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Abstract

In this paper, the tropical Pacific Ocean reduced gravity model is studied using the proper orthogonal decomposition (POD) technique
of mixed finite element (MFE) method and an error estimate of POD approximate solution based on MFE method is derived. POD is a
model reduction technique for the simulation of physical processes governed by partial differential equations, e.g., fluid flows or other
complex flow phenomena. It is shown by numerical examples that the error between POD approximate solution and reference solution is
consistent with theoretical results, thus validating the feasibility and efficiency of POD method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The variability of fluid flow and fluid total layer thick-
ness over tropical oceans is an important question in stud-
ies of climate change and air–sea interaction. However, the
accurate assessment of fluid flow and fluid total layer thick-
ness is greatly limited due to the lack of direct measure-
ments and the insufficient knowledge of air–sea exchange
processes. The tropical Pacific Ocean reduced gravity
model is a useful model to simulate fluid flow and fluid
total layer thickness over tropical Pacific Ocean and it
has been extensively applied to studying the ocean dynam-
ics in tropical regions (see Cane [1] and Seager et al. [2]).
The model consists of two layers above the thermocline
with the same constant density. The ocean below the ther-
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mocline, with a higher density, is assumed to be sufficiently
deep so that its velocity vanishes (Fig. 1). The upper of the
two active layers is a fixed-depth surface layer in which the
thermodynamics are included. The surface layer communi-
cates with the lower active layer through entrainment/
detrainment at their interface and through frictional hori-
zontal shearing. We assume that there is no density differ-
ence across the base of the surface layer; that is, the surface
layer is treated as part of the upper layer.

Following Seager et al. [2], the equations for the depth-
averaged currents are

ou
ot � fv ¼ �g0 oh

ox þ sx

q0H þ Ar2u; ðx; y; tÞ 2 X� ð0; T 1Þ;
ov
ot þ fu ¼ �g0 oh

oy þ sy

q0H þ Ar2v; ðx; y; tÞ 2 X� ð0; T 1Þ;

oh
ot þ H ou

ox þ ov
oy

� �
¼ 0; ðx; y; tÞ 2 X� ð0; T 1Þ;

8>>><
>>>:

ð1:1Þ

with the boundary conditions
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Fig. 1. Ocean depth.
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uðx; y; tÞjoX ¼ ubðx; y; tÞ; ðx; y; tÞ 2 oX� ð0; T 1Þ;
vðx; y; tÞjoX ¼ vbðx; y; tÞ; ðx; y; tÞ 2 oX� ð0; T 1Þ;
hðx; y; tÞjoX ¼ hbðx; y; tÞ; ðx; y; tÞ 2 oX� ð0; T 1Þ;

8><
>: ð1:2Þ

and initial condition

uðx; y; 0Þ ¼ u0ðx; yÞ; vðx; y; 0Þ ¼ v0ðx; yÞ;
hðx; y; 0Þ ¼ h0ðx; yÞ; ðx; yÞ 2 X; ð1:3Þ

where (u,v) is the horizontal velocity of the depth-averaged
currents; h the total layer thickness; f the Coriolis force; H

the mean depth of the layer (constant); q0 the density of
water; g 0 the reduced gravity; and A the horizontal eddy
viscosity coefficient. The wind stress vector (sx,sy) is calcu-
lated by the aerodynamic bulk formula

ðsx; syÞ ¼ qaCD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

wind þ V 2
wind

q
ðU wind; V windÞ:

Here qa is the density of the air; CD the wind stress drag
coefficient; (Uwind,Vwind) the wind velocity vector; X de-
notes the two dimensional rectangular domain, which is
chosen from 30�S to 30�N in latitude and from 130�E to
70�W in longitude; ub(x,y, t), vb(x,y, t), hb(x,y, t), u0(x,y),
v0(x,y), and h0(x,y) are all given functions.

The seasonal net surface heat flux over tropical oceans
has been only simulated with Eqs. (1.1)–(1.3) augmented
by a thermodynamics equation as in Yu and O’Brien (see
[3]). However, since the computational field over the trop-
ical Pacific Ocean is very extensive, in order to obtain high
resolution numerical solutions of fluid flow and fluid total
layer thickness over tropical oceans, gridding points must
be taken with enough density, thus requiring a large num-
ber of degree of freedom rendering computing very diffi-
cult. Thus, an important problem is how to simplify the
computational load and save time-consuming calculations
and resource demands in the actual computational process
in a sense that guarantees a sufficiently accurate numerical
solution. Proper orthogonal decomposition (POD) is also
known as Karhunen–Loève expansions in signal processing
and pattern recognition (see [4]), principal component
analysis in statistics (see [5]), and the method of empirical
orthogonal functions in geophysical fluid dynamics (see
[6,7]) or meteorology (see [8]). The POD technique offers
adequate approximation to represent fluid flow with a
reduced number of degrees of freedom, i.e., with lower
dimensional models (see [9]) in order to simplify the com-
putation and save CPU and memory requirements. POD
has also found widespread applications in problems related
to the approximation of large-scale models. Although the
basic properties of POD method are well established and
studies have been conducted to evaluate the suitability of
this technique for various fluid flows (see [10–12]), its appli-
cability and limitations for actual fluid flow and fluid total
layer thickness over the tropical Pacific Ocean are not well
documented.

The POD method mainly provides a useful tool for effi-
ciently approximating a large amount of data. The method
essentially provides an orthogonal basis for representing
the given data in a certain least squares optimal sense, that
is, it provides a way to find optimal lower dimensional
approximations of the given data. In addition to being
optimal in a least squares sense, POD has the property that
it uses a modal decomposition that is completely data
dependent and does not assume any prior knowledge of
the process used to generate the data. This property is
advantageous in situations where a priori knowledge of
the underlying process is insufficient to warrant a certain
choice of basis. Combined with the Galerkin projection
procedure, POD provides a powerful method for generat-
ing lower dimensional models of dynamical systems that
have a very large or even infinite dimensional phase space.
The fact that this method always searches for linear (or
affine) subspaces instead of curved submanifolds makes it
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computationally tractable. In many cases, the behavior of a
dynamic system is governed by characteristics or related
structures, even though the ensemble is formed by a large
number of different instantaneous solutions. POD method
can capture these temporal and spatial structures by apply-
ing a statistical analysis to the ensemble of data.

In fluid dynamics, Lumley first employed the POD tech-
nique to capture the large eddy coherent structures in a tur-
bulent boundary layer (see [13]); this technique was further
extended in [14], where a link between the turbulent struc-
ture and dynamics of a chaotic system was investigated. In
Holmes et al. [9], the overall properties of POD are
reviewed and extended to widen the applicability of the
method. The method of snapshots was introduced by Siro-
vich [15], and is widely used in applications to reduce the
order of POD eigenvalue problem. Examples of these are
optimal flow control problems [16–18] and turbulence
[9,13,14,19,20].

In many applications, the POD method is used to gener-
ate basis functions for a reduced order model (ROM),
which can simplify and provide quicker assessment of the
major features of the fluid dynamics for the purpose of flow
control demonstrated by Kurdila et al. [18] or design opti-
mization shown by Ly et al. [17]. This application is used in
a variety of other physical applications, such as in [17],
which demonstrates an effective use of POD for a chemical
vapor deposition (CVD) reactor.

In [21], while the tropical Pacific Ocean reduced gravity
model is preliminarily dealt with POD method, an exact
theoretical analysis was not carried out, in particular an
error estimate of the POD approximate solution was not
as yet derived. The objective of this paper is to investigate
in depth to what extent can POD be successfully used to
approximate a mixed finite element (MFE) solution for
the tropical Pacific Ocean reduced gravity model. In partic-
ular, we aim to provide an error estimate of the approxi-
mate MFE solution, so that one could determine the
number of required eigenmodes. Some numerical examples
are provided for validating the proposed theory.
2. Outline of proper orthogonal decomposition technique

The essential problem of POD is to identify the underly-
ing, coherent structures of a collected ensemble of data.
POD entails finding the optimal bases and constructing a
model of reduced dimension to approximate the original
ensemble. Originally, POD was used as a data representa-
tion technique. For model reduction of dynamical systems,
POD may be used on data points derived from system tra-
jectories obtained via experiments, numerical simulations,
or analytical derivations.
2.1. Continuous case

Let Uið~xÞ ði ¼ 1; 2; . . . ; nÞ denote the set of n observa-
tions (also called snapshots) of some physical process taken
at position~x ¼ ðx; yÞ. The average of the ensemble of snap-
shots is given by

U ¼ hUi ¼ 1

n

Xn

i¼1

Uið~xÞ: ð2:1Þ

We form new ensemble by focusing on deviations from the
mean as follows:

V i ¼ U i � U : ð2:2Þ

We wish to find an optimal compressed description of the
sequence of data (2.2). One description of the process is a
series expansion in terms of a set of basis functions. Intui-
tively, the basis functions should in some sense be represen-
tative of the members of the ensemble. Such a coordinate
system, which possesses several optimality properties (to
be discussed in the sequel), is provided by the Karhunen–
Loève expansion (see [4]), where the basis functions are
U, in fact, admixtures of the snapshots and are given by

U ¼
Xn

i¼1

aiV ið~xÞ; ð2:3Þ

where the coefficients ai are to be determined such that U
given by (2.3) will most resemble the ensemble fV ið~xÞgn

i¼1.
More specifically, POD seeks a function U such that

1

n

Xn

i¼1

jðV i;UÞj2; ð2:4Þ

subject to

ðU;UÞ ¼ kUk2
0 ¼ 1; ð2:5Þ

is minimized, where (Æ, Æ) and k Æk0 denote the usual L2-inner
product and L2-norm, respectively (see Section 3.1).

It follows that (see, e.g. [22]) the basis functions are the
eigenfunctions of the integral equationZ

X
Cð~x;~x0ÞUð~x0Þdx0 ¼ kUð~xÞ; ð2:6Þ

where the covariance kernel is given by

Cð~x;~x0Þ ¼ 1

n

Xn

i¼1

V ið~xÞV ið~x0Þ: ð2:7Þ

Substituting (2.3) into (2.6) yields the following eigenvalue
problem:

Xn

j¼1

Lijaj ¼ kai; i ¼ 1; 2; . . . ; n; ð2:8Þ

where Lij ¼ 1
n ðV i; V jÞ, L = (Lij)n·n is a symmetric and non-

negative matrix. Thus we see that our problem amounts
to solving for the eigenvectors of an n · n matrix where n

is the size of the ensemble of snapshots. Straightforward
calculation (see also [22]) shows that the cost functional

1

n

Xn

i¼1

jðV i;UÞj2 ¼ ðkU;UÞ ¼ k
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is maximized when the coefficients ai (i = 1,2, . . . ,n) of (2.8)
are the elements of the eigenvector corresponding to the
largest eigenvalue of L.

2.2. Discrete case

Alternatively, we also can consider the discrete Karh-
unen–Loève expansion to find an optimal representation
of the ensemble of snapshots. In general, each sample of
snapshots U ið~xÞ (defined on a set of m nodal points ~x)
can be expressed as a m dimensional vector ~ui as follows:

~ui ¼ ðui1; ui2; . . . ; uimÞT; ð2:9Þ

where uij denotes the jth component of the vector
~ui ði ¼ 1; 2; . . . ; nÞ. The mean of vector is given by

�uk ¼
Xn

i¼1

uik; k ¼ 1; 2; . . . ;m: ð2:10Þ

We also can form a new ensemble by focusing on devia-
tions from the mean value as follows:

vik ¼ uik � �uk; k ¼ 1; 2; . . . ;m: ð2:11Þ

Let the matrix A denote the new ensemble

A ¼

v11 v21 � � � vn1

v12 v22 � � � vn2

..

. ..
. ..

. ..
.

v1m v2m � � � vnm

0
BBBB@

1
CCCCA

m�n

;

where the discrete covariance matrix of the ensemble may
be written as

AAT~yk ¼ kk~yk; k ¼ 1; 2; . . . ;m; ~yk 2 Rm�m: ð2:12Þ

Thus, to compute the POD mode, one must solve a m · m

eigenvalue problem. For a discretization of an ocean prob-
lem, the dimension often exceeds 104, so that a direct solu-
tion of this eigenvalue problem is often not feasible. We
can transform the eigenvalue problem into an n · n eigen-
value problem (see [23]). In the method of snapshots, one
then solves the n · n eigenvalue problem

ATA~wk ¼ kk~wk; k ¼ 1; 2; . . . ; n; ~wk 2 Rn�n; ð2:13Þ

where the nonzero eigenvalues kk (1 6 k 6 n) are the same
in (2.12). The eigenvectors may be chosen to be orthonor-
mal, and the POD modes are given by ~/k ¼ A~wk=

ffiffiffiffiffi
kk

p
. In

matrix form, with U ¼ ð~/1;~/2; . . . ;~/nÞ, and W ¼ ð~w1;
~w2; . . . ; ~wnÞ, this becomes U = AW.

The eigenvalue problem (2.13) is more efficient than the
m · m eigenvalue problem (2.12) when the number of snap-
shots n is much smaller than the number of states m.

3. POD technique and error estimate of MFE method for

tropical Pacific Ocean reduced gravity model

In this section, we apply the POD technique and MFE
method to the upper tropical Pacific Ocean model
described in Section 1. This method provides a systematic
way of creating a reduced basis space using the state of
the system at different time instances. As in the general
reduced order basis methods, the states could come from
full order numerical computations (also obtained from sys-
tem trajectories obtained via experiments, or by analytical
derivations). Here, we apply the MFE methods to the
upper tropical Pacific Ocean model for obtaining a full
order numerical solution, then apply the POD technique
to reconstruct the approximate solution and approximate
the solution of the reduced model. Finally, we compare
the error of the accurate solution with that of the approx-
imate solution.

3.1. MFE method for the tropical Pacific Ocean reduced

gravity model

The Sobolev spaces along with their properties used in
this context are standard (cf. Ref. [24]). For example, for
bounded domain X, we denote by Hm(X) (mP0) and
L2(X) = H0(X) the usual Sobolev spaces equipped with
the semi-norm and the norm, respectively,

jvjm;X ¼
X
jaj¼m

Z
X
jDavj2 dxdy

( )1=2

8v 2 H mðXÞ;

kvkm;X ¼
Xm

i¼0

jvj2i;X

( )1=2

8v 2 H mðXÞ;

where a = (a1,a2), a1 and a2 are tow nonnegative integers,
and jaj = a1 + a2. Especially, the subspace H 1

0ðXÞ of
H1(X) is denoted by

H 1
0ðXÞ ¼ fv 2 H 1ðXÞ; ujoX ¼ 0g:

Note that k Æk1 is equivalent to j Æ j1 in H 1
0ðXÞ. Let

L2
0ðXÞ ¼ fq 2 L2ðXÞ;

R
X qdxdy ¼ 0g, which is the subspace

of L2(X). For the sake of convenience, we consider the
mixed variational formulation for (1.1) with the boundary
conditions

uðx; y; tÞjoX ¼ 0; vðx; y; tÞjoX ¼ 0; hðx; y; tÞjoX ¼ 0;

0 6 t 6 t1:

Therefore, the variational form for the tropical Pacific
Ocean reduced gravity model can be written as:

Problem (I). Find ðu; v; hÞ 2 H1
0ðXÞ � H1

0ðXÞ � L2
0ðXÞ such

that
ðut;uÞ � f ðv;uÞ � g0ðh;uxÞ þAðru;ruÞ ¼ ðf1;uÞ
8u 2 H 1

0ðXÞ;
ðvt;wÞ þ f ðu;wÞ � g0ðh;wyÞ þAðrv;rwÞ ¼ ðf2;wÞ
8w 2 H 1

0ðXÞ;
ðht;qÞ þHðuxþ vy ;qÞ ¼ 0 8q 2 L2

0ðXÞ;
uðx; y;0Þ ¼ u0ðx; yÞ; vðx; y;0Þ ¼ v0ðx; yÞ;hðx; y;0Þ
¼ h0ðx; yÞ; ðx; yÞ 2 X;

8>>>>>>>>>>><
>>>>>>>>>>>:
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where f1 = sx/(q0H) and f2 = sy/(q0H). Using the same as
approach in Ref. [25], we could check that Problem (I)
has a unique solution.

In order to find the numerical solution for Problem (I),
it is necessary to discretize Problem (I). We introduce a
finite element approximation for the spatial variable and
finite difference scheme for the time derivative. Let I�h be
a uniform regular triangulation of X (here X denotes the
two dimensional rectangular domain, which is chosen from
30�S to 30�N in latitude and from 130�E to 70�W in longi-
tude in actual computation), i.e., for any K 2 I�h, put
�hK = diam{K}, �h ¼ maxK2I�hf�hKg, then c�h 6 �hK 6 c1�h.
Denote the time step increment by k = T1/N (T1 being
the total time) and MFE approximation of (u,v,h) by
ðul

�h; v
l
�h; h

l
�hÞ ¼ ðu�hðx; y; tlÞ; v�hðx; y; tlÞ; h�hðx; y; tlÞÞ, tl = lk (0 6

l 6 N). Define the finite element subspaces of
H 1

0ðXÞ and L2
0ðXÞ as follows, respectively,

X �h ¼ fu�h 2 H 1
0ðXÞ; u�hjK 2 P mðKÞ 8K 2 I�hg;

L�h ¼ fq�h 2 L2
0ðXÞ; q�hjK 2 P m�1ðKÞ 8K 2 I�hg;

(

where m P 1 is integer, Pm(K) polynomial subspace of de-
grees 6m on K. Then, the fully discrete formulation for
Problem (I) can be written as:

Problem (II). Find ðul
�h; v

l
�h; h

l
�hÞ 2 X �h � X �h � L�h (l = 1,2,

. . .,N) such that

ðul
�h;u�hÞ � kf ðvl

�h;u�hÞ � kg0ðhl
�h;u�hxÞ þ kAðrul

�h;ru�hÞ

¼ kðf l
1 ;u�hÞ þ ðul�1

�h ;u�hÞ 8u�h 2 X �h;

ðvl
�h;w�hÞ þ kf ðul

�h;w�hÞ � kg0ðh�h;w�hyÞ þ kAðrvl
�h;rw�hÞ

¼ kðf l
2 ;w�hÞ þ ðvl�1

�h ;w�hÞ 8w�h 2 X �h;

ðhl
�h; q�hÞ þ kHðu�hlx þ v�hy ; q�hÞ ¼ ðhl�1

�h ; q�hÞ 8q�h 2 L�h;

l ¼ 1; 2; . . . ;N ;

u0
�h ¼ u0ðx; yÞ; v0

�h ¼ v0ðx; yÞ; h0
�h ¼ h0ðx; yÞ;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

where f l

1 ¼ f1ðtlÞ and f l
2 ¼ f2ðtlÞ. Using the same as ap-

proach as in [26], we could check that Problem (II) has un-
ique solution ðul

�h; v
l
�h; h

l
�hÞ 2 X �h � X �h � L�h, and if solution

(u,v,h) 2 Hm+1(X) · Hm+1(X) · Hm(X) of Problem (I), the
following error estimates hold:
kuðx; y; tlÞ � ul
�hk0 þ k1=2Pl

j¼1

krðuðx; y; tlÞ � ul
�hÞk0

6 cð�hm þ kÞ;

kvðx; y; tlÞ � vl
�hk0 þ k1=2Pl

j¼1

krðvðx; y; tlÞ � vl
�hÞk0

6 cð�hm þ kÞ;

khðx; y; tlÞ � hl
�hk0 6 cð�hm þ kÞ; l ¼ 1; 2; . . . ;N ;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3:1Þ
where c is a constant independent of �h and k, but depen-
dent of (u,v,h).
3.2. POD technique for the tropical Pacific Ocean reduced

gravity model

In the construction described above in Section 2, the
number n may be large, depending on the complexity of
the dynamics represented in the ‘‘snapshots’’. In general,
one should take n sufficiently large so that the snapshots
Ui(x,y) contain all the salient features of the dynamics
being investigated. Thus, the POD basis functions Ui

(1 6 i 6 n), used with the original dynamics in a Galerkin
procedure, offer the possibility of achieving a high fidelity
model albeit with perhaps a dimension n.

To apply the POD techniques to the upper tropical Paci-
fic Ocean model in Section 1, we first solve Problem (II) at
N time steps and obtain the solutions ðul

�h; v
l
�h; h

l
�hÞ ðl ¼ 1; 2;

. . . ;NÞ of velocity field and upper layer thickness at an
increment of k = T1/N (for example, T1 = 1 year) day for
(x,y) 2 X. And then we choose n (for example, n = 5, 20,
or 30, in general, n� N) snapshots U iðx; yÞ ¼ ðui

�h; v
i
�h;

hi
�hÞ ði ¼ 1; 2; . . . ; nÞ (which is useful and of interest for us)

from N group of solutions ðul
�h; v

l
�h; h

l
�hÞð1 6 l 6 NÞ for Prob-

lem (II). These snapshots are discrete data over X. Using
(2.10), (2.11), and (2.13) yields covariance matrices
AT

u Au;A
T
v Av;A

T
h Ah associated with ðui

�h; v
i
�h; h

i
�hÞ ði ¼ 1; 2;

. . . ; nÞ. Since those matrices are all nonnegative Hermitian
matrices, they all have a complete set of orthogonal eigen-
vectors with the corresponding eigenvalues arranged in
ascending order as ku

1 P ku
2 P � � �P ku

n P 0, kv
1 P kv

2

P � � �P kv
n P 0, and kh

1 P kh
2 P � � �P kh

n P 0, respec-
tively. Then we construct POD basis elements Uu

i ðx; yÞ;
Uv

i ðx; yÞ;Uh
i ðx; yÞ such that
X POD
u ¼ span Uu

1ðx; yÞ;Uu
2ðx; yÞ; . . . ;Uu

nðx; yÞ
� �

;

X POD
v ¼ span Uv

1ðx; yÞ;Uv
2ðx; yÞ; . . . ;Uv

nðx; yÞ
� �

;

X POD
h ¼ span Uh

1ðx; yÞ;Uh
2ðx; yÞ; . . . ;Uh

nðx; yÞ
� �

;

8>>><
>>>:

ð3:2Þ
are defined as
Uu
j ðx; yÞ ¼

Xn

i¼1

aj
uiu

i
�h; Uv

jðx; yÞ ¼
Xn

i¼1

aj
viv

i
�h;

Uh
i ðx; yÞ ¼

Xn

i¼1

aj
hih

i
�h; ð3:3Þ
where aj
ui; aj

vi; aj
hi ð1 6 i 6 nÞ are the components of the

eigenvectors AuV j
u=

ffiffiffiffiffiffi
kuj

p
, AvV j

v=
ffiffiffiffiffiffi
kvj

p
, AhV j

h=
ffiffiffiffiffiffi
khj

p
corre-

sponding to the eigenvalues ku
j ; k

v
j ; k

h
j , respectively.

For three groups of basic functions Uu
i ðx; yÞ;Uv

i ðx; yÞ;
Uh

i ðx; yÞ ði ¼ 1; 2; . . . ; nÞ, put
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us
�h ¼ �uðx; yÞ þ

Pn
j¼1

bu
j ðtsÞUu

j ðx; yÞ;

vs
�h ¼ �vðx; yÞ þ

Pn
j¼1

bv
jðtsÞUv

jðx; yÞ;

hs
�h ¼ �hðx; yÞ þ

Pn
j¼1

bh
j ðtsÞUh

j ðx; yÞ; s ¼ 1; 2; . . . ;

8>>>>>>><
>>>>>>>:

ð3:4Þ

where bu
j ðtsÞ, bv

jðtsÞ, and bh
j ðtsÞ (j = 1,2, . . .,n) are coeffi-

cients to determine; �uðx; yÞ, �vðx; yÞ, and �hðx; yÞ are the mean
values of ðui

�h; v
i
�h; h

i
�hÞ ði ¼ 1; 2; . . . ; nÞ, respectively. Note

that, if s = i(1 6 i 6 n), ðus
�h; v

s
�h; h

s
�hÞ are the solutions for

Problem (II). Since the scales in model variables and are
not uniform, one may employ different modes to recon-
struct the solutions. In order to reduce order for Problem
(II), we apply the POD approximate solution
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8>>>>>>>><
>>>>>>>>:

ð3:5Þ

where bu
j ðtsÞ and bv

jðtsÞ ðj ¼ 1; 2; . . . ;M1Þ, bh
j ðtsÞ ðj ¼ 1; 2;

. . . ;M2Þ, �uðx; yÞ, �vðx; yÞ, and �hðx; yÞ are the same as Eq.
(3.4). Substituting the solutions of Problem (II) with (3.4)
and (3.5), respectively, we could obtain the following equa-
tions, respectively.

Problem (III). Find ðbu
r ðtsÞ; bv

rðtsÞ; bh
r ðtsÞÞ ðr ¼ 1; 2; . . . ; nÞ

such that
Fig. 2. Error of numerical solutions of different POD bases for 5, 20, and
30 snapshots. (a) 5 snapshots; (b) 20 snapshots; and (c) 30 snapshots.
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along with the initial condition

bu
r ð0Þ ¼ ðuðx; y; 0Þ � �uðx; yÞ;Uu

r ðx; yÞÞ;
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rð0Þ ¼ ðvðx; y; 0Þ � �vðx; yÞ;Uv

rðx; yÞÞ;
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r ð0Þ ¼ ðhðx; y; 0Þ � �hðx; yÞ;Uh

r ðx; yÞÞ; 1 6 r 6 n:

8>><
>>:

ð3:6Þ

Problem (IV). Find ðbu
r ðtsÞ; bv

rðtsÞ; bh
‘ðtsÞÞ (r = 1,2, . . . ,M1,

‘ = 1,2, . . . ,M2) such that
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along with the initial condition

bu
r ð0Þ ¼ ðuðx; y; 0Þ � �uðx; yÞ;Uu
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rðx; yÞÞ; r ¼ 1; 2; . . . ;M1;

bh
‘ð0Þ ¼ ðhðx; y; 0Þ � �hðx; yÞ;Uh
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8><
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ð3:7Þ
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There is the following error estimate between the solu-
tions for Problem (III) and the solutions for Problem
(IV), whose proof is provided in Appendix A.

Theorem 1. If maxfð
Pn

i¼M1þ1k
u
i Þ

1=2; ð
Pn

i¼M1þ1k
v
i Þ

1=2g 6 �h=c
and k is sufficiently small, then the error estimate between the

solutions for full basic Problem (II) and the solutions for the
reduced order basic Problem (IV) is

kððus
�h � us

M1
Þ; ðvs

�h � vs
M1
Þ; ðhs

�h � hs
M1
ÞÞk0

6 C5

Xn

i¼M1þ1

ðku
i þ kv

i Þ þ
Xn

i¼M2þ1

kh
i

 !
;

where C5 ¼ 3C4 ðC4 see Appendix A) and s = 1,2, . . ..

Combining (3.1) with Theorem 1 could yield in the fol-
lowing result.

Theorem 2. If maxfð
Pn

i¼M1þ1k
u
i Þ

1=2; ð
Pn

i¼M1þ1k
v
i Þ

1=2g 6 �h=c
and k is sufficiently small, then the error estimate between the

solutions for Problem (I) and the solutions for the reduced

order basic Problem (IV) is

ðuðtlÞ � ul
M1
Þ; ðvðtlÞ � vl
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� ���� ���
0

6 cð�hm þ kÞ þ C5
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i þ kv

i Þ þ
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i¼M2þ1
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i

 !
;

l ¼ 1; 2; . . . ; n:
Fig. 3. Fluid total layer thickness for Problem (II) (black curve), 4 POD bases f
7 POD bases for 30 snapshots for month of June (b) and December (d). (a) C
Remark 1. When one computes actual problems, one may
obtain the ensemble of snapshots from physical system tra-
jectories by drawing samples from experiments and inter-
polation (or data assimilation). For example, for weather
forecast, one can use previous weather prediction results
to construct the ensemble of snapshots, then restructure
the POD basis for the ensemble of snapshots by Section
2, and finally combine it with a Galerkin projection to
derive a reduced order dynamical system, i.e., one needs
only to solve Problem (IV) which has only few degrees of
freedom, but it is unnecessary to solve Problem (II). Thus,
the forecast of future weather change can be quickly simu-
lated, which is of major importance for actual real-life
applications.

Remark 2. In general, c0 is a very small value so that
exp(kc0n) approaches 1 in Theorem 1, and taking m = 1
or 2 is sufficient in actual numerical simulations. Since
our methods employ some MFE solutions ðui

�h; v
i
�h; h

i
�hÞ

ði ¼ 1; 2; . . . ; nÞ for Problem (II) as assistant analysis, the
error estimates in Theorem 2 are correlated to the gridding
scale �h and time step size k. However, using same argument
as in Remark 1, the assistant ðui

�h; v
i
�h; h

i
�hÞ ði ¼ 1; 2; . . . ; nÞ

could be substituted with the interpolation functions of
experimental and previous results, it is unnecessary to solve
Problem (II), it is only necessary to directly solve Problem
(IV) such that Theorem 1 is satisfied. Since Problem (IV) is
or 5 snapshots (green curve), 7 POD bases for 20 snapshots (red curve), and
ase on June and (b) case on December.



Fig. 4. Profiles of currents for Problem (II) (blue vector) for month of June (a) and December (c) and profiles of currents for Problem (IV) using 7 POD
bases for 20 snapshots (red curve) for month of June (b) and December (d). (a) Currents for Problem (II) on June (b) currents for Problem (IV) on June (c)
currents for Problem (II) on December (d) currents for Problem (IV) on December. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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only dependent on M1 and M2, and is independent of the
gridding scale �h and time step size k, and, in general, M1

and M2� n, it is only necessary to solve Problem (IV) with
very few freedom degrees.
4. Some numerical examples

In this section, we present numerical computations related
to the approaches presented in the previous paragraphs. In
this study, we applied the model to the tropic Pacific Ocean
domain X (which is a domain 30�S–30�N, 130�E–70�W),
using parameters values of f = 2(7.29E�5)sin(x,y), H =
150 m, q0 = 1.2 kg m�3, qa = 1025 kg m�3, g 0 = 3.7 · 10�2,
A = 750 m2 s�1, and CD = 1.5 · 10�3 for Problem (I). This
chosen model domain allows for all possible equatorially
trapped waves to be excited by the applied wind forcing
(see [3]). The no-normal flow and no-slip conditions are
applied at these solid boundaries. We choose the uniform reg-
ular triangulation with �h = 0.5� and the time mesh size to be
k = 100s. The model is driven by the Florida State University
(FSU) climatology monthly mean winds (cf. [27]), and the
data are projected onto each time step by a linear interpola-
tion and onto each grid point by a bilinear interpolation.

We choose 5, 20, and 30 group of solutions (i.e., snap-
shots) solving Problem (II) for 1 year. It is shown by com-
puting that eigenvalues ku4, kv4, and kh4 are all less than
10�3 if the number of snapshots is 5, while eigenvalues
ku8, kv8, and kh8 are all less than 10�3 if the number of snap-
shots is 20 and 30, which are consistent with the errors
between numerical solutions obtained with a different num-
ber of POD optimal bases for Problem (IV) and solutions
obtained with Problem (II), where the red curve represents
the error of fluid total layer thickness, the blue curve repre-
sents the error of fluid velocity in the longitude direction,
and the green curve represents the error of fluid velocity
in the latitude direction in Fig. 2.1 It is shown by compar-
ing results for Problem (II) and POD reduced model that
the computational load for velocity vector and fluid total
layer thickness with Problem (IV) is sizably reduced, and
the error between them does not exceed 10�3. And the
results of the error for the actual example are consistent
with the theoretical results obtained by computing with
Theorem 2. This also shows that finding the approximate
solutions for the tropical Pacific Ocean reduced gravity
model with Problem (IV) is computationally very effective.

We obtain the solution for fluid total layer thickness h

depicted graphically in Fig. 3a and b, respectively, where
the green curves represent numerical solution for 5 snap-
shots used 4 POD bases to solve reduced Problem (IV),
the red curves represent numerical solution for 20 snap-
shots used 7 POD bases to solve reduced Problem (IV),
the purple curves represent numerical solution for 20 snap-
shots used 7 POD bases to solve reduced Problem (IV), and
1 For interpretation of the references to colour in Fig. 2, the reader is
referred to the web version of this article.
the black curves represent the solutions solving Problem
(II) on June and on December.

We also obtain the profiles of currents for fluid velocity
(u,v) depicted graphically in Fig. 4b and d, respectively, for
20 snapshots using 7 POD bases to solve Problem (IV), and
Fig. 4a and c are, respectively, the solutions solving Prob-
lem (II) for June and for December.

These profiles demonstrate that the results of the numer-
ical simulations coincide with both the theory and the
actual cases. Especially, the POD reduced model Problem
(IV) is a reduced method to apply the existing datum to
simulating future phenomena, which has far fewer
(2M1 + M2� n) degrees of freedom of Problem (II).
Therefore, the POD reduced method is very suitable for
dealing with large-scale science engineering computations,
and could simplify computing and reduces both CPU and
memory requirements in the actual computational process
in a sense that guarantees a sufficiently accurate numerical
solution.
5. Conclusions

In this paper, we have employed the POD and Galerkin
techniques to study the reduced format for the tropical
Pacific Ocean reduced gravity model and to reconstruct
POD optimal orthogonal bases of ensembles of data which
are compiled from transient solutions derived by using the
MFE equation system. We have also combined the POD
bases with a Galerkin projection procedure, thus yielding
a new reduced model of lower dimensional order and of
high accuracy for the tropical Pacific Ocean reduced grav-
ity model. We have then proceeded to derive error esti-
mates between our reduced format approximate solutions
and the usual full order MFE numerical solutions, and
have shown using numerical examples that the error
between the POD approximate solution of reduced format
and the full MFE solution is consistent with the theoretical
error results obtained, thus validating both feasibility and
efficiency of our reduced format. Future work in this area
will aim to extend the reduced format, implementing it to
a realistic sea forecast system and to more complicated
PDEs, for instance, the nonlinear shallow water equation
system consisting of water dynamics equations, silt trans-
port equation and the equation of bottom topography
change. We have shown both by theoretical analysis as well
as by numerical examples that the reduced format pre-
sented herein has extensive perspective applications.
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Appendix A

The proof of Theorem 1 is as follows.
Subtracting Problem (IV) and (3.7) from Problem (III)

and (3.6) yields the following error equations:
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along with the initial condition
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r ð0Þ ¼ ðuðx; y; 0Þ � �uðx; yÞ;Uu

r ðx; yÞÞ;
r ¼ M1 þ 1;M1 þ 2; . . . ; n;
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Eqs. (A.1)–(A.3) can be written as in the following vec-
tor format:
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where O is a (n �M2) · (n �M2) zero matrix, 0 is a
(n �M2)-dimensional zero vector, and
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where k Æk is the norm of matrices or vector. From the in-
verse inequality (see [28] or [29]) and matrix normal prop-
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Summing (A.13) from 1 to s, if k is sufficiently small, such
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where ðb0
u;b

0
v ;b

0
hÞ ¼ ðb

u
M1þ1ð0Þ; . . . ;bu

nð0Þ;b
v
M1þ1ð0Þ; . . . ;bv

nð0Þ;
bh

M2þ1ð0Þ; . . . ; bh
nð0ÞÞ, C1 ¼ 2k

Pn
i¼0kf i

1k, and C2 ¼
2k
Pn

i¼0kf i
2k. Noting that
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��� ���
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where C3 ¼ maxfkuðx; y; 0Þk0 þ k�uk0; kvðx; y; 0Þk0 þ k�vk0;
khðx; y; 0Þk0 þ k�hk0g. Using discrete Gronwall inequality
for (A.14), one could obtain
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where C4 ¼ expðnkc0ÞmaxfC1 þ C3;C2 þ C3;C3g. Com-
bining (A.6) with (A.16) and using Cauchy inequality yields
Theorem 1.
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