
Documentation of the Multitasked Tangent Linear and Adjoint

Models of the Adiabatic Version of the NASA GEOS-2 GCM

(Version 6.5)

Yan Yang†, I. Michael Navon* and Ricardo Todling‡

†Supercomputer Computations Research Institute
Florida State University

* Corresponding author, Department of Mathematics and
Supercomputer Computations Research Institute

Florida State University

‡NASA/Data Assimilation Office
General Sciences Corporation

June 14, 2001

Abstract

This document presents a description of the development of the tangent-linear and the
adjoint models of the adiabatic version of the GEOS-2 GCM. The difference of this GCM from
the GEOS-1 GCM, the development and validation of the tangent-linear and adjoint models
and the parallelization of the two models are described with illustrative examples.

i

Contents

List of Figures iii

List of Tables iv

1 Introduction 1

2 Description of the NASA GEOS-2 GCM 1
2.1 Atmospheric dynamic equations . 2
2.2 Discretization of the NASA GEOS-2 GCM and its difference from GEOS-1 GCM . . 3
2.3 Structure and flow chart of the adiabatic NASA GEOS-2 GCM 4

3 Tangent linear model of the adiabatic version of NASA GEOS-2 GCM 8
3.1 Notational convention for the tangent linear model 8
3.2 Verification of the tangent linear model . 8

4 Adjoint model of the adiabatic version of NASA GEOS-2 GCM 10
4.1 Notational convention for the adjoint model . 10
4.2 Structure and flow chart of the adjoint model of the adiabatic version of NASA

GEOS-2 GCM . 10
4.3 Verification of the adjoint model . 11
4.4 Gradient test of the tangent linear and the adjoint model 15

5 Multitasking of the TLM and Adjoint Model 16
5.1 General concepts and algorithmic aspects of multi-tasking 17
5.2 Examples of multitasking the tangent linear and adjoint model codes 18
5.3 Evaluation of the speed-up by multitasking . 37

6 References 38

ii

List of Figures

1 Flow chart of the NASA GEOS-2 GCM . 5
2 Flow chart of the Aries/GEOS dynamical core . 7
3 Verification of the TLM model. (a): Variation of correlation coefficient with time;

(b): Variation of relative error ‖D‖/δX with time. 11
4 Flow chart of the adjoint of the NASA GEOS-2 GCM. 12
5 Flow chart of the adjoint of the Aries/GEOS dynamical core. 14
6 Results of the gradient check of the TLM and ADJ model. (a): Variation of Φ(α)

with respect to log(α); (b): Variation of |1 − Φ(α)| with respect to log(α). 16

iii

List of Tables

1 Correlation Coefficients Between D and δX . 10
2 Relative Error Between D and δX . 10

iv

1 Introduction

The scope of the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) is
to assimilate operational and the Mission to Planet Earth (MTPE) data of the atmosphere, the
land surface and the ocean surface. Its algorithm theoretical basis is fully documented (DAO,
1996). Much of the GEOS DAS development was aimed at the ability to accommodate new data
types and the improved treatment of historical data sets. To achieve this goal, the development
of new techniques of data assimilation is under way, such as 4-D variational data assimilation and
the Kalman filter/smoother for retrospective assimilation (Todling et al., 1998). The prerequisite
for the applications of these techniques is the tangent-linear model (TLM) and the adjoint model
(ADJ) of the present GCM used in the GEOS DAS.

The GEOS-1 is the version number 1 of the GEOS data assimilation system. The TLM and
ADJ of the adiabatic and moist process package of the GCM used in it was developed by Yang et
al. (1996, 1997). Now the system is upgraded to GEOS-2 and GEOS-3. The GCM presently used
in these systems is significantly different from that in GEOS-1. Therefore the TLM and ADJ for
this new version has to be developed. In this document we describe the development and validation
of the TLM and its adjoint of the adiabatic part of the GCM version 6.5.

Section 2 presents a description of the GEOS-1 and GEOS-2 GCM, with the emphases on the
latter and their differences. Section 3 and 4 describes the development of the tangent-linear and
the adjoint models, respectively as well as the verification of their correctness. Section 5 gives a
detailed description of the parallelization of the TLM and ADJ codes along with some illustrating
examples of the codes.

2 Description of the NASA GEOS-2 GCM

In this chapter we describe briefly the GCMs used in GEOS-1 and GEOS-2, with emphasis on the
latter and the differences between them.

The GEOS GCM was developed by the Data Assimilation Office (DAO) at the Goddard
Laboratory for Atmospheres (GLA), in collaboration with the Climate and Radiation Branch, for
use in the system being developed to analyze EOS data. The GEOS-1 GCM is fully documented
in Takacs et al. (1994). The GEOS Data Assimilation System (DAS) based on GEOS-1 GCM has
been used to produce a multi-year global atmospheric data set for climate research(Schubert et
al., 1993). It has also been used operationally to provide scientific flight guidance during NASA’s
participation in the Measurements for Assessing the Effects of Stratospheric Aircraft experiment.
The GEOS-1 GCM has also been used to produce multiple 10-year climate simulations as part of
the DAO’s participation in the Atmospheric Model Intercomparison Project (AMIP) sponsored by
the Program for Climate Model Diagnostics and Intercomparison (PCMDI).

The earliest predecessor of the GEOS-1 GCM was developed in 1989 based on the “plug-
compatible” concepts outlined in Kalnay et al. (1989) and subsequently improved in 1991
(Fox-Rabinovitz, et al., 1991 and Helfand et al., 1991). The plug-compatibility of the physical
parameterizations together with the plug-compatible “Dynamical Core” introduced by Suarez and
Takacs (1995) facilitate the development and testing of new algorithms.

The GEOS-2 GCM is an incremental development over GEOS-1 GCM. The model has been
prepared for broader future capabilities to meet the science requirements and scope of the
GEOS DAS to assimilate operational and Mission to Planet Earth (MTPE) data. Based on
extensive analysis and evaluation of the GEOS-1 system, the GEOS-2 GCM addresses some of
the fundamental limitations of GEOS-1. The GEOS-2 GCM also provides the next benchmark

1

and infrastructure base in the DAO’s effort to develop the GEOS-3 system for the EOS observing
period.

2.1 Atmospheric dynamic equations

As in the GEOS-1 GCM, the momentum equations used in the GEOS-2 GCM are written in
the “vector invariant” form, as in Sadourney (1975) and Arakawa and Lamb (1981), to facilitate
the derivation of the energy and potential enstrophy conserving scheme. The thermodynamic
(potential temperature) and moisture (specific humidity) equations are written in flux form to
facilitate potential temperature and moisture conservation.

The GEOS GCM uses a σ vertical coordinate defined by

σ =
p − pT

π
(1)

where p is the pressure, π ≡ ps − pT , ps is the surface pressure and pT is a constant prescribed
pressure at the top of the model atmosphere. With pT = 0 this coordinate reduces to the
conventional σ coordinate proposed by Phillips (1957).

With this vertical coordinate, the continuity equation becomes

∂π

∂t
= −∇σ · (πV) − ∂(πσ̇)

∂σ
(2)

where V is the horizontal velocity vector. Integrating (2) and assuming σ̇ = 0 at p = ps and p = pT ,
we obtain the formula used in the model:

∂π

∂t
= −

∫ 1

0
∇σ · (πV)dσ (3)

and
(πσ̇) = −σ

∂π

∂t
−

∫ σ

0
∇σ · (πV)dσ. (4)

The equation of state for an ideal gas is α = RT/p, where α is the specific density, T is the
temperature, and R is the gas constant. The following alternative form is used:

α =
cpθ

σ

(
∂P

∂π

)
σ

(5)

where θ ≡ T/P is the potential temperature, P ≡ (p/p0)κ, κ = R/cp, cp is the specific heat at
constant pressure, and p0 is a reference pressure which is taken as p0 = 1000 hPa.

The hydrostatic equation is
∂Φ
∂p

= −α (6)

where Φ is the geopotential. Another form of this equation which is used in the model is:

∂Φ
∂P

= −cpθ. (7)

The momentum equation is written as:

∂V
∂t

= −(f + ζ)k× V − σ̇
∂V
∂σ

−∇σ(Φ + K) − cpθ∇σP − g

π

∂T
∂σ

= −ηk× (πV) − σ̇
∂V
∂σ

−∇σ(Φ + K) − cpθ(
dP

dπ
)σ∇π − g

π

∂T
∂σ

, (8)

2

where
η =

(f + ζ)
π

is an “external” potential vorticity, f is the Coriolis parameter, k is the unit vector in the vertical,
ζ ≡ ∇σ ×V is the vertical component of the vorticity along σ surfaces, K ≡ 1

2 (V ·V) is the kinetic
energy per unit mass, g is the acceleration of gravity, and T is the horizontal frictional stress.

The thermodynamic equation is written as:

∂(πθ)
∂t

= −∇σ · (πVθ) − ∂(πσ̇θ)
∂σ

+
πQ
cpP

(9)

where Q is the diabatic heating per unit mass.
The Aries/GEOS Dynamical Core computes tendencies for an arbitrary number of atmospheric

constituents, such as water vapor and ozone. These are also written in flux form:

∂
(
πq(k)

)
∂t

= −∇σ ·
(
πVq(k)

)
−

∂
(
πσ̇q(k)

)
∂σ

+ πS(k) (10)

where q(k) is the specific mass of the kth constituent, and S(k) is its source per unit mass of air.

2.2 Discretization of the NASA GEOS-2 GCM and its difference from GEOS-1
GCM

a. horizontal and vertical differencing
A complete description of the finite-difference scheme used can be found in Suarez and Takacs

(1995).
The GEOS-1 GCM uses version 1 of the Aries/GEOS Dynamical Core, which is the second-

order potential enstrophy and energy conserving horizontal differencing scheme constructed in the
horizontal using the staggered Arakawa C-grid. This scheme was developed by Sadourney(1975)
and further described by Burridge and Haseler (1977). The GEOS-2 GCM employs Version 2
of this Dynamical Core. The important difference relative to the former version is that it uses
fourth order horizontal differences instead of second order. This scheme conserves total energy and
potential enstrophy for the non-divergent component of the flow in the shallow water equations. It
is fourth-order in the sense that it reduces to the fourth-order Arakawa Jacobian for non-divergent
flow. It thus provides fourth-order accuracy for the advection of a second-order vorticity by the non-
divergent part of the flow. Horizontal advection of potential temperature and moisture is performed
using the fourth-order scheme in use in the UCLA GCM. It also is fourth-order only in the advection
by the non-divergent part of the flow. The use of fourth-order differencing substantially improves
the phase propagation of synoptic scale waves.

In the vertical the Aries/GEOS Dynamical Core used a Lorentz or unstaggered vertical grid
in generalized sigma coordinates. The vertical differencing scheme is that of Arakawa and Suarez
(1983) which ensures that:

• The pressure gradient force generates no circulation of vertically integrated momentum along
a contour of surface topography

• The finite-difference analogues of the energy-conversion term have the same form in the kinetic
energy and thermodynamic equations

3

• The global mass integral of the potential temperature is conserved under adiabatic processes

• The hydrostatic equation for the lowest thickness has a local form

• The hydrostatic equation is exact for vertically isentropic atmospheres

• The pressure-gradient force is exact for three-dimensionally isentropic atmospheres.

The differences of GEOS-2 GCM from GEOS-1 GCM are that the model top is raised to 0.01
hPa and the vertical resolution is increased to 70 levels. The raising of the model lid is directed
at improving stratospheric descent over the winter pole and addressing the stratospheric cold pole
problem. Increasing the number of level is directed at improving the representation of the planetary
boundary layer, the troposphere at the altitude of the sub-tropical jet stream, and the stratosphere.

In GEOS-2 the capability is added to perform a coordinate rotation of the finite difference
grid. This was implemented to address the polar noise problems, especially in the stratosphere. In
addition, the coordinate rotation is at the basis for adaptive resolution capabilities to provide the
infrastructure for possible regional applications.

b. time integration scheme
The GEOS GCM has the ability to use the Matsuno time integration scheme or the Leapfrog

time integration scheme together with an Asselin (1972) time filter. The GEOS GCM employs
a unique method for incorporating adjustments due to diabatic processes (ie. moist convection,
radiation and turbulence) and the analysis increments during an assimilation. It is designed to be
completely time continuous with tendencies from the physics parameterizations and filters being
incrementally added at every dynamics time step. Earlier versions had intermittent applications
of these processes. The diabatic time tendencies are updated at a time step appropriate to the
physical parameterizations using the current time index, and are held constant between physics
calls. By gradually incorporating the diabatic adjustments during the model integration, shocks
and dynamical imbalances are greatly reduced.

An eighth-order Shapiro filter with a reduced coefficient is applied to the wind, potential
temperature and specific humidity to avoid non-linear computational instability. The reduced-
coefficient filter is applied at every step in such a way that the amplitude of the two-grid interval
wave is essentially removed in six hours. Applying the filter weakly at each step eliminates the
shock that occurred in earlier assimilations using an intermittent applications of the filter. The
Shapiro filtered time tendencies are updated every model time step.

The model also uses a polar Fourier filter to avoid linear instability due to violation of the linear
stability condition for the Lamb wave and internal gravity waves. This polar filter is appled only
to the tendencies of the winds, potential temperature, specific humidity and surface pressure.

Apart from the above-mentioned differences, there is another major difference on the coding of
the model. The version 6.5 of the GEOS-2 GCM whose TLM and adjoint we developed is a multi-
tasked version, with compiler directives added into the code to direct the compiler to produce
an executable which can run in parallel on multi-CPUs. To enable multi-tasking, the code was
modified and is quite different from the previous versions. This issue is addressed in more detail in
section 5.

2.3 Structure and flow chart of the adiabatic NASA GEOS-2 GCM

Fig. 1 shows the flow chart of the NASA GEOS-2 GCM and Fig. 2 shows the flow chart of the
Aries/GEOS dynamical core, which is the core part of the GCM.

4

if leapfrog

initialize tendencies

call dyndrv
(Matsuno predictor)

(dynamical core)
call dycore

(Shapiro filter)
call shapij

(Leapfrog)
call dyndrv

call physdrv
(physics package)

(Rayleigh friction)
call rayleigh

call step
(forward one time step)

(Matuno corrector)
call dyndrv

call rayleigh
(Rayleigh friction)

call step
(forward one time step)

enter

if matsuno

(dynamical core)
call dycore

(Shapiro filter)
call shapij

call rayleigh
(Rayleigh friction)

call step
(forward one time step)

call physdrv
(physics package)

update prognostic fields

exit

Figure 1: Flow chart of the NASA GEOS-2 GCM

5

calculate variables related to surface pressure

mass flux

call hadvect
(horizontal advection of tracers)

(horizontal advection of potential temperature)
call hadvect

horizontal convergence

time tendencies of zonal wind

horizontal vorticity

enter

vertical integration of continuity equation

surface pressure tendency

end do loop 1000

begin do loop 1000

Fig. 2, to be continued

6

integration of hydrostatic equation

add pressure gradient force to tendencies of u and v

exit

if leapfrog

apply Asselin time filter

calculate kinetic energy

call avrx
(apply polar Fourier filter to T and q tendencies)

vertical advection

add vertical advection to time tendencies

call avrx
(apply polar Fourier filter to u and v tendencies)

end do loop 3000

begin do loop 2000

begin do loop 3000

end do loop 2000

Figure 2: Flow chart of the Aries/GEOS dynamical core

7

3 Tangent linear model of the adiabatic version of NASA GEOS-2
GCM

The TLM is the basis upon which the adjoint model is to be developed. Also it is a useful tool
in the research on the dynamics of the evolution of atmospheric perturbations. Therefore we first
developed the TLM of the NASA GEOS-2 GCM.

We linearized the GCM at the FORTRAN code level and developed the tangent-linear model.
The method was essentially the same as that described in Yang et al. (1996).

The basic fields are calculated along with the perturbation fields exactly the same as in the
original GCM. The compiler directives “#ifdef _TLM_” and “#endif” are added respectively
before and after the statements related to perturbations so that if we do not specify -D _TLM_
in the compile command, the model would be exactly the same as the original GCM, otherwise the
TLM would produce the evolution of perturbations as well as the basic field which is the same as
given by the original GCM. This has the advantage of making it easier to check the basic fields and
ensuring that the basic field exactly corresponds to the trajectory given by the original nonlinear
model.

If the basic field is not to be updated every time step, it can be read in at the beginning of
each time step. This basic field is updated at certain time interval by storing the trajectory of the
original nonlinear model run.

The flow charts of the TLM are essentially the same as that of the GCM give in Figs. 1 and
2, except that the subroutines were renamed according to the conventions outlined in the next
subsection.

3.1 Notational convention for the tangent linear model

The notational convention we followed in developing the TLM code is quite different from that of
Yang et al. (1996) in the TLM of GEOS-1 GCM.

The names of the variables related to basic fields are kept the same as in the original
nonlinear model and the perturbation variables are represented by adding a prefix “pt_” before
the corresponding basic variables.

For the subroutine names, we just add “tl” before the corresponding subroutine names in the
nonlinear model. For example, “tlHADVECT” is the name of the subroutine calculating horizontal
advection in the TLM, corresponding to the subroutine “HADVECT” in the original GCM.

Examples of the TLM code can be found in section 5.

3.2 Verification of the tangent linear model

The TLM is the linear approximation to the original nonlinear model. Its accuracy determines the
accuracy of the adjoint model and the accuracy of the gradient of cost function calculated from the
adjoint model in 4-D variational assimilation. Therefore we need to carefully evaluate its accuracy
and its validity range.

To verify the correctness of the TLM, we first checked each subroutine by comparing the result
of the TLM with the difference of the twice GCM call, with and without perturbations, respectively.
After that, to check the whole GCM, we employed a more quantitative algorithm, as described in
Yang et al. (1996).

The evolution of the vector of the atmospheric variables X is given by the integration of the
model M between times t0 and tn as:

X(tn) = M (tn, t0) (X (t0)) . (11)

8

If at initial time X(t0) has a perturbation δX(t0), it would evolve to:

X
′
(tn) = M (tn, t0) (X0 (t0) + δX (t0)) (12)

The perturbation

∆X = X
′
(tn) − X(tn)

= M (tn, t0) (X0 (t0) + δX (t0)) − M (tn, t0) (X (t0))
= M (tn, t0) (X0 (t0)) + R (tn, t0) δX(t0) + O(δX(t0)2) − M (tn, t0) (X0 (t0)) ,

where R is the first derivative of M , or the tangent-linear model.
In the first order, the perturbation of X can be approximated by:

δX (tn) = R (tn, t0) δX (t0) (13)

The difference is denoted as:
D(δX) = ∆X− δX. (14)

To quantify the comparison, a norm is defined by:

‖X‖2 = XT WX (15)

where W is a diagonal matrix to give the proper weighting of each variables.
The relative difference between the TLM and the nonlinear model is defined as

r =
‖D‖
‖δX‖ . (16)

It gives a quantitative measure of the accuracy of the linear approximation.
The basic trajectory we used to do the verification is the model integration from the initial

condition on December 21st, 1991 at 03GMT, which is derived from the NASA/DAO assimilated
data set. The resolution is 5o longitude by 4o latitude. To produce the perturbations, we first
integrated the model for 6 hours and take the difference between the result and the initial condition,
then normalized it by ‖X‖. This normalized perturbation multiplied by different scaling factors α
serves as the perturbations of a series of our experiments. For α = 1.0, the global square root of
the perturbation on the zonal and meridional wind, the potential temperature, the surface pressure
and the specific humidity were 3.37 m/s, 3.19 m/s, 0.30 0K, 5.90 hPa and 3.87 ×10−4 kg/kg,
respectively. This is not a large perturbation.

For each experiments, we calculated the correlation coefficients as well as the relative differences
r between D and δX for each model variables. Table 1 gives the correlation coefficients between
D field and δX field and Table 2 shows the relative errors. The results presented here were with
Matsuno scheme. The leapfrog scheme results were very much similar. The integration period was
12 hours.

From the tables we can see that as α decreases from 10.0 to 10−5, the correlation coefficients
approach 1.0 with very high accuracy. The relative error decreases almost linearly between α = 1.0
and α = 10−4.

To provide an idea of the validity range of the TLM, Figs. 3a and b show the variation of the
correlation coefficients and the relative errors with time. We chose α = 10.0, α = 1.0 and α = 0.1 to
represent large, medium and small perturbations, respectively. It can be seen that for large initial
perturbation, the error growed rapidly with time, whereas for the medium perturbation, which is
about the same magnitude as the normal analysis error, the correlation coefficient was still higher
than 0.99 for 72 hours and the relative error was smaller than 10%. For smaller perturbations, the
error growth was even slower. These two figures gives the validity range of the TLM in terms of
the magnitude of the perturbations and the time scale.

9

Table 1: Correlation Coefficients Between D Field and δX Field:

α u v T ps q
10.0 0.9524766514420 0.9488548638531 0.9581327588277 0.9772099692437 0.9058661066522
1.0 0.9994728793944 0.9994203127811 0.9995342074172 0.9997579574115 0.9989258521684

10−1 0.9999946889274 0.9999941435555 0.9999953086670 0.9999975927674 0.9999892780251
10−2 0.9999999468518 0.9999999413767 0.9999999530550 0.9999999759444 0.9999998928165
10−3 0.9999999994684 0.9999999994137 0.9999999995304 0.9999999997594 0.9999999989281
10−4 0.9999999999947 0.9999999999941 0.9999999999952 0.9999999999975 0.9999999999892
10−5 0.9999999999994 0.9999999999994 0.9999999999998 0.9999999999999 0.9999999999995
10−6 0.9999999999458 0.9999999999513 0.9999999999902 0.9999999999983 0.9999999999643
10−7 0.9999999947244 0.9999999951117 0.9999999990432 0.9999999998310 0.9999999963746

Table 2: Relative Error Between D Field and δX Field:

α u v T ps q tatal
10.0 30.68 31.85 28.79 21.00 43.53 29.50
1.0 3.246 3.401 3.052 2.130 4.634 3.121

10−1 0.3259 0.3420 0.3064 0.2122 0.4630 0.3133
10−2 3.261 × 10−2 3.422 × 10−2 3.065× 10−2 2.121 × 10−2 4.629 × 10−2 3.135× 10−2

10−3 3.261 × 10−3 3.422 × 10−3 3.065× 10−3 2.121 × 10−3 4.629 × 10−3 3.135× 10−3

10−4 3.263 × 10−4 3.425 × 10−4 3.066× 10−4 2.120 × 10−4 4.631 × 10−4 3.137× 10−4

10−5 1.084 × 10−4 1.053 × 10−4 6.459× 10−5 2.726 × 10−5 9.462 × 10−5 9.656× 10−5

10−6 1.040 × 10−3 9.856 × 10−4 4.433× 10−4 1.738 × 10−4 8.445 × 10−4 9.119× 10−4

10−7 1.027 × 10−2 9.880 × 10−3 4.383× 10−3 1.775 × 10−3 8.515 × 10−3 9.066× 10−3

4 Adjoint model of the adiabatic version of NASA GEOS-2 GCM

4.1 Notational convention for the adjoint model

The adjoint model was constructed directly from the TLM code with the method as detailed in
Yang et al. (1996). The major difference is in the notational convention.

In accordance with the TLM, the variables for the basic fields keep the same names as that
in the original GCM, while the adjoint variables have an prefix “ad_ ” before their corresponding
names in the forward GCM.

For the subroutine names, we add “ad’ before the corresponding subroutine names in the forward
GCM. For example, “adHADVECT” is the adjoint of the subroutine “tlHADVECT”, which is the tangent
linear routine for the horizontal advection.

Examples of the adjoint code can be found in section 5.

4.2 Structure and flow chart of the adjoint model of the adiabatic version of
NASA GEOS-2 GCM

The sequence of execution in the adjoint model is generally opposite to that of the original forward
GCM. Figs. 4 and 5 show the flow chart of the adjoint model and the adjoint dynamic core part.
In the flow charts, we use the same terms in explaining the functions of each segment as in Figs. 1
and 2, but actually they represent the adjoint of the corresponding segments in the latter.

10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70

correlation coefficient

time in hours

α = 10.0 ××
×

×

×

×

α = 1.0 +

+ + + + +

α = 0.1 �

� � � � �

(a)

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70

relative error (%)

time in hours

α = 10.0 ×

×
×

×

×

×
α = 1.0 +

+ + + + +

α = 0.1 �

� � � � � (b)

Figure 3: Verification of the TLM model. (a): Variation of correlation coefficient with time; (b):
Variation of relative error ‖D‖/δX with time.

4.3 Verification of the adjoint model

We tested the correctness of the adjoint model by applying the following identity (see Navon et al.,
1992):

(AQ)T (AQ) = QT (AT (AQ)) (17)

where Q represents the input of the original code, A represents the original code or a segment of
it, say a subroutine, a do loop or even a single statement. AT is the adjoint of A. If (17) holds
within the machine accuracy, it can be said that the adjoint is correct versus the TLM code.

11

if leapfrog

enter

exit

update prognostic fields

if matsuno

(forward one time step)
call adstep

(forward one time step)
call adstep

(Rayleigh friction)
call adrayleigh

(physics package)
call adphysdrv

(Matsuno predictor)
call addyndrv

(Rayleigh friction)
call adrayleigh

(forward one time step)
call adstep

(Leapfrog)
call addyndrv

(Shapiro filter)

(dynamical core)

call adshapij

call addycore

(physics package)
call adphysdrv

reset tendencies

(Rayleigh friction)
call adrayleigh

(Matuno corrector)
call addyndrv

(Shapiro filter)

(dynamical core)

call adshapij

call addycore

Figure 4: Flow chart of the adjoint of the NASA GEOS-2 GCM.

12

enter

integration of hydrostatic equation

add pressure gradient force to tendencies of u and v

calculate kinetic energy

if leapfrog

apply Asselin time filter

vertical advection

add vertical advection to time tendencies

end do loop 2000

(apply polar Fourier filter to u and v tendencies)
call adavrx

(apply polar Fourier filter to T and q tendencies)
call adavrx

begin do loop 3000

begin do loop 2000

end do loop 3000

Fig. 5, to be continued

13

surface pressure tendency

vertical integration of continuity equation

calculate variables related to surface pressure

exit

mass flux

time tendencies of zonal wind

horizontal vorticity

horizontal convergence

end do loop 1000

(horizontal advection of potential temperature)
call adhadvect

(horizontal advection of tracers)
call adhadvect

begin do loop 1000

Figure 5: Flow chart of the adjoint of the Aries/GEOS dynamical core.

14

One has to be cautious when using (17) to check the adjoint code. Sometimes different variables
are involved in Q and the identity represents an integral of all the variables on all the grid points.
If some variables are very small in magnitude as compared to the other ones, their error may not
show up in the integral. In this case we need to change its magnitude in the ADJ code (also change
the TLM accordingly) in order to make sure that every and each variable is checked.

We checked the adjoint model segment by segment, do loop by do loop and subroutine by
subroutine. With double precision, the identity (17) was always accurate within 14 digits or better.
This verified the correctness of the adjoint model against TLM.

4.4 Gradient test of the tangent linear and the adjoint model

In the 4-D variational data assimilation, the adjoint model is used to calculate the gradient of a
cost function J to the initial disturbance δX(t0). J can be defined as:

J(X(t0)) =
1
2

R∑
r=0

(
X(tr) − Xobs(tr)

)T
W(tr)

(
X(tr) − Xobs(tr)

)
(18)

where X(tr) is the model state at time tr, Xobs(tr) is the observation; R is the number of time levels
for the analyzed fields in the assimilation window; W(tr) is an N × N diagonal weighting matrix,
where Wu, Wv, WT , WPs and Wq are diagonal submatrices consisting of weighting factors for
each variable, respectively. Their respective values were Wu = 10−3I s2m−2, Wv = 10−3I s2m−2,
WT = 10−1I K−2, WPs= 10−2I hPa−2 and Wq= 10+4I (kg/kg)−2.

Now suppose the initial X(t0) has a perturbation αh, where α is a small scalar and h is a vector
of unit length (such as the normalized vector of the adjoint model output). According to Taylor
expansion we get:

J(X(t0) + αh) = J(X(t0)) + αhT∇J(X(t0)) + O(α2), (19)

We can define a function of α as:

Φ(α) =
J(X(t0) + αh) − J(X(t0))

αhT∇J(X(t0))
= 1 + O(α). (20)

For values of α which are small but not too close to the machine zero, one should expect to
obtain values of Φ(α) which are close to unity. Here the gradient ∇J(X(t0)) is calculated by the
adjoint model.

We first generated the Xobs(tr) by interate the original GCM for 6 hours starting from the
analysis data at 03GMT on December 21st, 1991. The difference between this result and the initial
field, multiplied by 0.1, was then added to the initial field to be used as the initial condition to
generate the trajectory X(tr). Fig. 6a and b show the variation of Φ(α) and log|1 − Φ(α)| with
α, respectively. The abscissas of both of the figures are in log10 scale. The integration time was
6 hours. From them one can see that as α decreases from 10−3 to 10−6, Φ(α) approaches unity
almost linearly and then stays close to unity with a high degree of accuracy until α ∼ 10−11. This
means that for perturbations within this range, the gradient calculated with the adjoint model is
reliable.

Please note that the accuracy of the adjoint gradient not only depends on the accuracy of the
tangent linear and the adjoint models, but also on the approximation involved in linearizing (18),
which in turn depends, to some extent, on the relative magnitude of the distance X(tr)−Xobs(tr)
versus the perturbation αh. If we did not multiply the difference by 0.1 when constructing the
initial condition for X(tr), the result should be even better.

15

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3

Φ(α)

log(α)

(a)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3

log|Φ(α) − 1|

log(α)

(b)

Figure 6: Results of the gradient check of the TLM and ADJ model. (a): Variation of Φ(α) with
respect to log(α); (b): Variation of |1 − Φ(α)| with respect to log(α).

5 Multitasking of the TLM and Adjoint Model

With the development of massively parallel processing computer technology, today’s mainframe
supercomputers and workstations tend to have multiprocessors which allow a single job to be split
into pieces which execute on different processors concurrently. Such a technique is called parallel
processing or multi-tasking. Its main aim is to make the fullest use of the computer resources and
reduce run time of the job. In the present day data assimilation and forecast operations, which is

16

tapping the capacity of the most powerful computers available, multi-tasking of the models becomes
an inevitable trend.

There are different kinds of algorithms to do parallelization, depending on the architecture of
the hardware platforms and software systems provided. The version 6.5 of the GEOS-2 GCM,
whose TLM and ADJ we developed, is multi-tasked by inserting compiling directives into the code
to make the compiler produce the executable file which can run on multi-processors in parallel.
This kind of multi-tasking involves less programmer effort to rewrite the code than some other
algorithms such as MPI (Message-Passing Interface). In accordance with the original model, the
TLM and ADJ were also multi-tasked with the same algorithm. In this chapter we discuss the
issue of multi-tasking the codes with emphasis on the adjoint model since there are some parts in
it which need special treatment.

5.1 General concepts and algorithmic aspects of multi-tasking

a. General concepts of multi-tasking
The processes that participate in the parallel execution of a task are arranged in a master/slave

organization. The original process is the master. It creates several (can be zero) slave processes
at the beginning of execution of the job according to the user’s specification and the resources
available. The master and each of the slave processes are called a thread of execution or simply a
thread.

The technique of multi-tasking we employed works at the FORTRAN do loop level. Whenever
a parallel do loop is encountered, the master asks the slaves for help. The iterations of the do loop
is automatically divided among them and each slave executes different indexes of the do loop. For
each multitasked do loop, the processors work independently and concurrently and the programmer
can not control the sequence of the execution of the iterations. Therefore, the basic principle is that
for multi-processing to work properly, the iterations of the loop must not depend on each other;
each iteration must stand alone and produce the same answer regardless of whether any other
iteration of the loop is executed. This property is called data independence. Otherwise, the loop is
called to have data dependency and can not be correctly executed in parallel without modification.

For a loop to be data-independent, no iterations of the loop can write a value into a memory
location that is read or written by any other iteration of that loop. It is all right if the same
iteration reads and/or writes a memory location repeatedly as long as no others do; it is also all
right if many iterations read the same location, as long as none of them write to it. In a FORTRAN
program, memory locations are represented by variable names. So we need to examine the way
variables are used in the loop, paying particular attention to variables that appear on the left-hand
side of assignment statements. If a variable (including elements of an array) is both read and
written within a loop, there is possibility of data dependency associated with it.

Our main task in parallelize the model is to analyze the data dependencies of each do loop and
if a do loop is data dependent, to locate the statement(s) in it which can not be made parallel and
try to find another way to express so that it doesn’t depend on any other iteration of the loop. If
this fails, we have to try to separate this statement from the remainder of the original loop.

b. Multitasking directives on SGI workstation
The Fortran Compiler on Silicon Graphics multiprocessor workstation supports several simple

directives to generate multitasked executable for a job. Those compiler directives are added right
before a do loop to have it multitasked. The essential one is C$DOACROSS. It directs the compiler to
parallelize the do loop immediately after it. Note that the compiler recognizes the directive only
when the option -mp is turned on in the compiling command, otherwise it treats the directive line
as a comment line.

17

The C$DOACROSS has clauses, of which the three often used are: SHARE(variable list),
LOCAL(variable list) and LASTLOCAL(variable list).

SHARE(variable list) is a list of variables or arrays whose value are used by all the participating
processors. They carry their respective values into the do loop and if one processor modifies a shared
variable or a part of a shared array, its value is updated in all the other processors. Therefore a
variable or array can be declared as SHARE under the following conditions:

1. it is only read (not written) within the loop, or

2. it is an array where each iteration if the loop use (read and/or write) a different element of
the array (i.e., the overwritten element is not used by any other iteration in the same loop)

LOCAL(variable list) is a list of variables or arrays for which each processor has its own copy. It
should be noted that local variables are undefined when they enters the do loop no mater whether
or not the variables with the same name are defined prior to this loop. A variable or array can be
declared as local under the following conditions:

1. its value does not depend on any other iteration, or

2. its value is used only within a single iteration and is redefined or not used after this do loop.

A local variable is just temporary and its value is unpredictable when it exits the do loop,
therefore its value can not be used after the loop. If only the very last value of a variable computed
on the vary last iteration is used outside the loop(but would otherwise qualify as a local variable),
it can be declared LASTLOCAL. The iteration index should be declared as LOCAL or LASTLOCAL.

The SGI FORTRAN compiler take the variables as SHARE by default if they are not listed.
If the list is too long for one line, the C$& directive is used to continue the directive into multiple

lines.
c. Multitasking directives on CRAY
The concept of multitasking on CRAY supercomputers is generally the same as on the SGI

workstations, though the syntaxes are different. The declarer of a parallel do loop is CMIC$ do all
[clauses]. The clauses are SHARED(variable list) and PRIVATE(variable list). The former is the
correspondence to SHARE(variable list) and the latter is the correspondence to LOCAL(variable list)
on SGI.

On CRAY machines, a parallel region which contains multiple do loops can be declared by
adding

CMIC$PARALLEL[clauses]
and
CMIC$ENDPARALLEL
respectively at the beginning and end of the parallel region.

5.2 Examples of multitasking the tangent linear and adjoint model codes

Since the structure and sequence of the TLM is the same as the original GCM, it is quite
straightforward to multitask the TLM, in which the corresponding perturbation variables are added
to the directives of the original GCM to declare them as SHARE or LOCAL.

Most of the do loops in the ADJ model can not be multitasked directly by following their
counterparts in the GCM and TLM, mainly due to the fact that in many cases the read-only
variables at the right-hand side of a assignment statement in the original code move to the left-
hand side and are overwritten. Also many adjoint variables has to be accumulated, thus increasing

18

the possibilities of data dependency. Therefore some manipulations are necessary before adjoint
loops can be parallelized. In the following we discuss some examples of the multitasking of TLM
and ADJ codes.

a. example 1
Here is some parts of the code in the original GCM:

REAL PIV(IM,JM)
REAL PBI(IM,JM)
REAL PBJ(IM,JM)
REAL ...

DO I =1,IM*(JM-1)
PBI(I,1) = (PIB(I,1) + PIB(IE(I),1)) * HALF
PIV(I,1) = ONE / PIB(I,1)
ENDDO

DO I =1,IM*(JM-2)
PBJ(I,2) = (PIB(I,2) + PIB(I,1)) * HALF
ENDDO

DO 1000 L=1,LM

C MASS FLUXES

DO I =1,IM*(JM-1)
USB(I,1) = DYUIJ(I,1) * PBI(I,1) * UOB(I,1,L)
ENDDO

DO I =1,IM*(JM-2)
VSB(I,2) = DXVIJ(I,2) * PBJ(I,2) * VOB(I,2,L)
ENDDO

C COMPUTE CONVERGENCE

DO I =1,IM*(JM-1)
PSD(I,1,L) = ((USB(IW(I),1)-USB(I,1))

* + (VSB(I ,1)-VSB(I,2))) * (D2PIN(I,1)*DSG(L))
ENDDO

1000 CONTINUE

C VERTICAL INTERGRAL OF CONTINUITY EQUATION

DO L =2,LM
DO I =1,IM*(JM-1)
PSD(I,1,L) = PSD(I,1,L-1) + PSD(I,1,L)

ENDDO
ENDDO

DO 2000 LL=1,2

19

DO 2000 L=LL,LM-1,2

DO I =1,IM*(JM-1)
PSD(I,1,L) = PSD(I,1,L) - PSD(I,1,LM)*SIG(L+1)

psigdot(i,1,L) = psd(i,1,L) ! PSIGDOT Diagnostic
ENDDO

DO I=1,IM*(JM-1)
ST1 = SIG(L+1)*PSD(I,1,LM) + PSD(I,1,L)
ST2 = HALF*(VT3(IW(I),1)+VT3(I,1)+VT4(I,2)+VT4(I,1))

* * SIG(L+1)*D2PIN(I,1)*PIV(I,1)
OMG(I,1,L+1) = OMG(I,1,L+1) + BET(I,1) * (ST1 + ST2)

ENDDO

2000 CONTINUE

Please note that loop 2000 and 1000 are large do loops. Here we only pick out a small piece
from each of them. This applies to the following examples.

In the above code, SIG is a constant vector which stores the sigma value of each vertical level,
VT3, VT4 and BET are local arrays which are defined elsewhere inside loop 2000.

Several points should be considered when multitasking the above code:

1. In do loop 1000, USB and VSB are overwritten by each iteration and used only in the same
iteration, so they should be declared as LOCAL.

2. In the do loop on L right after loop 1000, there is data dependency for L iterations since
PSD(I,1,L) depends on PSD(I,1,L-1). However, there is no data dependency related to I
iteration. Therefore we can parallelize inner I loop instead of outer L loop.

3. In do loop 2000, since the iteration does not extend to L= LM, there is no data dependency
between PSD(I,1,L) and PSD(I,1,LM), no iteration uses the element which is modified by
another iteration, so the inner L loop can be parallelized.

From the above consideration, the code is multitasked as follows:

REAL PIV(IM,JM)
REAL PBI(IM,JM)
REAL PBJ(IM,JM)
REAL ...

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (IM, JM, ONE, HALF, IE)
cmic$* shared (PIB, PIV, PBI)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-1)

20

PBI(I,1) = (PIB(I,1) + PIB(IE(I),1)) * HALF
PIV(I,1) = ONE / PIB(I,1)
ENDDO

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (HALF, IM, JM, ONE, PBJ, PIB)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-2)
PBJ(I,2) = (PIB(I,2) + PIB(I,1)) * HALF
ENDDO

#if (multitask && CRAY)
cmic$ do all shared (DSG, DXVIJ, DYUIJ, D2PIN, IM, IW, JM, LM)
cmic$* shared (PSD, PBJ, PBI)
cmic$* shared (UOB, VOB)
cmic$* private (I, L)
cmic$* private (USB, VSB)
#endif
#if (multitask && SGI)
c$doacross local (I, L)
c$& local (USB, VSB)
#endif

DO 1000 L=1,LM

C MASS FLUXES

DO I =1,IM*(JM-1)
USB(I,1) = DYUIJ(I,1) * PBI(I,1) * UOB(I,1,L)
ENDDO

DO I =1,IM*(JM-2)
VSB(I,2) = DXVIJ(I,2) * PBJ(I,2) * VOB(I,2,L)
ENDDO

C COMPUTE CONVERGENCE

DO I =1,IM*(JM-1)
PSD(I,1,L) = ((USB(IW(I),1)-USB(I,1))

* + (VSB(I ,1)-VSB(I,2))) * (D2PIN(I,1)*DSG(L))
ENDDO

1000 CONTINUE

C VERTICAL INTERGRAL OF CONTINUITY EQUATION

DO L =2,LM
#if (multitask && CRAY)
cmic$ do all vector shared (IM, JM, L, PSD) private (I)

21

#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-1)
PSD(I,1,L) = PSD(I,1,L-1) + PSD(I,1,L)

ENDDO
ENDDO

DO 2000 LL=1,2

#if (multitask && CRAY)
cmic$ do all shared (D2PIN, HALF, IE, IW, IM, JM, LL, LM)
cmic$* shared (PSD, PSIGDOT, SIG)
cmic$* shared (PIV,OMG)
cmic$* private (BET, I, L, ST1, ST2, VT3, VT4)
#endif
#if (multitask && SGI)
c$doacross local (BET, I, L, ST1, ST2, VT3, VT4)
#$endif

DO 2000 L=LL,LM-1,2

DO I =1,IM*(JM-1)
PSD(I,1,L) = PSD(I,1,L) - PSD(I,1,LM)*SIG(L+1)

psigdot(i,1,L) = psd(i,1,L) ! PSIGDOT Diagnostic
ENDDO

DO I=1,IM*(JM-1)
ST1 = SIG(L+1)*PSD(I,1,LM) + PSD(I,1,L)
ST2 = HALF*(VT3(IW(I),1)+VT3(I,1)+VT4(I,2)+VT4(I,1))

* * SIG(L+1)*D2PIN(I,1)*PIV(I,1)
OMG(I,1,L+1) = OMG(I,1,L+1) + BET(I,1) * (ST1 + ST2)

ENDDO

2000 CONTINUE

The multitask is defined at compiling stage to turn the multitasking on or off. CRAY and SGI
are specified to make sure the right directives are used on different platforms. Please note that the
index of the multitasked loop should be declared as private or local, while the upper and lower
boundary should be declared as shared.

The linearization of the above code and its multi-tasking were quite straightforward:

REAL PIV(IM,JM)
REAL PBI(IM,JM)
REAL PBJ(IM,JM)
REAL pt_PIV(IM,JM)
REAL pt_PBI(IM,JM)
REAL pt_PBJ(IM,JM)
REAL ...

22

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (IM, JM, ONE, HALF,IE)
cmic$* shared (PIB, PIV, PBI)
cmic$* shared (pt_PIB,pt_PIV, pt_PBI)
cmic$* private (I)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-1)
PBI(I,1) = (PIB(I,1) + PIB(IE(I),1)) * HALF
PIV(I,1) = ONE / PIB(I,1)

#ifdef _TLM_
pt_PBI(I,1) = (pt_PIB(I,1) + pt_PIB(IE(I),1)) * HALF
pt_PIV(I,1) = -PIV(I,1)*PIV(I,1)*pt_PIB(I,1)

#endif
END DO

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (HALF, IM, JM, ONE, PBJ, PIB)
cmic$* shared (pt_PBJ, pt_PIB)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-2)
PBJ(I,2) = (PIB(I,2) + PIB(I,1)) * HALF

#ifdef _TLM_
pt_PBJ(I,2) = (pt_PIB(I,2) + pt_PIB(I,1)) * HALF

#endif
ENDDO

#if (multitask && CRAY)
cmic$ do all shared (DSG, DXVIJ, DYUIJ, D2PIN, IE, IM, IW, JM, LM)
cmic$* shared (PSD, PBJ, PBI)
cmic$* shared (UOB, VOB)
cmic$* private (I, L)
cmic$* private (USB, VSB)
cmic$* shared (pt_PSD, pt_PBJ, pt_PBI)
cmic$* shared (pt_UOB, pt_VOB)
cmic$* private (TMPC)
cmic$* private (pt_USB, pt_VSB)
#endif
#if (multitask && SGI)
c$doacross local (I, L)
c$& local (USB, VSB)
c$& local (TMPC)
c$& local (pt_USB, pt_VSB)
#endif

DO 1000 L=1,LM

23

C MASS FLUXES

DO I =1,IM*(JM-1)
USB(I,1) = DYUIJ(I,1) * PBI(I,1) * UOB(I,1,L)
ENDDO

DO I =1,IM*(JM-2)
VSB(I,2) = DXVIJ(I,2) * PBJ(I,2) * VOB(I,2,L)
ENDDO

#ifdef _TLM_
DO I =1,IM*(JM-1)
pt_USB(I,1) = DYUIJ(I,1) * (pt_PBI(I,1) * UOB(I,1,L)

& + PBI(I,1) * pt_UOB(I,1,L))
ENDDO

DO I =1,IM*(JM-2)
pt_VSB(I,2) = DXVIJ(I,2) *(PBJ(I,2) * pt_VOB(I,2,L)

& + pt_PBJ(I,2) * VOB(I,2,L))
ENDDO

#endif

C COMPUTE CONVERGENCE

DO I =1,IM*(JM-1)
PSD(I,1,L) = ((USB(IW(I),1)-USB(I,1))

* + (VSB(I ,1)-VSB(I,2))) * (D2PIN(I,1)*DSG(L))

#ifdef _TLM_
pt_PSD(I,1,L) = ((pt_USB(IW(I),1)-pt_USB(I,1))

* + (pt_VSB(I,1)-pt_VSB(I,2))) * (D2PIN(I,1)*DSG(L))
#endif

ENDDO

1000 CONTINUE

C VERTICAL INTERGRAL OF CONTINUITY EQUATION

DO L =2,LM
#if (multitask && CRAY)
cmic$ do all vector shared (IM, JM, L, PSD) private (I)
cmic$* shared (pt_PSD)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-1)
PSD(I,1,L) = PSD(I,1,L-1) + PSD(I,1,L)

#ifdef _TLM_
pt_PSD(I,1,L) = pt_PSD(I,1,L-1) + pt_PSD(I,1,L)

#endif
ENDDO

24

ENDDO

DO 2000 LL=1,2

#if (multitask && CRAY)
cmic$ do all shared (D2PIN, HALF, IE, IW, IM, JM, LL, LM)
cmic$* shared (PSD, PSIGDOT, SIG, TMPC)
cmic$* shared (PIV,OMG)
cmic$* shared (pt_PSD, pt_PSIGDOT, pt_PIV, pt_OMG)
cmic$* private (BET, I, L, ST1, ST2, VT3, VT4)
cmic$* private (pt_BET, pt_ST1, pt_ST2, pt_VT3, pt_VT4)
#endif
#if (multitask && SGI)
c$doacross local (BET, I, L, ST1, ST2, VT3, VT4)
c$& local (pt_BET, pt_ST1, pt_ST2, pt_VT3, pt_VT4)
#endif

DO 2000 L=LL,LM-1,2

DO I =1,IM*(JM-1)
PSD(I,1,L) = PSD(I,1,L) - PSD(I,1,LM)*SIG(L+1)

psigdot(i,1,L) = psd(i,1,L) ! PSIGDOT Diagnostic
ENDDO

#ifdef _TLM_
DO I =1,IM*(JM-1)

pt_PSD(I,1,L) = pt_PSD(I,1,L) - pt_PSD(I,1,LM)*SIG(L+1)
pt_psigdot(i,1,L) = pt_psd(i,1,L) ! PSIGDOT Diagnostic
ENDDO

#endif

DO I=1,IM*(JM-1)
ST1 = SIG(L+1)*PSD(I,1,LM) + PSD(I,1,L)

#ifdef _TLM_
pt_ST1 = SIG(L+1)*pt_PSD(I,1,LM) + pt_PSD(I,1,L)
TMPC=HALF*SIG(L+1)*D2PIN(I,1)

#endif

ST2 = HALF*(VT3(IW(I),1)+VT3(I,1)+VT4(I,2)+VT4(I,1))
* * SIG(L+1)*D2PIN(I,1)*PIV(I,1)

OMG(I,1,L+1) = OMG(I,1,L+1) + BET(I,1) * (ST1 + ST2)

#ifdef _TLM_
pt_ST2 = TMPC* ((pt_VT3(IW(I),1)+pt_VT3(I,1)+pt_VT4(I,2)

* +pt_VT4(I,1))*PIV(I,1)
& +(VT3(IW(I),1)+VT3(I,1)+VT4(I,2)+VT4(I,1))
* *pt_PIV(I,1))

pt_OMG(I,1,L+1) = pt_OMG(I,1,L+1) + pt_BET(I,1) * (ST1 + ST2)
& + BET(I,1) * (pt_ST1 + pt_ST2)

#endif
ENDDO

25

2000 CONTINUE

Note that in TLM we calculated the basic field exactly as in the original GCM. Normally we
only need to add the perturbation variables into the list of SHARED, PRIVATE or LOCAL the same
way as their original variables are declared in the GCM.

Now we develop the adjoint for this loop. According to the convention, we would write the
serial adjoint code as the following:

REAL PIV(IM,JM)
REAL PBI(IM,JM)
REAL PBJ(IM,JM)
REAL ad_PIV(IM,JM)
REAL ad_PBI(IM,JM)
REAL ad_PBJ(IM,JM)
REAL ...

DO 2000 LL=2,1,-1
DO 2000 L=LM-LL,LL,-2

DO I=IM*(JM-1),1,-1
ST1 = SIG(L+1)*PSD(I,1,LM) + PSD(I,1,L)
ST2 = HALF*(VT3(IW(I),1)+VT3(I,1)+VT4(I,2)+VT4(I,1))

* * SIG(L+1)*D2PIN(I,1)*PIV(I,1)
TMPC=HALF* SIG(L+1)*D2PIN(I,1)

ad_ST1 = + BET(I,1)* ad_OMG(I,1,L+1)
ad_ST2 = + BET(I,1)* ad_OMG(I,1,L+1)
ad_BET(I,1) = ad_BET(I,1) + (ST1 + ST2)* ad_OMG(I,1,L+1)
ad_OMG(I,1,L+1) = ad_OMG(I,1,L+1)

ad_PIV(I,1) = ad_PIV(I,1)+TMPC*(VT3(IW(I),1)+VT3(I,1)+
& VT4(I,2)+VT4(I,1)) *ad_ST2

ad_VT3(IW(I),1) = ad_VT3(IW(I),1) + TMPC*PIV(I,1)*ad_ST2
ad_VT3(I,1) = ad_VT3(I,1)+ TMPC*PIV(I,1)*ad_ST2
ad_VT4(I,2) = ad_VT4(I,2)+ TMPC*PIV(I,1)*ad_ST2
ad_VT4(I,1) = ad_VT4(I,1)+ TMPC*PIV(I,1)*ad_ST2
ad_ST2 = 0.0

ad_PSD(I,1,LM) = ad_PSD(I,1,LM) +SIG(L+1)*ad_ST1
ad_PSD(I,1,L) = ad_PSD(I,1,L) +ad_ST1
ad_ST1 = 0.0

ENDDO

DO I =1,IM*(JM-1)
ad_psd(i,1,L) = ad_psd(i,1,L) + ad_psigdot(i,1,L)
ad_psigdot(i,1,L) = 0.0
ad_PSD(I,1,LM) = ad_PSD(I,1,LM) - SIG(L+1)* ad_PSD(I,1,L)

C ad_PSD(I,1,L) = ad_PSD(I,1,L)
ENDDO

26

2000 CONTINUE

C VERTICAL INTERGRAL OF CONTINUITY EQUATION

DO L =LM, 2,-1

DO I =1,IM*(JM-1)
ad_PSD(I,1,L-1) = ad_PSD(I,1,L-1) +ad_PSD(I,1,L)
ad_PSD(I,1,L) = ad_PSD(I,1,L)

ENDDO
ENDDO

DO 1000 L=LM,1,-1

C COMPUTE CONVERGENCE

DO I = IM*(JM-1), 1,-1
ad_tmp = (D2PIN(I,1)*DSG(L))* ad_PSD(I,1,L)
ad_VSB(I,1) = ad_VSB(I,1) + ad_tmp
ad_VSB(I,2) = ad_VSB(I,2) - ad_tmp
ad_USB(IW(I),1) = ad_USB(IW(I),1) + ad_tmp
ad_USB(I,1) = ad_USB(I,1) - ad_tmp
ad_PSD(I,1,L) = 0.0
ENDDO

C MASS FLUXES

DO I =1,IM*(JM-2)

ad_tmp = DXVIJ(I,2) *ad_VSB(I,2)

ad_VOB(I,2,L)= ad_VOB(I,2,L) + PBJ(I,2) *ad_tmp
ad_PBJ(I,2) = ad_PBJ(I,2) +VOB(I,2,L) *ad_tmp
ad_VSB(I,2) = 0.0

ENDDO

DO I =1,IM*(JM-1)

ad_tmp = DYUIJ(I,1) *ad_USB(I,1)

ad_UOB(I,1,L)= ad_UOB(I,1,L) + PBI(I,1) *ad_tmp
ad_PBI(I,1)= ad_PBI(I,1) +UOB(I,1,L) *ad_tmp
ad_USB(I,1) = 0.0

ENDDO

1000 CONTINUE

DO I =1,IM*(JM-2)
ad_PIB(I,2) = ad_PIB(I,2) + HALF* ad_PBJ(I,2)
ad_PIB(I,1) = ad_PIB(I,1) + HALF* ad_PBJ(I,2)
ad_PBJ(I,2) = 0.0

27

ENDDO

DO I =IM*(JM-1),1,-1

PIV(I,1) = ONE / PIB(I,1)

ad_PIB(I,1)= ad_PIB(I,1) -PIV(I,1)*PIV(I,1)* ad_PIV(I,1)
ad_PIV(I,1) = 0.0
ad_PIB(I,1)= ad_PIB(I,1) + HALF * ad_PBI(I,1)
ad_PIB(IE(I),1) = ad_PIB(IE(I),1) + HALF * ad_PBI(I,1)
ad_PBI(I,1) = 0.0

END DO

Please note that in the second do statement, the iteration on L begins with LM-L instead of
LM-1, otherwise it will do the same iterations when LL=1 as when LL=2.

After testing this code with one CPU and make sure it is the right adjoint, we went on to
multitask it. As in the TLM, we declare the adjoint variables the same as their original GCM
variables. But in the adjoint code new data dependency may appear, therefore we have to re-
analysis carefully the data dependency for each do loop. For the above code, several points should
be aware of:

1. The ad_PSD(I,1,LM) in loop 2000 is overwritten by each iteration, so we have to think of
ways to break the data dependency associated with it. The original GCM and TLM would
not have this problem since PSD(I,1,LM) and pt_PSD(I,1,LM) are only read but not written
in them.

Since ad_PSD(I,1,LM) is related to other local variables inside the large do loop 2000, it is not
easy to separate it from this do loop. Therefore we need to add another 3-dimensional SHARED
variable ad_PSDTMP to temporaryly store the results for each iteration and then accumulate
them among L to ad_PSD(I,1,LM) after this do loop.

2. ad_PIV also has a problem. In the GCM and TLM code, it is a 2-dimensional variable which
is calculated before do loop 2000 and is only read inside this loop. However in the ADJ
code, not only is it overwritten, but also the results of each iteration need to be accumulated.
Therefore to break the data dependency, another dimension has to be added to ad_PIV to
store the results of each iteration in order to prevent it from being overwritten. After this
loop, the results are to be accumulated to the layer (L = LM) for later use.

3. ad_PBI and ad_PBJ both have the same problem as ad_PIV does. They also have to be
augmented to 3-dimensional in order to store the result of each iteration on L.

Now the multitasked adjoint code is as follows:

REAL PIV(IM,JM)
REAL PBI(IM,JM)
REAL PBJ(IM,JM)
REAL ad_PBI(IM,JM,LM)
REAL ad_PBJ(IM,JM,LM)
REAL ad_PIV(IM,JM,LM)

28

REAL ad_PSDTMP(IM,JM,LM)
REAL ...

call setzero(ndim3,ad_PSDTMP)

DO 2000 LL=2,1,-1

#if (multitask && CRAY)
cmic$ do all shared (D2PIN, HALF, IE, IW, IM, JM, LL, LM)
cmic$* shared (PSD, PSIGDOT, SIG, TMPC)
cmic$* shared (PIV,OMG)
cmic$* shared (ad_PSD, ad_PSDTMP, ad_PSIGDOT, ad_PIV, ad_OMG)
cmic$* private (BET, I, L, ST1, ST2, VT3, VT4)
cmic$* private (ad_BET, ad_ST1, ad_ST2, ad_VT3, ad_VT4)
#endif
#if (multitask && SGI)
c$doacross local (BET, I, L, ST1, ST2, VT3, VT4)
c$& local (ad_BET, ad_ST1, ad_ST2, ad_VT3, ad_VT4)
#$endif

DO 2000 L=LM-LL,LL,-2

DO I=IM*(JM-1),1,-1
ST1 = SIG(L+1)*PSD(I,1,LM) + PSD(I,1,L)
ST2 = HALF*(VT3(IW(I),1)+VT3(I,1)+VT4(I,2)+VT4(I,1))

* * SIG(L+1)*D2PIN(I,1)*PIV(I,1)
TMPC=HALF* SIG(L+1)*D2PIN(I,1)

ad_ST1 = + BET(I,1)* ad_OMG(I,1,L+1)
ad_ST2 = + BET(I,1)* ad_OMG(I,1,L+1)
ad_BET(I,1) = ad_BET(I,1) + (ST1 + ST2)* ad_OMG(I,1,L+1)
ad_OMG(I,1,L+1) = ad_OMG(I,1,L+1)

ad_PIV(I,1,L) = ad_PIV(I,1,L)+TMPC*(VT3(IW(I),1)+VT3(I,1)+
& VT4(I,2)+VT4(I,1)) *ad_ST2

ad_VT3(IW(I),1) = ad_VT3(IW(I),1) + TMPC*PIV(I,1)*ad_ST2
ad_VT3(I,1) = ad_VT3(I,1)+ TMPC*PIV(I,1)*ad_ST2
ad_VT4(I,2) = ad_VT4(I,2)+ TMPC*PIV(I,1)*ad_ST2
ad_VT4(I,1) = ad_VT4(I,1)+ TMPC*PIV(I,1)*ad_ST2
ad_ST2 = 0.0

ad_PSDTMP(I,1,L) = ad_PSDTMP(I,1,L) +SIG(L+1)*ad_ST1
ad_PSD(I,1,L) = ad_PSD(I,1,L) +ad_ST1
ad_ST1 = 0.0

ENDDO

DO I =1,IM*(JM-1)
ad_psd(i,1,L) = ad_psd(i,1,L) + ad_psigdot(i,1,L)
ad_psigdot(i,1,L) = 0.0
ad_PSDTMP(I,1,L) = ad_PSDTMP(I,1,L) - SIG(L+1)* ad_PSD(I,1,L)

c ad_PSD(I,1,L) = ad_PSD(I,1,L)
ENDDO

29

2000 CONTINUE

#if (multitask && CRAY)
cmic$ do all shared (ad_PSD, ad_PSDTMP, SIG, LM, IM, JM)
cmic$* private (I,L)
#endif
#if (multitask && SGI)
c$doacross local (I,L)
#endif

DO 2030 I =1,IM*(JM-1)

do L=1, LM-1
ad_PSD(I,1,LM) = ad_PSD(I,1,LM) + ad_PSDTMP(I,1,L)

ENDDO

2030 continue

call reduce (ad_piv, im*jm, LM)

C VERTICAL INTERGRAL OF CONTINUITY EQUATION

DO L =LM, 2,-1
#if (multitask && CRAY)
cmic$ do all vector shared (IM, JM, L, PSD) private (I)
cmic$* shared (ad_PSD)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =IM*(JM-1),1,-1

ad_PSD(I,1,L-1) = ad_PSD(I,1,L-1) +ad_PSD(I,1,L)
ad_PSD(I,1,L) = ad_PSD(I,1,L)

ENDDO
ENDDO

#if (multitask && CRAY)
cmic$ do all shared (DSG, DXVIJ, DYUIJ, D2PIN, IE, IM, IW, JM, LM)
cmic$* shared (PSD, PBJ, PBI)
cmic$* shared (UOB, VOB)
cmic$* private (I, L)
cmic$* private (USB, VSB)
cmic$* shared (ad_PSD, ad_PBJ, ad_PBI)
cmic$* shared (ad_UOB, ad-VOB)
cmic$* private(TMPC)
cmic$* private (ad_USB, ad_VSB, ad_tmp)
#endif
#if (multitask && SGI)
c$doacross local (I, L)
c$& local (USB, VSB)
c$& local (TMPC)

30

c$& local (ad_USB, ad_VSB, ad_tmp)
#endif

DO 1000 L=1,LM

C COMPUTE CONVERGENCE

DO I = IM*(JM-1), 1,-1
ad_tmp = (D2PIN(I,1)*DSG(L))* ad_PSD(I,1,L)
ad_VSB(I,1) = ad_VSB(I,1) + ad_tmp
ad_VSB(I,2) = ad_VSB(I,2) - ad_tmp
ad_USB(IW(I),1) = ad_USB(IW(I),1) + ad_tmp
ad_USB(I,1) = ad_USB(I,1) - ad_tmp
ad_PSD(I,1,L) = 0.0
ENDDO

C MASS FLUXES

DO I =1,IM*(JM-2)

ad_tmp = DXVIJ(I,2) *ad_VSB(I,2)

ad_VOB(I,2,L) = ad_VOB(I,2,L) + PBJ(I,2) *ad_tmp
ad_PBJ(I,2,L) = ad_PBJ(I,2,L) +VOB(I,2,L) *ad_tmp
ad_VSB(I,2) = 0.0

ENDDO

DO I =1,IM*(JM-1)

ad_tmp = DYUIJ(I,1) *ad_USB(I,1)

ad_UOB(I,1,L)= ad_UOB(I,1,L) + PBI(I,1) *ad_tmp
ad_PBI(I,1,L)= ad_PBI(I,1,L) + UOB(I,1,L) *ad_tmp
ad_USB(I,1) = 0.0

ENDDO

1000 CONTINUE

call reduce (ad_pbi, im*jm, LM)
call reduce (ad_pbj, im*jm, LM)

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (IM, JM, HALF)
cmic$* shared (PIB, PBJ)
cmic$* shared (ad_PIB, ad_PBJ)
cmic$* private (I)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-2)

31

ad_PIB(I,2) = ad_PIB(I,2) + HALF* ad_PBJ(I,2,LM)
ENDDO

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (IM, JM, HALF)
cmic$* shared (PIB, PBJ)
cmic$* shared (ad_PIB, ad_PBJ)
cmic$* private (I)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =1,IM*(JM-2)
ad_PIB(I,1) = ad_PIB(I,1) + HALF* ad_PBJ(I,2,LM)
ad_PBJ(I,2,LM) = 0.0

ENDDO

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (IM, JM, ONE, HALF)
cmic$* shared (PIB, PIV, PBI)
cmic$* shared (ad_PIB,ad_PIV, ad_PBI)
cmic$* private (I)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =IM*(JM-1),1,-1
PIV(I,1) = ONE / PIB(I,1)
ad_PIB(I,1)= ad_PIB(I,1) -PIV(I,1)*PIV(I,1)* ad_PIV(I,1,LM)
ad_PIV(I,1,LM) = 0.0
ad_PIB(I,1)= ad_PIB(I,1) + HALF * ad_PBI(I,1,LM)

END DO

#if (multitask && CRAY)
cmic$ do all vector private (I)
cmic$* shared (IM, JM, ONE, HALF,IE)
cmic$* shared (PIB, PBI)
cmic$* shared (ad_PIB, ad_PBI)
cmic$* private (I)
#endif
#if (multitask && SGI)
c$doacross local (i)
#endif

DO I =IM*(JM-1),1,-1
ad_PIB(IE(I),1) = ad_PIB(IE(I),1) + HALF * ad_PBI(I,1,LM)
ad_PBI(I,1,LM) = 0.0

END DO

Some remarks on the above code:

32

1. The new subroutine reduce (A, im*jm, LM) is to accumulate the value of all the vertical
levels of the array A(im,jm,LM) to the last level LM.

2. The subroutine setzero(N, A) is to set an array A(N) to zero.

3. For do loop 2030, the multitasking is done on I iteration instead of L, since L iterations has
data dependency.

4. Always bear in mind that all the local variables should be initialized in the loop, especially
for the adjoint variables which in many cases need to be added to itself.

5. After the value of ad_PIV is reduced to the last level LM, the later reference to it should use
ad_PIV(I,1,LM). If later do loops also need to use the three-dimensional ad_PIV the same
way as above, one need to make sure the value of ad_PIV(I,1,LM) is stored and accumulated
to the result of the later loops properly. The same applies to ad_PBI and ad_PBJ.

6. The two do loops right after loop 1000 were separated since there is data dependency between
ad_PIB(I,1) and ad_PIB(I,2), noting that the iteration on I goes to IM*(JM-2). The last
two do loops were also separated due to the data dependency related to ad_PIB(IE(I),1)
and ad_PIB(I,1). which will be explained in more detail in the next example.

7. After a do loop is multitasked, the sequence of its iterations is no longer significant.

b. example 2
Following is another piece of code in GCM:

REAL DPX(IM,JM)

#if (multitask && CRAY)
cmic$ do all vector shared (DPX, IE, IM, JM, VT1) private (I)
#endif
#if (multitask && SGI)
c$doacross local (I)
#endif

DO I=1,IM*(JM-1)
DPX(I,1) = (VT1(IE(I),1) - VT1(I,1))
ENDDO

#if (multitask && CRAY)
cmic$ do all shared (DSG, DXUIN, HALF, IE, IM, JM, LM)
cmic$* shared (DPX, PHI, UOI)
cmic$* private (GAM, I, L, ST1)
#endif
#if (multitask && SGI)
c$doacross local (GAM, I, L, ST1)
#endif

DO 3000 L=1,LM
DO I =1,IM*(JM-1)
ST1 = (PHI(IE(I),1,L) - PHI(I,1,L))

33

* + DPX(I,1) * HALF*(GAM(IE(I),1)+GAM(I,1))
UOI(I,1,L) = UOI(I,1,L) - ST1*DXUIN(I,1)
ENDDO

3000 CONTINUE

The IE(I) is defind before as:

do i=1,im*jm

IF(MOD(I,im).NE.0) THEN
IE(i) = i + 1

ELSE
IE(i) = i + 1 - im

ENDIF

enddo

That is, IE(I) denotes the eastern point of I.
In the TLM, the above two loops are linearized and multi-tasked as follows:

REAL DPX(IM,JM)
REAL pt_DPX(IM,JM)

#if (multitask && CRAY)
cmic$ do all vector shared (DPX, IE, IM, JM, VT1) private (I)
#ifdef _TLM_
cmic$* shared (pt_DPX, pt_VT1)
#endif
#endif
#if (multitask && SGI)
c$doacross local (I)
#endif

DO I=1,IM*(JM-1)
DPX(I,1) = (VT1(IE(I),1) - VT1(I,1))

#ifdef _TLM_
pt_DPX(I,1) = (pt_VT1(IE(I),1) - pt_VT1(I,1))

#endif
ENDDO

#if (multitask && CRAY)
cmic$ do all shared (DSG, DXUIN, HALF, IE, IM, JM, LM)
cmic$* shared (DPX, PHI, UOI)
cmic$* shared (pt_DPX, pt_PHI, pt_UOI)
cmic$* private (GAM, I, L, ST1)
cmic$* private (pt_GAM, pt_ST1)

34

#endif
#if (multitask && SGI)
c$doacross local (GAM, I, L, ST1)
c$& local (pt_GAM, pt_ST1)
#endif

DO 3000 L=1,LM
DO I =1,IM*(JM-1)
ST1 = (PHI(IE(I),1,L) - PHI(I,1,L))

* + DPX(I,1) * HALF*(GAM(IE(I),1)+GAM(I,1))
UOI(I,1,L) = UOI(I,1,L) - ST1*DXUIN(I,1)

pt_ST1 = (pt_PHI(IE(I),1,L) - pt_PHI(I,1,L))
* + pt_DPX(I,1) * HALF*(GAM(IE(I),1)+GAM(I,1))
* + DPX(I,1) * HALF*(pt_GAM(IE(I),1)+pt_GAM(I,1))

pt_UOI(I,1,L) = pt_UOI(I,1,L) - pt_ST1*DXUIN(I,1)

ENDDO

3000 CONTINUE

Note that GAM and pt_GAM are defined at other parts inside loop 3000.
The serial adjoint of the above code would be like this:

REAL DPX(IM,JM)
REAL ad_DPX(IM,JM)

DO 3000 L=LM,1,-1

DO I = IM*(JM-1),1,-1
ad_ST1 = - DXUIN(I,1) * ad_UOI(I,1,L)
ad_UOI(I,1,L) = ad_UOI(I,1,L)

ad_GAM(IE(I),1) = ad_GAM(IE(I),1) + HALF*DPX(I,1) * ad_ST1
ad_GAM(I,1) = ad_GAM(I,1) + HALF*DPX(I,1) * ad_ST1
ad_DPX(I,1) = ad_DPX(I,1) + HALF*(GAM(IE(I),1)

& +GAM(I,1)) * ad_ST1
ad_PHI(IE(I),1,L) = ad_PHI(IE(I),1,L) + ad_ST1
ad_PHI(I,1,L) = ad_PHI(I,1,L) - ad_ST1

ad_ST1 = 0.0

ENDDO

3000 CONTINUE

DO I=IM*(JM-1),1,-1
ad_VT1(IE(I),1)= ad_VT1(IE(I),1) +ad_DPX(I,1)
ad_VT1(I,1) = ad_VT1(I,1) - ad_DPX(I,1)
ad_DPX(I,1) = 0.0

35

ENDDO

We found that the above adjoint code could not be directly multitasked as in the GCM and
TLM for the following two reasons:

1. ad_DPX in do loop 3000 should be declared as SHARED, since its value is accumulated among
the iterations and used after this loop. However it is two-dimensional, so each iteration write
on the same array, causing data dependency. Therefore another dimension is needed to store
the result of each iteration. DPX in the GCM and pt_DPX in the TLM do not have such
problem since they are only read.

2. The do loop on I also has data dependency since the iteration I modifies the ad_VT1(IE(I),1)
as well as ad_VT1(I,1). To break the data dependency, this do loop has to be separated into
two. In the original code they are both read, therefore do not cause such problem.

Now the multitasked code read like this:

REAL DPX(IM,JM)
REAL ad_DPX(IM,JM,LM)

#if (multitask && CRAY)
cmic$ do all shared (DSG, DXUIN, HALF, IE, IM, JM, LM)
cmic$* shared (DPX, PHI, UOI)
cmic$* shared (ad_DPX, ad_PHI, ad_UOI)
cmic$* private (GAM, I, L, ST1)
cmic$* private (ad_GAM, ad_ST1)
#endif
#if (multitask && SGI)
c$doacross local (GAM, I, L, ST1)
c$& local (ad_GAM, ad_ST1)
#endif

DO 3000 L=LM,1,-1

DO I = IM*(JM-1),1,-1
ad_ST1 = - DXUIN(I,1) * ad_UOI(I,1,L)
ad_UOI(I,1,L) = ad_UOI(I,1,L)

ad_GAM(IE(I),1) = ad_GAM(IE(I),1) + HALF*DPX(I,1) * ad_ST1
ad_GAM(I,1) = ad_GAM(I,1) + HALF*DPX(I,1) * ad_ST1
ad_DPX(I,1, L) = + HALF*(GAM(IE(I),1)

& +GAM(I,1)) * ad_ST1
ad_PHI(IE(I),1,L) = ad_PHI(IE(I),1,L) + ad_ST1
ad_PHI(I,1,L) = ad_PHI(I,1,L) - ad_ST1

ad_ST1 = 0.0

ENDDO

3000 CONTINUE

36

call reduce (ad_dpx, im*jm, LM)

#if (multitask && CRAY)
cmic$ do all vector shared (IE, IM, JM, VT1) private (I)
cmic$* shared (ad_DPX, ad_VT1)
#endif
#if (multitask && SGI)
c$doacross local (I)
#endif

DO I=IM*(JM-1),1,-1

ad_VT1(IE(I),1)= ad_VT1(IE(I),1) +ad_DPX(I,1, LM)
ENDDO

#if (multitask && CRAY)
cmic$ do all vector shared (IM, JM, VT1) private (I)
cmic$* shared (ad_DPX, ad_VT1)
#endif
#if (multitask && SGI)
c$doacross local (I)
#endif

DO I=IM*(JM-1),1,-1

ad_VT1(I,1) = ad_VT1(I,1) - ad_DPX(I,1, LM)
ad_DPX(I,1, LM) = 0.0

ENDDO

5.3 Evaluation of the speed-up by multitasking

In order to evaluate the gain from multitasking the codes, we ran the models with the multitasking
turned on or off and stored the walltime consumed by each of the three models. The speed-up ratio
was calculated by:

speed − up ratio =
walltime without multitasking

walltime with multitasking
(21)

With 8 cpus, the ratios we got for TLM and ADJ were both around 2, while that for GCM was
about 3.6. In this experiment our integration period was only 6 hours. Longer integration time
would yield better speed-up due to relatively less overhead. Also note that we were not runing it
on a dedicated system. However we can see that there are still much room for further optimization.

37

6 References

Arakawa, A. and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the
shallow water equations, Mon. Wea. Rev., 109, 18-36.

Arakawa, A. and M. J. Suarez, 1983: Vertical differencing of the primitive equations in sigma
coordinates, Mon. Wea. Rev., 111, 34-45.

Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.

Burridge, D. M. and J. Haseler, 1977: A model for medium range weather forecasting - adiabatic
formulation, Tech. Report, No. 4, European Center for Medium Range Weather Forecasts,
Brachnell, Berkshire, UK.

DAO, 1996: Algorithm Theoretical Basis Document Version 1.01, Data Assimilation Office,
Goddard Space Flight Center, NASA.

Fox-Rabinovitz, M., H. M. Helfand, A. Hou, L. L. Takacs, and A. Molod, 1991: Numerical
experiments on forecasting, climate simulation and data assimilation with the new 17 layer
GLA GCM, Proceedings of the AMS Ninth Conference on Numerical Weather Prediction.
21-25 October 1991, Denver, CO, 506-509.

Helfand, H. M., M. Fox-Rabinovitz, L. L. Takacs, and A. Molod, 1991: Simulation of the planetary
boundary layer and turbulence in the GLA GCM, Proceedings of the AMS Ninth Conference
on Numerical Weather Prediction. 21-25 October 1991, Denver, CO, 514-517.

Kalney, E., M. Kanamitsu, J. Pfaendtner, J. Sela, M. Suarez, J. Stackpole, J. Tuccillo, L. Umscheid
and D. Williamson, 1989: Roles for the interchange of physical parameterizations, Bull. Amer.
Meteor. Sci., 70, 620-622.

Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data assimilation with an adiabatic
version of the NMC spectral model, Mon. Wea. Rev., 120, 1433-1446.

Phillips, N. A., 1957: A coordinate system having some special advantages for numerical
forecasting, J. Meteor., 14, 184-185.

Sadourney, R., 1975: The dynamics of finite difference models of the shallow water equations, J.
Atmos. Sci., 32, 680-689.

Schubert, S. D., J. Pfaendtner and R. Rood, 1993: An assimilated data set for Earth Science
applications, Bull. Amer. Meteor. Sci., 74, 2331-2342.

Suarez, M. J., and L. L. Takacs, 1995: Documentation of the Aries/GEOS Dynamical core: version
2, NASA Technical Memorandum 104606, Vol.5, Goddard Space Flight Center, NASA.

Takacs, L. L., A. Molod and T. Wang, 1994: Documentation of the Goddard Earth Observing
System (GEOS) General Circulation Model-Version 1. NASA Technical Memorandum
104606, Volume 1, Goddard Space Flight Center, NASA.

Todling, R., S. E. Cohn and N.S. Sivakumaran, 1998: Suboptimal schemes for retrospective data
assimilation based on the fixed-lag Kalman smoother, Mon. Wea. Rev., 126, 2274-2286.

38

Yang, W. and I. M. Navon, 1996: Documentation of the tangent linear model and its adjoint
of the adiabatic version of the NASA GEOS-1 C-grid GCM - version 5.2, NASA Technical
Memorandum 104606, Vol. 8, Goddard Space Flight Center, NASA.

Yang, W., I. M. Navon and R. Todling, 1997: Documentation of the tangent linear and adjoint
models of the relaxed Arakawa-Schubert moisture parameterization package of the NASA
GEOS-1 GCM (version 5.2), NASA Technical Memorandum 104606, Vol. 11, Goddard Space
Flight Center, NASA.

39

