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Abstract

Four dimensional variational (4D-Var) Data Assimilation (DA) method is used to find the
optimal initial conditions by minimizing a cost function in which background information and
observations are provided as the input of the cost function. The corrected initial condition
based on background error covariance matrix and observations improves the forecast. The
targeted observations determined by using a targeting method, for instance adjoint sensitivity,
observation sensitivity or singular vector may further improve the forecast . In this paper, we are
proposing a new technique–consisting of a penalized 4D-Var DA method that is able to reduce
the forecast error significantly. Here we are penalizing the cost function by the forecast aspect
defined over the verification domain at the verification time. The result shows that the initial
condition is optimally estimated, thus resulting in a better forecast by significantly reducing the
forecast error .
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1 Introduction

Numerical weather prediction (NWP) is based on the the integration of a dynamic system of
partial differential equations modeling the behavior of the atmosphere. Therefore discrete initial
conditions describing the state of the atmosphere have to be provided prior to the integration,
since they, along with the model equations and boundary conditions, control the evolution of the
solution trajectory in space and time. To find the best estimate for the initial condition we use four
dimensional variational(4D-Var) data assimilation (DA) techniques (LeDimet and Talagrand[1];
Derber [2]; Lewis and Derber [3]; Talagrand and Courtier [4]). In this method the best initial
condition is estimated by minimizing the cost function defined as the combination of deviations of
the desired analysis from a forecast and observations weighted by the inverse of the corresponding
forecast and observation-error covariance matrices.
4D-Var DA method uses a flow dependent background error covariance for estimating the atmo-
spheric state and assimilated indirect observational data such as satellite radiance without trans-
forming them into analysis variables. The computational expense of the variational assimilation
can be reduced by using the adjoint of the numerical model to calculate all of the components of the
gradient of the cost function with respect to the initial conditions in one integration of the forward
model followed by integration of the corresponding adjoint model. The adjoint model arises from
the theory of optimization and optimal control of partial differential equations (Lions [5]; Glowinski
[6]). Its theoretical aspects were presented by LeDimet and Talagrand [1]; Talagrand and Courtier
[4] and LeDimet et.al [7].
Results from 4D-Var experiments with large scale numerical model were published in the early
1990s (Thepaut et al. [8]; Navon et al. [9]; M. Zupanski [10]). Thepaut et al. [11] demonstrated
the ability of 4D-Var method to generate flow dependent and baroclinic structure functions in
meteorological analysis.
The forecast impact of targeting of observationsis determined by the distribution and types of
routine and targeted observations, the quality of the background or the first guess, and the ability of
the data assimilation procedure to combine information from the both background and observations.
To deploy targeted observations we need to define a target area. Typically, an objective procedure
(often based on adjoint or ensemble techniques) is used a day or more in advance to identify a
target region for the spatial observations identified using singulsr vector. It can also be determined
on the basis of high probability for a large or a fast growing initial condition error.
The goal of the adaptive observations is to add targeted observations inside the sensitive regions
in order to improve the initial conditions so that the forecast error has been reduced significantly.
Adjoint based observation sensitivity techniques may be used to identify the adaptive observation
space and time location that are valuable for the assimilation procedure, to conduct optimal data
thinning and to design the cost-effective field experiments for collecting adaptive observations.
Langland [12] shows that a small number of additional observational resources must be deployed
in order to improve a specific forecast aspect. The design of cost-effective observation targeting
strategies relies on the ability to a-priori identify optimal sites for collecting data of large impact
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on reducing forecast errors. Le Dimet et.al [7] presented a theoretical formulation of the sensitivity
analysis in variational data assimilation in the context of optimal control. Daescu and Navon [13]
proposed a new adjoint sensitivity approach where they considered the interaction between adaptive
observations and routine observations. The Singular Vector (SV) approach provides an additional
possibility of searching for directions in phase space where the errors in the initial condition will
amplify rapidly. The specification of the initial and final norms plays a crucial role. In the European
Center for Medium-Range Weather Forecasts (ECMWF) operational EPS, SVs are computed with
the so called total energy norm at initial and final time. It can be shown that among simple norms,
the total energy norm provides SVs which agree best with analysis error statistics (Palmer et al.
1998 [14]). Barkmeijer et al. [15] and [16] have shown that the Hessian of the cost function in a
variational data assimilation scheme can be used to compute SVs that incorporate an estimate of
the full analysis error covariance at initial time and total energy norm at final time. This type of
singular vector is called Hessian singular vector. Ehrendorfer and Tribbia [17] state that such an
approach to determine SVs provides an efficient way to describe the forecast error covariance matrix
when only a limited number of linear integrations are possible. Though finding the Hessian matrix
explicitly involves a computationally intensive effort, we can calculate Hessian vector product by
using second order adjoint (see LeDimet et al. [18]). This also requires an efficient generalized
eigenvalue problem solver to compute Hessian SVs. For advanced work on this topic see Hodinez
and Daescu [19].
In this paper we are proposing a new cost function which can be minimized to find the optimal
estimate of the initial condition. This initial condition reduces the forecast error significantly over
the verification domain at the verification time. The new cost function is obtained by penalizing
the cost function with a term defined as being proportional to the square of the distance between
analysis and both background and observation, with the forecast aspect being defined over the
verification domain at verification time.
The structure of the paper is as follows . In section 2 we present derivation of the equations and
the penalized 4-D VAR algorithm, while in Section 3 we describe the twin numerical experiments.
Numerical results are then presented and discussed in Section 4 along with the pseudo-algorithm
of the penalized 4-D Var approach.
Section 5 is dedicated to summary and conclusions.

2 Derivation of the Equations and Penalized 4-D VAR Algorithm

In four dimensional variational data assimilation(4D-Var DAS), an initial condition is sought such
that the forecast best fits the observations within an assimilation window [t0, tf ]. 4D-Var DAS
provides an optimal estimate xa

0 ∈ Rn to the initial condition of a nonlinear forecast model by
minimizing the cost function defined as
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J (x0) =
1
2
(x0 − xb)TB−1(x0 − xb)

+
1
2

N∑

i=0

(yi −Hixi)TR−1
i (yi −Hixi)

xa
0 = arg minJ (2.1)

where x0 = x(t0) denotes the initial state at the initial time t0, xb is a prior(background) estimate
to the initial state, yi ∈ Rki , i = 0, 1, 2, .., N is the set of observations available at time ti and
xi = M(t0, ti)(x0) is the nonlinear model forecast state at time ti and Hi : Rn → Rki is the
observation operator that maps the state space into the observation space at time ti. B is the
background error covariance matrix and Ri is the observational error covariance matrix at time
ti. We assume that background errors and observation errors are uncorrelated with each other. In
our case, we take the error covariance matrices B and Ri to be diagonal. The control variable or
the variable with respect to which the cost function (2.1) is minimized is the initial state of the
model x0 . The model M is assumed to be perfect by imposing the model equations as the strong
constraint.
In order to minimize the cost functional in (2.1) with respect to x0, we need to calculate the gradient
of the cost functional with respect to the control variable i.e. ∇x0J . The adjoint method provides
an efficient approach to calculate the gradient of the cost function with respect to control variables.
The gradient of the cost functional (2.1) is

∇x0J = B−1(x− x0)−
N∑

i=0

MT
0,iR

−1
i (yi −Hixi)

= B−1(x− x0)−R−1
0 (y0 −H0x0)

−MT
0,taR

−1
ta (yta −Htaxta)

−MT
0,trR

−1
tr (ytr −Htrxtr) (2.2)

where routine observations are available at t = tr, tr being the time for routine observations while
adaptive observations are available at t = ta, time for adaptive observations
Background error covariance is estimated by using well-known NMC-method (Parrish and Derber
[20]). In this process, background errors are assumed to be well approximated by averaged forecast
difference (e.g. month-long series of 24hr - 12hr forecasts valid at the same time) statistics:

B = εT
b εb = (xb − xt)T (xb − xt)

≈ (xt+24 − xt+12)T (xt+24 − xt+12) (2.3)

where xt is the true atmospheric state and xb is the background error. The bar denotes an average
over time and/or space.
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2.1 The adjoint sensitivity (AS) approach

The first approach to identify the adaptive observations locations is adjoint sensitivity method. In
practice it is of interest to assess the observation impact on the forecast measure J v(xv) on the
verification domain at the verification time tv. The verification domain, denoted by Dv, is the
domain where forecast error is significant. The functional J v is defined, see Daescu and Navon
[13], as a scalar measure of the forecast error over Dv

J v(x0) =
1
2
(xf

v − xt
v)

T P T EP (xf
v − xt

v) (2.4)

where xf
v is the model forecast at the verification time initialized from xa

0 and xt
v is the verification

state at tv initialized from xt
0 that serves as a proxy to the true atmospheric state. P is a projection

operator on Dv satisfying P ∗P = P 2 = P and E is a diagonal matrix of the total energy norm.
To select the adaptive observations locations, the gradient of cost functional J v defined in equation
(2.4) is used. The gradient of the function (2.4) at ti is defined as

∇J v(xi) = MT
i,vP

T EP (xf
v − xt

v) (2.5)

where xi = x(ti)

2.1.1 Location of adaptive observations by AS

We use the gradient of the function defined in (2.5) to evaluate the sensitivity of the forecast error
with respect to the model state at each targeting instant ti. A large sensitivity value indicates
that small variations in the model state xi will have a significant impact on the forecast at the
verification time. The adjoint sensitivity field with respect to total energy metric is defined as

Fv(λ, θ) = ||∇xiJ v||E (2.6)

where E is the total energy metric and weighted norm is defined as

||x||E =
1
2
(u2 + v2) +

h2

h0
(2.7)

where h0 is the mean geopotential height of the reference data at the initial time. The adaptive
observation at target instant ti are deployed at the first ni locations (λ, θ) where Fv(λ, θ) attains
largest values.

2.2 Penalized four dimensional variational method

The fundamental idea of the penalty method is to replace a constrained optimization problem by
a series of unconstrained problems whose solutions ideally converge to the solution of the original
constrained problem. The unconstrained problems are formed by adding a term to the objective
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function that consists of a penalty parameter and a measure of violation of the constraints. The
severity of the penalty is determined by a parameter, r, known as penalty parameter.
The general form of constrained minimization is

min
x
J (x) (2.8)

subject to c(x) = 0; (2.9)

where x is an n-dimensional vector and c(x) is an m-dimensional vector. Instead of solving the
constrained optimization problem we can solve an unconstrained minimization problem by defining
the quadratic penalty function,

Q(x; r) = J (x) +
1
2
r|c(x)|2

for any scalar r > 0. We seek the approximate minimizer xk of the function Q(x; r) as rk →∞ as
k →∞.
The algorithm of exterior penalty method (since it uses a sequence of infeasible points and feasibility
is obtained only at the optimum) can be summarized as:

1. Start with an initial point x0 and an initial value of parameter r0 > 0. set k = 0

2. Minimize Q(xk; rk) with xk by using an unconstrained minimization method and obtain x∗k.

3. Test whether x∗k is a solution of the problem i.e. satisfying the constraints c(x) = 0 within
some prescribed accuracy criteria. If this is true, terminate the process, otherwise, set rk+1 =
µrk where µ ∈ [4, 10] suggested by Bertsekas [21]

4. Set k = k + 1, use as a new starting point xk = x∗k and go to step 2.

The method depends for its success on sequentially increasing the penalty parameter r to high
values. The approximate minimizer becomes increasingly accurate as r gets higher.

2.2.1 Penalized cost function

In this work, we penalize the cost functional J (x) defined in (2.1) by adding a penalty term

rJv (2.10)

to the cost function in order to reduce the forecast error over the verification domain at the ver-
ification time. J v is the forecast aspect defined in the equation (2.4). In this work we employ
the penalty method in a weak sense that we try to find the minimizer by reducing the forecast
aspect Jv until it reaches a prescribed small value ε instead of attaining a perfect steady state
where forecast error is absolutely zero i.e. Jv = 0. That is, we are looking for the optimal initial
condition so that the cost function is minimized subject to the constraint that the forecast error
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is very small. In this case, the penalty parameter is sufficiently large but does not tend to infinity
which is equivalent to imposing an inequality constraint of the form

Jv ≤ ε (2.11)

The modified cost function is
J ′ = J +

1
2
rJv (2.12)

That is,

J ′(x0) =
1
2
(x0 − xb)TB−1(x0 − xb)

+
1
2

N∑

i=0

(yi −Hixi)TR−1
i (yi −Hixi)

+ r
1
2
(xf

v − xt
v)

T P T EP (xf
v − xt

v)

(2.13)

where xf
v = M(x0). The minimizer of the cost function (2.13) is obtained by using an unconstrained

minimization routine which requires the gradient of the cost function (2.13). The gradient of the
penalized cost function is obtained by using the following formula

∇x0J ′ = B−1(x− x0)−
N∑

i=0

MT
0,iR

−1
i (yi −Hixi)

+ rMT
i,vP

T EP (xf
v − xt

v) (2.14)

3 Description of Twin Numerical Experiments

3.1 Experimental setup

The numerical experiments were performed in the twin experiment framework using a finite volume
global two dimensional shallow water equations model that has been widely used as an essential
tool for testing promising numerical methods for solving geophysical science problems. The shallow
water(SW) equations, a first prototype of the partial differential equations, describes the horizontal
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dynamics of the atmosphere. The shallow water equations in spherical coordinates are written as

∂h

∂t
+

1
a cos θ

[
∂

∂λ
(hu) +

∂

∂θ
(hv cos θ)

]
= 0 (3.1)

∂u

∂t
+

1
a cos θ

[
u

∂u

∂λ
+ v cos θ

∂u

∂θ

]

−
(
f +

u

a
tan θ

)
v +

g

a cos θ

∂h

∂λ
= 0 (3.2)

∂v

∂t
+

1
a cos θ

[
u

∂v

∂λ
+ v cos θ

∂v

∂θ

]

+
(
f +

u

a
tan θ

)
u +

g

a

∂h

∂θ
= 0 (3.3)

where f = 2Ω sin θ is the Coriolis parameter, Ω is the angular speed of the rotation of the earth, h is
the height of the homogeneous atmosphere, u and v are the zonal and meridional wind components
respectively, θ and λ are the latitudinal and longitudinal directions, respectively, a is radius of the
earth and g is the gravitational constant.
We consider a spatial discretization on a 72× 37 grid (5◦ × 5◦ resolution). As a result of this, the
dimension of the discrete state vector x = (h, u, v) is 7776. For numerical stability we choose the
integration time step, ∆t = 900s. For our numerical experiment we consider the 500mb European
Center for Medium-Range Weather Forecasts(ECMWF) ERA-40 data valid for March 15, 2002
00h as a true (reference) atmospheric state xt

0. The model states at the initial time and after
30h integration are displayed in Figure 1 and 2. The background field xb is obtained from a 6h
integration of SW model initialized at t0−6h with xt

0. Observational data for the data assimilation
procedure is generated from the SW model trajectory initialized with xt

0 and corrupted with random
errors from a normal distribution N(0, σ2). We choose the standard deviation σh = 5 for the height
and σu = σv = 0.5 for the velocities. The background error covariance matrix is calculated by
using NMC method as described before. We assumed that background and observation errors are
uncorrelated. Therefore, the error covariance matrices are diagonal.
4D-Var DAS is carried out in the assimilation window [t0, t0 + 6h]. The routine observation for
our experiment is available at t0 and t0 + 6h only on a coarse 10◦ × 10◦ mesh grid and the total
number of observation locations are 648. So the observation operator is thus a 648× 2664 matrix
with entries of 0 and 1 only. At the verification time tv = t0 +30h the forecast error is calculated by
using reference state, xt

v = Mt0→tv(xt
o) and the forecast from background xf

v = Mt0→tv(xb). The
forecast error is displayed in Figure 3 calculated by using ||M0,tv(xb)−M0,tv(xt

0)||E at tv obtained
by using background estimate as the initial conditions. ||M0,tv(xa

0) −M0,tv(xt
0)||E at tv obtained

by using optimal analysis xa
0 as the initial condition. We have found that the forecast error is large

over the domain Dv = [65◦S, 35◦S] × [100◦W, 65◦W ] which will be considered as the verification
domain for our experiment.
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Figure 1: Graph of the geopotential height at the initial time t = 0h (left) and at verification time,
t = 30h (right)

Figure 2: Graph of the velocities at the initial time t = 0h (left) and at verification time, t = 30h
(right)

4 Results

In our twin experiment, we first minimize the cost function without adding the penalty term to
the cost function. The minimization process terminates successfully after 16 iterations and 21
function evaluations. The cost function is decreased by 10 orders of magnitude while the norm of
the gradient is decreased by 4 orders of magnitude. We used the resulting optimal initial condition
to compute the forecast error. The result is shown in Figure 4.
We then estimate the optimal initial condition by taking some adaptive observation with the rou-
tine observations by using the adjoint sensitivity method. The result shows that only few adaptive
observation added to the routine observations improve the forecast slightly. To compute the adjoint
sensitivity, we used the algorithm mentioned below. The adjoint sensitivity and adaptive observa-
tion locations are displayed in Figures 5(a)- 5(f). The forecast error over Dv at tv is obtained by
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Figure 3: Graph of the forecast error t = 30h from the background

Figure 4: Graph of the forecast error t = 30h from the optimal analysis obtained by using only
routine observations

using optimal initial condition xa
0 with routine plus adaptive observations are displayed in Figure 6.

The algorithm to compute the adjoint sensitivity are given below:–
Algorithm 1

• Calculate model solution xt
v at tv with initial condition (true atmospheric state) xt

0 by

xt
v = M0,v(xt

0) (4.1)

• Obtain optimal initial condition xa
0 by minimizing the cost functional J defined in (2.1) with

only routine observations. Calculate model forecast

xf
v = M0,v(xa

0) (4.2)
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• Compute ∇xvJ v = P T EP (xt
v − xf

v ) and use it as initial condition for adjoint model.

• Integrate Adjoint model backward from tv to ti : ∇xiJ v = MT
i,v∇xvJ v

We then carried out several sequential minimizations of the penalized cost function with the penalty
term defined in equation (2.13) aiming to reduce the forecast error to certain minimum level. We
attained the minimum forecast error when a very large value of the penalty parameter r was
employed. The value of the penalty parameter was adaptively increased based on the value of the
cost function Jv over verification domain where rk+1 = Jv(k)

Jv(0)rk. In our experiment, the initial
value for the penalty parameter is r = 1 and this value is sequentially increased based on the value
of the Jv(k) for each call of the unconstrained minimization routine. The algorithm for finding
the optimal minimizer of the penalized cost function is provided below. We have found that the
minimization routine performed well for a smaller value of the parameter (r < 105). For the large
value of r i.e r ≥ 105, the minimization failed to converge. However, in our experiment we have
found that the forecast error was reduced significantly which means that the initial condition is
estimated optimally by adding the penalty term to the cost function. The forecast error computed
with the optimal initial condition is displayed in Figure 7.
Algorithm 2

1. Initialization: r0 = 1,β0 = 6

2. Calculation of Jv(0) with the starting point x0.

3. Do loop k = 1, 2, ...

4. Forward integration of the forecast model

5. Calculation of Jv(k)

6. Calculation of βk = Jv(0)
Jv(k)

7. If βk > 1 then rk+1 = βkrk else rk+1 = 6rk

8. Unconstrained minimization

9. End do

It is well-known that the performance of minimization routine is very sensitive to the different
values of penalty parameter. The reason is that the condition number of the Hessian matrix of
the cost with respect to the control variables evaluated at the minimum increases as r is getting
larger. Moreover, if the initial value of r is too large, it is very difficult to find the minima
for any robust unconstrained minimization routine due to the slow convergence induced by the
increasingly larger condition number of the Hessian of the penalized cost function. For this reason,
we solved the problem of the penalty function sequentially by using the unconstrained minimization
routine M1QN3 [22] equivalent to L-BFGS routine, with moderately increasing values of the penalty
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parameter. We have found that the method performs very well if the penalty parameter is chosen
by using a cost function Jv that is decreasing slowly and consequently the value of parameter
is increasing slowly. In our experiment, each successive x∗(rk) is used as a new starting point
for solving an unconstrained minimization problem with the next increased value of the penalty
parameter until an acceptable convergence criterion is attained.

5 Summary and Conclusions

In numerical weather prediction, we can reduce the forecast error by optimizing the initial con-
dition. To obtain the optimal initial condition we need to minimize the cost function defined by
equation (2.1) which depends on background information and observations. Studies show that only
a few adaptive observations included with the existing routine observations can improve weather
forecast. Several targeting methods have already been developed. In this paper we use the ad-
joint sensitivity method to compare our proposed method, the penalized 4D Var DA method. The
approach proposed in this paper is able to estimate the initial condition optimally by minimizing
the penalized cost function J ′(x0) defined by (2.13). The evolution of the forecast error obtained
by using different approaches are displayed in Figure 8. We have found that the forecast error is
reduced significantly by the new approach of employing the penalized 4D Var DA method. From
the results obtained we conclude that penalized 4D Var approach performs better than the adjoint
sensitivity method. Therefore, the penalized 4D-Var method enables us to obtain the optimal ini-
tial condition that provides better forecast than the other method without adding any observations
to the existing routine network observations.
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(a) t=1h (b) t=2h

(c) t=3h (d) t=4h

(e) t=5h (f) t=6h

Figure 5: Time evolution of the sensitivity field corresponding to Adjoint sensitivity method. The
location of the adaptive observation at target instant ti over assimilation window is marked with
”¤”.
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Figure 6: Graph of the forecast error t = 30h from the optimal analysis obtained by using routine
plus adaptive observations

Figure 7: Graph of the forecast error t = 30h with the optimal analysis xp
0 obtained by minimizing

the penalized cost function. In the figure we see that there is no forecast error over the verification
domain if the optimal analysis xp

0 used as initial condition for the forecast model.
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