D;, D,
and L are assumed real matrices. If one wishes to use
complex vectors and matrices, all transposes in the
derivation should be replaced with complex conjugate
transposes.

Now from (2.8) the expression X’(¢,) can be derived
in terms of X'(¢,) as follows:

X'(t,) =D — ADX'(t, — A) + L1, — AY)
X X'(t, — 2A1)
=D(t, — A)D(t, — 2A0)X'(t, — 2A1)
+ [D(t, — Ar)L(t, — 2At) + L(¢, — A?)
X D(t, — 3A0)]X’(t, — 3At)
+ Lt — AL(t, — 3A0)X'(¢, — 4AL)

= P, X’(1), (2.9)

where P, represents the result of applying all the op-
erator matrices in the linear model to obtain X'(z,)
from X'(¢g).

Using the symbolic expression of the linear version
of the forecast model (2.9), (2.6) becomes

{VIIX (1)1} X (20)
R

= 2 {WEX () — X(8)]1} P X (20). (2.10)

r=0
This implies that
R
VIX (1)1 = 2 PTW(2)[X (%) — X°*(1,)]. (2.11)
r=0
Defining the adjoint equations as
X'(to) = PFX(t), r=1,---,R, (212)

where (“)_represents an adjoint variable, if the adjoint
variable X (¢) at time ¢, is initialized as

X'(1,) = W(t)[X(5) = X()],  (2.13)
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we obtain from (2.13)
X'(10) = PTW(1)[X (1) — X%(1)].  (2.14)

Combining the results of (2.11) and (2.14), we arrive
at the following formula for calculating the gradient of
the cost function VJ[X (£,)] with respect to the initial
condition X (Zp):

VIIX(t0)] = 2 X'(t0).
r=0

Since (2.12) and (2.15) are linear, VJ[X ()] may
be obtained by integrating the adjoint model from #z
to £, with zero initial conditions for the adjoirit variables
at time ¢z while the weighted differences,

X(1,) = W)X (L) — X(1,)],

are inserted whenever an analysis time ¢, (r = 0, 1,
-« +, R) is reached. Thus, a single integration of the
adjoint model can yield the value of VJ[X (#)], the
value of the gradient of the cost function with respect
to the initial conditions.

(2.15)

d. Construction of the adjoint equations model and
its verification of correctness

From (2.12) we note that the adjoint model equa-
tions consist of the transpose of the linearized version
of the model. Thus, the linearized NMC model is de-
veloped first. Each quadratic term results in two terms,
with both terms containing the model state and the
perturbation.

If we view the linear model as the result of the mul-
tiplication of a number of operator matrices:

P=AA Ay, (2.16)

where each matrix A; (i = 1, + - +, N) represents either
a subroutine or a single DO loop, then the adjoint
model can be viewed as a product of adjoint subprob-
lems

PT = AJAL_,: - -AT. (2.17)

In this way, the discrete adjoint model can be directly
obtained from the discrete linear model, which in turn
is obtained from the NMC spectral model by linear-
ization around a model state. This simplifies not only
the complexity of constructing the adjoint model but
also avoids the inconsistency generally arising from the
derivation of the adjoint equations in analytic form
followed by the discrete approximation. A simple ex-
ample of the construction of the discrete adjoint code
from the discrete linear code is provided in the Ap-

pendix.

The correctness of the adjoint can be checked in two
ways. First, at any level of the code, the development
of the discrete adjoint model can be checked by ap-
plying the following identity:
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(AQ)T(AQ) = QT[AT(AQ)], (2.18)

where Q represents the input of the original code, and
A represents either a single DO loop or a subroutine.
All routines of the adjoint of the adiabatic NMC model
were subjected to this test. A second verification of the
correctness of the gradient is described below. Let

J(X + ah) = J(X) + ahTVJ(X) + O(a?) (2.19)

be a Taylor expansion of the cost function. The term
ais a small scalar, and h is a vector of unit length (such
as h = VJ|[VJ|™!). Rewriting the above formulas, a
function of « can be defined as
B(a) = J(X+ oh) — J(X)
* ah "V J(X)
For values of « that are small but not too close to the
machine zero, one should expect to obtain a value for
®(a) that is close to 1. The value of ®(«) is shown in
Fig. 1 for the T40 version of the NMC model. It is
clearly seen that, for « between 1077 and 107!5, a unit
value of ®( ) is obtained.

1+ O(a). (2.20)

3. Descent algorithms for large-scale unconstrained
minimization problems

Since the model already taxes the capability of the
largest available computers, and the optimization of
the initial conditions must conform to the operational
requirements of timeliness, the choice of a robust and
efficient minimization algorithm is crucial. Navon and
Legler (1987) compared different C-G algorithms.
Their conclusion was that the most robust and best-
performing method was the Shanno and Phua (1980)
quasi-Newton limited-memory algorithm. Liu and
Nocedal (1988) compared the combined C-G quasi-
Newton method of Buckley and LeNir (1983), the
limited-memory quasi-Newton method described by
Nocedal (1980) (called the L-BFGS method), and the
partitioned quasi-Newton method of Griewank and
Toint (1982). Zou et al. (1990) compared four of the
state-of-the-art limited-memory quasi-Newton meth-
ods on several test problems, including problems in
meteorology and oceanography. Their results show that
the L-BFGS algorithm seems to be the most efficient
and particularly robust. Since the Navon and Legler
(1987) study, the truncated Newton algorithm has
shown considerable promise (Nash and Nocedal 1989).
Experiments with the variational 4D data assimilation
on a shallow-water equations model with limited-
memory quasi-Newton and truncated Newton mini-
mization methods (Zou et al. 1990) showed that the
truncated Newton algorithm might perform better than
the limited-memory quasi-Newton method if a good
preconditioner is found. The truncated Newton tech-
nique will be implemented on the system described in
this paper.
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FiG. 1. Verification of the gradient calculation: (a) variation of &
with respect to «; (b) variation of log(® — 1) with respect to loga.

a. ONI: Limited-memory quasi-Newton method of
Liu and Nocedal (1988)

For this study, the limited-memory quasi-Newton
algorithm of Liu and Nocedal (1988) was chosen as
one of the candidate minimization techniques since it
deals with the critical issue of storage in large-scale
problems. The QN1 update formula generates matrices
using information from the last m quasi-Newton it-
erations, where m is the number of quasi-Newton up-
dates determined by the user (generally 3 < m < 7).
After having used the m vector storage locations for m
quasi-Newton updates, the quasi-Newton approxi-
mation of the Hessian matrix is updated by dropping
the oldest information and replacing it by the newest
information. A new search direction, which is an es-
timate of the relative change to the current variables
vector that produces the maximum reduction in the
cost function, is then computed. It employs a cubic
line search required to satisfy a Wolfe (1969 ) condition,
and a unit step size is always tried first. This algorithm
uses a limited amount of storage, and the quasi-Newton
approximation of the Hessian matrix is updated con-
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tinuously. The general algorithm for QN1 can be found
in the paper of Liu and Nocedal (1988).

b. ON2: Limited-memory quasi-Newton method of
Shanno (1978) with step size from Derber (1985)

The QN2 method differs from the QN1 method in
two aspects. First, the search direction is dependent
only on information from the current and previous
iterations [ Shanno 1978, Eq. (20)]. Thus, the approx-
imation of the Hessian may not be quite as accurate
as that from QN1. This difference does not appear as
important as the step-size calculations. The QN2
method assumes in the step-size calculation that the
model solution resulting from a perturbation in the
initial condition is well approximated by a model lin-
earized around the unperturbed solution (Derber
1985). The optimal stepsize is the value for a;, which
minimizes the function J{Xi(#,) + ady] or maximizes
the functional reduction:

AJ(Xi) = J[Xi(t0)] — J[Xi(t0) + adi], (3.1)

where d, is the search direction for iteration k, which
has been defined already.

Define X ;(¢) as the difference between the forecasts
resulting from integrating the initial condition X (#g)
and Xi(#o) + a,d,. The parameter o, is a guess for the
optimal step size based on the step size calculated from
the previous iteration. Then, assuming that the forecast
varies linearly with the initial perturbation results in
the following estimate of the optimal step size:

R
(273 Eo {w(tr)[xk(tr) — Xobs(#)] }TX;,(I,)

Qg

R
EO [W()X 2(2)1™X 4(2,)

(3.2)

Therefore, to calculate the optimal step size for one
iteration, the forecast model needs to be integrated one
time for the initial condition Xi(fo) + o dx.

¢. Scaling and weighting

Weights in the cost function serve a dual purpose:
1) they scale the cost function J to become a nondi-
mensional quantity and 2) they reflect confidence in
the quality of the observed data. Weights are usually
chosen as the reciprocal of the variance of the obser-
vation errors. However, these variances are difficult to
specify properly, and much more work is necessary in
this area. Courtier and Talagrand (1990) also used a
temporal weighting in which weights given to individ-
ual observations varied linearly with time, the total
sum of the weights assuming the same value as the
reciprocal of squared estimates of the statistical root-
mean-square observational errors. The idea is that the
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model, not being perfect, cannot adjust uniformly to
the whole set of observations at intermediate times. In
the case of variational assimilation, where one performs
a forecast starting from the final time of the assimilation
period, a better adjustment to later observations is ob-
viously preferable, and one may assign larger weights
to more recent observations in the definition of the
cost function.

In this experiment with Rossby-Haurwitz-wave ob-
servations, a constant diagonal weighting matrix with
Wy = 107, W, = 108, Wz = 107, and Wy = 2.5
X 107! was employed. In the experiment with the T40
model, the weighting matrix is calculated by the fol-
lowing formula:

_ 1
Y max; ¥ (t0) — ¥ (tR)
with similar expressions for the velocity potential,
temperature, surface pressure, and moisture fields—
that is, the inverse of the maximum difference between
the two analyzed fields 6 h apart.

Scaling is a crucial issue in the success of nonlinear
unconstrained optimization problems, and some re-
search has been carried out on scaling nonlinear pro-
gramming problems. It is well known that a badly
scaled nonlinear programming problem can be almost
impossible to solve (see also Navon and de Villiers
1983; Courtier and Talagrand 1990). An effective au-
tomatic scaling procedure would ease these difficulties
and could also render problems that are well scaled
easier to solve by improving the condition number of
their Hessian matrix ( Thacker 1989).

In the meteorological problem considered here, the
variables in the control vector have enormously dif-
ferent magnitudes varying over a range of eight orders
of magnitude. Scaling by variable transformation con-
verts the variables from units that reflect the physical
nature of the problem to units that display desirable
properties for the minimization process. The general
form of a scaling procedure is

(3.3)

X = 8X¢, (3.42)
g’ = Sg, (3.4b)
Hs = SHS, (3.4¢)

where 8 is a diagonal scaling matrix, X and g are the
state variable and the gradient, respectively, while H is
the Hessian matrix. In the experiment with Rossby—
Haurwitz waves, the divergence, vorticity, temperature,
and surface pressure fields are scaled by the factors
1077, 107%, 102, and 1 respectively. For the opera-
tionally analyzed data, the scaling constants for the
different fields are calculated by

S(10) — ¥i%(2r)1/2,  (3.5)

S\m = max |
i, jk

and similarly for X, 7', Inp,, and q.



JuLy 1992 NAVON

For complicated functions, difficulties may be en-
countered in choosing suitable scaling factors. There
is no general rule to determine the best scaling factors
for all minimization problems, and good scaling is
problem dependent. A basic rule is that the variables
of the scaled problem should be of similar magnitude
and of order unity because within optimization routines
convergence tolerances and other criteria are neces-
sarily based on an implicit definition of “small” and
“large,” and, thus, variables with widely varying orders
of magnitude may cause difficulties for some mini-
mization algorithms (Gill et al. 1981). One simple di-
rect way to determine the scaling factor is to use the
typical values for different fields (for instance, 10~°
can be used as the scaling factor of vorticity). Further
improvement to the condition number can be obtained
by a more sophisticated scaling (Gill et al. 1981).

4. Numerical results of the variational
data assimilation

A series of experiments were performed using the
variational assimilation algorithm. These experiments
were not intended as a complete evaluation but rather
were directed toward examining a few aspects of the
assimilation system. It was of primary importance to
ensure that the system was properly constructed and
that the minimization could be performed using a rea-
sonably high-resolution system.

a. The Haurwitz-wave case

A simple experiment was conducted to verify that
all the components of the techniques are properly
working using analysis created from a Rossby-Haur-
witz-wave solution. The minimization starts from the
initial condition, to which a random perturbation is
added on the Gaussian grids. The advantage of such
an experiment is that one knows the exact solution
and the value of the cost function at the minimum.

In this experiment, a coarse-resolution T6 model
was employed with four vertical levels, a model spectral
state is then completely described by 1344 independent
real parameters (without moisture). However, the
minimization was performed on the Gaussian grid, and
the dimension for the initial conditions control variable
is thus 2600.

The initial streamfunction was obtained by the for-
mula

= —qa%w sing + a’k cos™¢p cosmA, (4.1)

where w = k = Q/10, m = 4 defines a Haurwitz wave
with zonal wavenumber 4. By using this streamfunc-
tion, the initial conditions can be defined as follows:

§=VvH
D=0
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T = 266.4Y2
I _ Ci[A + Bcos(mX) + C cos(2mA)]
nps RT
+ In(100), (4.2)
where
aZQZ
T
A = 1.05 cos?¢ + 0.025 cos*™
2m?
X p+2mP—m—2————
¢l (m+ 1)cos“¢p +2m* —m coszqs]

_ 2.2 cos™
(m+ 1Y(m+2)

X [m?+2m+ 2 — (m+ 1)? cos?¢]
C = 0.025 cos®™¢[(m + 1) cos?¢p — m — 2]. (4.3)

The “observations” consisted of the complete space—
time history of the fields {, D, T, and Inp; over a 3-h
time interval with the time steps being equal to 0.5 h.
The variational data assimilation is carried out over
the same time period.

The “observations” having been produced by the
model itself, the minimum value of J is zero. Starting
the minimization from an atmosphere that consists of
the observations, plus at most 10% of a random per-
turbation of the gridded fields, and using the QN1 al-
gorithm for the unconstrained descent process, a sig-
nificant reduction of the values of both the cost function
and the norm of its gradient has been obtained, as
shown in Fig. 2. It is noted that the relative reduction
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FIG. 2. Variations of the normalized cost function (J/Jp) ( )
and normalized gradient (llg|l llgol ™*) (- + +) with the number of
iterations using the QN1 method for model-generated Rossby-Haur-
witz-wave observations.
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FIG. 3. Temporal variation, over a 24-h period, of the root-mean-
square of the divergence field from the unperturbed initial conditions
(——), perturbed initial conditions (- - -), and retrieved initial con-
ditions (circles).

of the value of cost function J/J, is less than 1073,
The norm of the gradient of the cost function was also
reduced by five orders of magnitude. After about 30
iterations, the cost function reached its minimum.

The values of the difference fields between the re-
trieved and initial observations are much smaller than
the differences between the random perturbation and
initial observations and are almost equal to zero. Figure
3 shows the temporal variations of the rms of the di-
vergence field, and the results indicate that the small
oscillations for the Rossby-Haurwitz wave are suc-
cessfully eliminated after the minimization.

b. T40 experiment with analyzed gridpoint data

In the second set of experiments, the observations
consisted of the complete fields of vorticity, divergence,
temperature, surface pressure, and moisture from the
NMC global operational data-assimilation system 6 h
apart. For this experiment, a truncation of T40 with
18 levels in the vertical is used. For the exact variable
transformation from spectral space to physical grid
space, or vice versa, a (90 X 46) Gaussian grid was
used, and the dimension of the vector of control vari-
ables is 302 220.

The adjustment was performed on the 6-h interval
[t0, tr] preceding tz. Experiments with vorticity and
divergence used in the cost function converged slower
than when streamfunction and velocity potential were
used. Therefore, both the model solution and obser-
vations were changed to streamfunction and velocity
potential when the transformation from spectral space
to physical space, or vice versa, was carried out. Before
trying to find the minimum of the cost function, it is
important to realize that one cannot expect the mini-
mum to be exactly zero. The decrease in the cost func-
tion itself is not a good measure of how close the so-
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lution is to the minimum. The decrease in the mag-
nitude of the gradient of the cost function is a far better
measure. Experience has shown that the decrease in
the norm of the gradient is at most two or three orders
of magnitude.

Using the QN1 and QN2 descent algorithms with
the rough scaling defined in (3.5) and weighting matrix
defined in (3.3), similar results are obtained in the
reduction of the values of the cost function and the
norm of its gradient from their initial values, as shown
in Fig. 4. During the course of the first few iterations,
the reduction in the value of the cost function is rather
fast, and at about 18 iterations, the cost function seems
to reach a minimum for both the QN1 and QN2 meth-
ods (solid and dotted lines in Fig. 4). The minimum
value of the cost function was 18% of its original value.
At 30 iterations, the norm of gradient decreased by one
and one-half orders of the magnitude for both the min-
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FIG. 4. Variations of the (a) normalized cost function (J/J,) and
(b) normalized gradient (]|g|l {|go]l =), with the number of iterations
using the QN1 (- - -} and QN2 (——) methods for operaticnal anal-
ysis and the QNI method in the case of normal-mode initialized
analysis (- - -).
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imization routines. After 30 iterations, the convergence
rate becomes smaller for both of the QN1 and QN2
algorithms.

The two aforementioned minimization methods
may be distinguished also by the number of function
and gradient calls and by the resulting total CPU time
and the smoothness with which the solution is ap-
proached. In 30 iterations, the QN2 method made 61
function calls and 30 gradient calls, while the QNI
method required 39 calls for both function and gradient
evaluation. The additional function calls in the QN2
method increase the smoothness in the norm of the
gradient because of a more accurate line-search algo-
rithm. In terms of execution time, the QN2 method
required 2041 CPU seconds, while the QN1 took 1827
CPU seconds on a CRAY-YMP supercomputer.

Since much of the lack of fit to the observations is
in the small scale, the use of normal-mode-initialized
observational data may improve the assimilation. The
dash-dot line in Fig. 4 shows the results from the same
experiment carried out with normal-mode-initialized
data, using the QN1 minimization method. We see
that the minimum of the cost function defined by the
normal-mode-initialized observations is smaller than
the one defined by the data without initialization.
However, the convergence rate is the same for both
cases. A similar conclusion was obtained using the QN2
method.

¢. Effect of the time density of observations on the
convergence rate

The effect of time density of observations on the
convergence can be estimated by using model-gener-
ated observations. The experiments were carried out
using one of the analyzed datasets as an initial condition

10° SGRAREREILE T Y T Ty 10°
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number of iterations

FIG. 5. Variations of the value of the normalized cost function
(J1Jo)( ) and the normalized gradient ( [|g[l ligoll ") (- - -), with
the number of iterations using the QN1 method for model-generated
observations.
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FIG. 6. Time variations of the surface pressure at a grid point from
initial observations (——), the initial guess (- - -), retrieval after 14
iterations (- - =), 30 iterations (- - -), and 60 iterations (——).

to generate observations in a 6-h window of assimila-
tion and the initial conditions from an analysis time 6
h different as the initial guess for the QN1 minimization
method. For these experiments it is known in advance
that the cost function and the norm of its gradient
should be zero at the minimum.

In order to better assess the results in section 4b, the
similar experiment with model-generated observations
(that is, one at the beginning and the other at the end
of the 6-h assimilation window) was carried out. The
results obtained for this case show that after 30 itera-
tions the cost function decreased two and one-half or-
ders of magnitude (solid line in Fig. 5). The norm of
its gradient decreased about one and one-half orders
of magnitude (dotted line in Fig. 5), which is similar
to the results presented in Fig. 4b. If the minimization
continues, the norm of gradient decreased another one
order of magnitude after 60 iterations. The cost func-
tion also continues to decrease. However, the solution
after 30 iterations is satisfactory, and the difference be-
tween the exact solution and the retrievals small. The
small difference field after the minimization has de-
creased by at least one order of magnitude for all the
fields.

Results of the minimization when observations are
available at every time step in the assimilation window
(in this case there are 13 time levels of observations)
are similar to the results presented in Fig. 5. Again, the
retrieved differences after 30 iterations are already quite
satisfactory and of better quality. To illustrate the issue
that the minimization procedure can be stopped prior
to the cost function achieving its asymptotic rate of
decrease, Fig. 6 presents the time integrations of the
surface pressure at a grid point from the initial obser-
vations (solid line), the initial guess (dash-dot line)
the retrieved initial conditions after 14 (dashed line),
30 (dotted line), and 60 (coincident with the solid line)
iterations, respectively. We note that even after 14 it-
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erations, when the cost function and the norm of the
gradient have only decreased by less than one order of
magnitude, most of the information has been recov-
ered. After 30 iterations, the difference between the
observations and retrieval becomes very small; that is,
the corresponding integrations appear to have no phase
discrepancy, and only small differences in amplitude
can be discerned. After 60 iterations, the time variation
1s exactly the same. Thus, the variational data assim-
ilation achieves most of the large-scale retrievals in the
first 14-20 iterations, and, in the latter part of the min-
imization process, only small-scale features are being
assimilated.

The effect of the length of the assimilation window
on the convergence rate was also considered. Figure 7
presents the minimization performances when model-
generated observations are available every time step
between 0 and 1 h, 0 and 3 h, and 0 and 6 h, respec-
tively. We see that, with the increase of the length of
the window, the convergence rate decreases. This effect
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FIG. 7. Variation of the value of the (a) normalized cost function
(J/Jo) and (b) normalized gradient (ligll ligo]l ~!) with the number
of iterations using the QN1 method with model-generated observa-
tions with the operational analyzed data available every time step in
I-h (= --=), 3-h (- - +), and 6-h ( ) assimilation windows.
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is due to the distortion of the spectrum of the Hessian
matrix resulting in the worsening of the conditioning
of the Hessian matrix.

These results indicate that, after a reduction of one
or one and one-half orders of magnitude in the cost
function and the norm of its gradient (as in the case
of analyzed real-data assimilation), most of the large-
scale features of the solution have already been recov-
ered. The slower convergence rate of the minimization
in the case of a longer assimilation window is due to
the distortion of the Hessian by the model integration.
Thus, the use of longer assimilation will require more
computation not only from longer model integration
but also from slower convergence.

d. Impacts of the horizontal diffusion and the
surface drag

-

All of the results presented so far are obtained by
using the adiabatic version of the NMC spectral model
without any physics. Now, the impacts of the horizontal
diffusion, the surface drag, and their combination on
the ability of the variational data assimilation to recover
the initial conditions is described.

The same experiment, as described in section 4c,
with two time levels of observations, both at the be-
ginning and the end of the 6-h assimilation window,
was performed. The experiment in section 4¢, without
horizontal diffusion and the surface drag, is referred to
as the reference experiment. Figure 8 shows the vari-
ation of the normalized cost function and norm of gra-
dient with the number of iterations of the minimization
process without the horizontal diffusion and the surface
drag, with the horizontal diffusion («k; = 8 X 10'%, k1
= 6 X 10'%, where «, is the diffusion coefficient for
divergence and vorticity fields, and «r is the diffusion
coefficient for temperature and moisture fields, re-
spectively ) and the very strong diffusion (x;= 8 X 101®
and kr = 6 X 10!%). The experiment with very strong
diffusion is presented by a dash-dot line, the reference
experiment by a dashed line, and the experiment with
the normal value of diffusion by a solid line. The con-
vergence is faster with the horizontal-diffusion term
present and much faster with the inclusion of a strong
diffusion term. The norm of the gradient decreased by
four orders of magnitude when a strong diffusion term
was included, instead of only the two-orders-of-mag-
nitude decrease obtained without inclusion of hori-
zontal diffusion. Due to inclusion of the horizontal-
diffusion term in the model, the forecast fields are
smoother, and the minimization process proceeds faster
toward the optimal solution.

If only the surface-drag term is added to both the
adiabatic version of the model and the adjoint model,
the minimization (see Fig. 8) performed better than
the reference experiment. If both the surface-drag and
horizontal-diffusion terms were added to the modlel,
the minimization performed even better. It seems that
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FIG. 8. Variations of the (a) cost function J and (b) gradient ||g||
with the number of iterations using the QN1 method without the
horizontal diffusion and the surface drag (- - -), with only the hor-
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the horizontal diffusion and the surface drag (- - -), and with only
the strong horizontal diffusion (-« - - -).

both the horizontal diffusion and the surface drag were
able to accelerate the convergence of minimization by
controlling small-scale features present in the solution.

While the minimization algorithm performs well in
all cases, the quality of the solution is dependent on
the parameterization. To compare the accuracy, Fig.
9 illustrates the rms differences for the temperature
and velocity potential between the assimilation solution
after 30 iterations and the analysis at the end of 6 h as
a function of model level. Figure 9a shows that the
minimization without the surface drag and the hori-
zontal diffusion gives a much more accurate retrieval
in the middle levels of the model than on either the
lower or the top levels. The maximum error occurs
mainly near the bottom level for all of the fields of the
model. There is also a large error near the top of the
model for the velocity-potential field. However, these
unbalanced errors in the solution were totally elimi-
nated by including the strong horizontal-diffusion term
in the model, which gives the best accuracy for the
retrieval among all of the other experiments. The min-
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imization with both the surface drag and the horizontal
diffusion included in the model also yields similar re-
sults.

All of these results indicate that with the inclusion
of some basic physics in the adiabatic version of the
NMC spectral model the minimization converges faster
and yields a more accurate solution to the variational
data-assimilation problem. These results indicate that
the inclusion of horizontal diffusion acts like a low-
pass filter that smooths the small-scale physical features,
thereby eliminating very small eigenvalues in the spec-
trum of the Hessian matrix of the cost function. This
improves the condition number of the Hessian matrix
and thus allows for a faster convergence rate of the
descent process.

5. Summary and conclusions

In this paper, variational 4D data assimilation using
the adjoint technique with a simplified version of the
NMC spectral model has been presented. The best-fit
trajectory is found using two limited-memory quasi-
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Newton nonlinear minimization algorithms. The
minimization algorithms use the gradient of the cost
function with respect to the initial conditions calculated
using an adjoint technique described by LeDimet and
Talagrand (1986). The variational assimilation was
tested using a four-level T6 version of the adiabatic
NMC primitive equation spectral model on a series of
model-generated data from a Rossby-Haurwitz-wave
initial condition. For this sample test problem, all of
the components of the variational data assimilation
performed well.

The assimilation technique performed well using
NMC operationally analyzed data. In this case the as-
similation technique used an 18-level T40 spectral
model as a constraint. The weights and scaling factors
were calculated from the analyzed data. A reasonable
reduction in the cost function was achieved, and the
quality of the retrieval (i.e., the reproduced initial con-
ditions) is satisfactory. These experiments also show
that the variational data assimilation was able to re-
trieve large-scale features of the fields during the first
stage of the minimization procedure and that the con-
vergence rate of the minimization depends very much
on the number of available observations in time. Ex-
periments with the horizontal-diffusion and surface-
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drag terms included in the model show that the addition
of some physics to the model has beneficial effects on
both the convergence rate and the accuracy of the re-
trieved initial conditions.

Perhaps the most significant result of this work is
the ability to perform 4D data-assimilation experiments
with a meteorologically realistic 18-level T40 spectral
primitive equation model on present day computears.
Further work on improving the convergence rate, the
control of gravity-wave noise, and the addition of ad-
ditional physics to the model is necessary.
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APPENDIX

Simple Example for Constructing the Discrete Adjoint Model
A simple example of the construction of an adjoint model from a linear model can be illustrated as follows.

Consider a DO loop in the linear model,

DO 130I=1,

N-1

130 X(I)=aY(I+ 1),
where X and Y are N-dimensional vectors. This DO loop is equivalent to the following two algebraic matrix

equations
[ X(1) [0 a 0
X(2) 0 0 a
[ X(N—-1) (0 0 0
if Y (I) are not reused, or
vy [1 0 o
Y(2) 01 0
: 0 0 1
YN)| _ |0 0 0
X(1) 0 a 0
X(2) 0 0 a
. 0 0 O
| X(N) | |0 0 O

0 0] 'Y(1)]
0 0 Y (2)
' ], (A1)
0 aj (N=1)XN __Y(N)A
0 0]
0 0
0 -
0@ R
o Y(2)
o 0 S (4.2)
0 0 Y(N—1)
00 L Yw)
0 0 s °

if Y (I) are reused after the DO loop 130 in the linear model.
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The adjoints of (A.1) and (A.2) can be written out directly by matrix transposition as
Y (1) [0 0 0 0 0] X(1) ]
Y (2) a 0 0 00 X(2)
. 0 a 0O 0 0 .
= , (A.3)
Y(N—-1) . . X(N—-1)
| Y(N) _0 00 0 a | nNxv=1y | X(N)
or
Y (1)] 1 0 0 0 0 00 0 0 T Y(1)
Y(2) 010 0O a 00 0 0 Y(2)
' = ' . (A4)
L Y(N) | (0 0 O 1 0 00 a 0 | monv| X(N)
respectively. Therefore the adjoint of the DO loop 130 will assume one of the following two forms
DO130I=1, N—-1
130 Y(I+ 1) =aX([I), (A.5)
or
DO1407I=1, N-1
HMOY(I+ 1))=Y+ 1)+ aX(I). (A.6)
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