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ABSTRACT

The fixed-lag Kalman smoother (FLKS) has been proposed as a framework to construct data assimilation
procedures capable of producing high-quality climate research datasets. FLKS-based systems, referred to as
retrospective data assimilation systems, are an extension to three-dimensional filtering procedures with the added
capability of incorporating observations not only in the past and present time of the estimate, but also at future
times. A variety of simplifications are necessary to render retrospective assimilation procedures practical.

In this article, an FLKS-based retrospective data assimilation system implementation for the Goddard Earth
Observing System Data Assimilation System is presented. The practicality of this implementation comes from
the practicality of its underlying (filter) analysis system, that is, the physical-space statistical analysis system
(PSAS). The behavior of two schemes is studied here. The first retrospective analysis (RA) scheme is designed
simply to update the regular PSAS analyses with observations available at times ahead of the regular analysis
times. Results are presented for when observations 6-h ahead of the analysis time are used to update the PSAS
analyses and thereby to calculate the so-called lag-1 retrospective analyses. Consistency tests for this RA scheme
show that the lag-1 retrospective analyses indeed have better 6-h predictive skill than the predictions from the
regular analyses. This motivates the introduction of the second retrospective analysis scheme, which, at each
analysis time, uses the 6-h retrospective analysis to create a new forecast to replace the forecast normally used
in the PSAS analysis, and therefore allows the calculation of a revised (filter) PSAS analysis. This procedure
is referred to as the retrospective-based iterated analysis (RIA) scheme. Results from the RIA scheme indicate
its potential for improving the overall quality of the assimilation.

1. Introduction

The concept of retrospective data assimilation, as in-
voked in the present article, was introduced by Cohn et
al. (1994; CST94 hereafter) to refer to the calculation
of refined analyses that use observations past each anal-
ysis time. Retrospective data assimilation is possible
when analyses are not required in real time, for example,
during the generation of reanalysis datasets for climate
research.

In estimation theory, estimates of the state of a system
produced from observations on both sides of the anal-
ysis time are known as smoother estimates. In sequential
data assimilation a natural smoothing technique to con-
sider is that of fixed-point smoothing. In this case, the
usual filter estimate at a fixed time, which is produced
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from observations before and at the analysis time, is
sequentially updated as future observations became
available. Future observations can be used for as long
as experimentation shows their impact to be useful. The
idea of estimating the state of a system at a fixed time
over and over again as more observations become avail-
able can be taken a step further by seeking fixed-point
estimates at a series of consecutive fixed times. This is
what is accomplished by fixed-lag smoothing. In our
fixed-lag smoother formulation, when observations up
to one data assimilation update period beyond the time
of each regular filter estimate are used to calculate the
(refined) smoother estimate, we say that we are calcu-
lating the lag-1 (typically 6 h) retrospective analysis;
when observations up to two update periods beyond are
used to calculate another (even more refined) smoother
estimate, we say that we are calculating the lag-2 (typ-
ically 12 h) retrospective analysis; and so on. For linear
systems under the typical assumption of unbiased
Gaussian-distributed errors, the fixed-lag Kalman
smoother (FLKS) provides the best unbiased estimate
of the state of the system at a sequence of given times
using observations in the past, present, and at a time
lag-l beyond the time of each estimate.

The FLKS is composed of two major components:
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the Kalman filter (KF) portion and the fixed-lag smooth-
er portion. The FLKS is fully dependent on the KF as
it is formulated on the basis of the observation-minus-
forecast residuals resulting from the KF. In general,
when the filter is not the KF, but rather some suboptimal
implementation of it, we can still think of suboptimal
implementations of FLKS-based retrospective data as-
similation schemes as consisting of a filter portion and
a smoother (or retrospective) portion. Todling et al.
(1998) used this explicit separation between filtering and
smoothing portions to study the behavior of a variety
of combinations of filter and smoother approximations
to the linear FLKS. One particular approximation stud-
ied there, namely, the adaptive retrospective data assim-
ilation scheme using a constant forecast error covariance
filter (CCF), was seen as having the potential for being
implemented in practice. It replaces the filter portion of
the FLKS by a constant forecast error covariance filter
much like that of operational three-dimensional varia-
tional analysis systems. Examples of such systems are
those of Parrish and Derber (1992), Courtier et al.
(1998), Daley and Barker (2001), and the physical-space
statistical analysis system (PSAS) of Cohn et al. (1998),
which is central to the work in the present article.

To take forward the idea of developing a practical
retrospective data assimilation system, the linear FLKS
formulation of CST94 has to be extended to handle
nonlinear dynamics. Since the retrospective portion of
the algorithm relies completely on the filter, designing
nonlinear filters immediately results in designing non-
linear smoothers. Todling and Cohn (1996; TC96 here-
after) derived a nonlinear FLKS algorithm based on the
traditional extended Kalman filter (EKF). Similar der-
ivations can be found elsewhere (e.g., Biswas and Ma-
halanabis 1973; Verlaan 1998). The way smoothers use
future observations to calculate updates to state esti-
mates is by propagating information back in time using
the adjoint dynamical model. For nonlinear dynamics
the adjoint of the tangent linear dynamics must be pro-
vided in principle. Four-dimensional variational data as-
similation (4DVAR) procedures such as that of Rabier
et al. (2000) also require the adjoint of the tangent linear
dynamics. The need for the adjoint model can be avoid-
ed if the retrospective assimilation strategy is based on
ensemble techniques such as that of Evensen and van
Leeuwen (2000).

In this article, we study the performance of a PSAS-
based retrospective analysis (RA) system developed for
the Goddard Earth Observing System version 3 (GEOS-
3) Data Assimilation System (DAS). In the RA system,
there is no feedback from the retrospective analyses into
the system. Since the GEOS-3 DAS forecast error co-
variance matrix of PSAS varies slowly in time, we can
identify the suboptimal RA procedure studied here with
the CCF scheme of Todling et al. (1998). Our RA im-
plementation in GEOS-3 DAS is general and applicable
to any number of time lags, but in the present article
we concentrate on results for the 6-h, that is, lag-1,

retrospective analysis. Motivated by some of the results
obtained with this version, and by the ideas of con-
structing so-called iterated filters and smoothers com-
mon in the engineering literature, we also study here
the performance of a retrospective-based iterated anal-
ysis (RIA) scheme, which introduces a feedback com-
ponent into the procedure. In the RIA, the lag-1 retro-
spective analysis at a given time tk21 is used to produce
a new forecast at time tk that is used to revise the filter
(PSAS) analysis at the same time tk. In the RIA the final
analysis is the second (iterated) analysis calculated using
the forecast generated from the lag-1 retrospective anal-
ysis. This is a considerably different use of the ‘‘static’’
retrospective analyses proposed by CST94. Though a
formal argument for the RIA procedure is not presented
here, the procedure is found to improve the overall qual-
ity of the analyses. This lag-1 RIA scheme makes the
retrospective procedure resemble a 4DVAR cycle (e.g.,
Courtier et al. 1994; Rabier et al. 2000; Li and Navon
2001).

Indeed, the original FLKS-based retrospective anal-
ysis formulation of CST94, and the RIA here, can be
viewed as alternative approaches to 4DVAR. The FLKS
framework is a natural four-dimensional extension to
three-dimensional procedures formulated sequentially
rather than variationally. Four-dimensional variational
procedures are an extension of 3DVAR that take into
account observations within a time interval. Ménard and
Daley (1996) have shown the equivalence of 4DVAR
and fixed-interval smoothing. Similarly, for linear dy-
namics, the FLKS is algebraically equivalent to 4DVAR
and can be derived from the 4DVAR cost function by
solving a two-point boundary value problem (Zhu et al.
1999). The main distinction between 4DVAR and the
FLKS is in their computational approaches. The former
involves an iterative optimization procedure to arrive at
the solution, whereas the latter deals directly with the
analytical solution of the problem. One practical con-
sequence of this distinction relates to how these pro-
cedures account for model error. As pointed out by To-
dling et al. (1998), FLKS-based assimilation schemes
directly inherit any model error covariance parameter-
ization embedded in the filter portion. Various tech-
niques to account for model error in 4DVAR can be
formulated by using the dynamical model as a weak
constraint on the optimization problem (e.g., Derber
1989; Bennett et al. 1996; Zupanski 1997). Another
point to make relates to one of the advantages of
4DVAR over 3DVAR-like procedures, namely, that the
former uses the observations nearly at their proper times
(e.g., Fisher and Andersson 2001; Rabier et al. 2000),
whereas in the latter it is more common to bundle the
observations into 6-h batches. This can be resolved by
using a rapid update cycle (RUC) strategy. Though this
is not explored in the present article, since in GEOS-3
DAS the observations are bundled into 6-h batches, we
should point out that there is no intrinsic difficulty in
building an FLKS-based retrospective analysis system
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under an RUC strategy. Furthermore, since the calcu-
lation of retrospective analyses mainly involves appli-
cations of PSAS (Zhu et al. 1999), we can expect cost
reduction for an FLKS-based retrospective analysis sys-
tem under RUC (Lyster et al. 2003, manuscript sub-
mitted to Mon. Wea. Rev.).

In the sequel we briefly review, in section 2, the the-
oretical framework behind retrospective analysis. The
presentation is based on the EKF and the corresponding
nonlinear extension of the FLKS. In section 3, we de-
scribe the framework of our practical implementation
directed toward adding a retrospective component to
GEOS-3 DAS; here, both the RA and RIA schemes are
presented. In section 4, results of a preliminary evalu-
ation of these retrospective schemes are presented and
discussed. Conclusions are drawn in section 5.

2. Theoretical framework: The fixed-lag Kalman
smoother

In this section we briefly recapitulate the formulations
of the fixed-lag Kalman smoother of CST94 and TC96.
Following Todling et al. (1998) we separate the FLKS
into a filter portion and a retrospective portion. The filter
portion is based on the linear Kalman filter, or more
generally on any nonlinear extension of the KF; the
retrospective portion is based on the linear fixed-lag
Kalman smoother, or any equivalent nonlinear extension
compatible with the underlying filter. As in TC96, the
discussion below is based on the EKF.

a. The filter portion

Using the notation of CST94, the filter portion of the
FLKS formulation of TC96 can be summarized by the
usual EKF equations:

f aw 5 A (w ), (1a)k | k21 k,k21 k21 | k21

faw 5 w 1 K v , (1b)k | kk | k k | k21 k

f 21TK 5 P H G , (1c)k | k k | k21 k k

f a TP 5 A P A 1 Q , (1d)k | k21 k,k21 k21 | k21 k,k21 k

a fP 5 (I 2 K H )P . (1e)k | k k | k k k | k21

At time tk, the forecast n-vector , evolves throughfwk | k21

the nonlinear dynamical operator A k,k21 from the anal-
ysis n-vector , according to (1a). The dynamicalawk21 | k21

operator A k,k21 stands for, say, a general circulation mod-
el, and possibly any transformations necessary to con-
vert the model prognostic variables into the filter state
vector, and vice versa.

The main difference in the EKF equations written
above and the way they more commonly appear in the
atmospheric data assimilation literature (e.g., Miller et
al. 1994) is in the time subscripts. Here, the subscripts
follow standard engineering notation developed in es-
timation theory, which is mostly suitable to the devel-

opment of smoothers. This subscript notation is also
particularly helpful in reminding us that for linear sys-
tems perturbed by Gaussian-distributed noise the fore-
cast and filter analysis state vectors are ac-f aw wk | k21 k | k

tually conditional means of the true state n-vector ,twk

that is,
f t o ow 5 E{w | w , . . . , w }, (2a)k | k21 k k21 1

a t o o ow 5 E{w | w , w , . . . , w }, (2b)k | k k k k21 1

at time tk. The conditioning, represented by the vertical
bar in the expectation operator E{ · | · }, is on the time
series of observations . The forecast at time tk is theowk

expected value of the true state conditioned on all ob-
servations prior to time tk; the filter analysis at time tk

is the expected value of the true state conditioned on
all observations up to and including those at time tk.

The EKF, like the KF, depends on the residual
pk-vector vk in (1b) formed by the difference between
the pk-vector of observations and the model-pre-owk

dicted ‘‘observations’’ H k( ) at time tk, that is,fwk | k21

fov [ w 2 H (w ).k k k k | k21 (3)

The nonlinear observation operator H k stands for the
transformations involved in converting filter state vector
quantities into observables. Optimality of the filter de-
pends on the n 3 pk weighting matrix Kk | k given to this
observation-minus-forecast (OMF) residual vector vk

through (1b). It is only when the filter is optimal that
the time series of residual vectors vk can be identified
with the innovation sequence (e.g., Anderson and Moore
1979, section 5.3). Although the expression for the
weighting matrix Kk | k in the EKF is similar in form to
its linear KF equivalent, contrary to the linear case, Kk | k

in (1c) is now state dependent. The OMF residuals co-
variance matrix Gk is given by

f TG 5 H P H 1 Rk k | k21 k kk (4)

for uncorrelated observation and forecast errors. Here,
Rk is the pk 3 pk observation error covariance matrix,
Hk is the Jacobian matrix of the observation operator
H k, and is the state-dependent n 3 n forecastfPk | k21

error covariance matrix. The forecast error covariance
matrix depends on the model error covariance matrix
Qk and evolves from the n 3 n analysis error covariance
matrix through the Jacobian matrix Ak,k21 of theaPk21 | k21

dynamics operator A k,k21 according to (1d).

b. The retrospective portion

In the FLKS, the retrospective portion uses the OMF
residual vector vk at time tk to calculate corrections to
filter analyses and retrospective analyses at previous
times tk2l using an update equation similar to the state
update expression (1b) of the filter portion. The lag-l
FLKS retrospective analyses based on observations
newly available at time tk are calculated by

a aw 5 w 1 K v ,k2l | kk2l | k k2l | k21 k (5)
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for l 5 1, 2, . . . , min(k, L) for a maximum desired lag
l 5 L. Each retrospective analysis for a fixed time tk2l

is an ‘‘incremental’’ correction to an estimate of the state
calculated previously. Each lag of the algorithm intro-
duces corrections to the state estimate by using obser-
vations at times further and further beyond the retro-
spective analysis time, up to the maximum desired lag
L. The mechanism for correcting consecutive state es-
timates at a fixed time with successive smoother cal-
culations makes the FLKS algorithm resemble the fixed-
point smoother. Indeed, the FLKS of CST94 and TC96
can be derived from a fixed-point smoother formulation
using the approach of state augmentation (e.g., Biswas
and Mahalanabis 1973).

Because the retrospective analyses are based on the
same OMF residual vectors used in the filter portion of
the algorithm, the retrospective n 3 pk weighting matrix
Kk2l | k depends on the OMF residual covariance matrix
Gk in (4). Furthermore, Kk2l | k also depends on the n 3
pk matrix , the transpose of the Jacobian of the ob-THk

servation operator, and on the n 3 n forecast–analysis
cross-covariance matrix , through the EKF-faPk,k2l | k21

based expression

fa T 21TK 5 (P ) H G ,k2l | k k,k2l | k21 k k (6)

as derived in TC96. The forecast-analysis cross-co-
variance evolves from previously calculatedfaPk,k2l | k21

analysis error covariances and analysis–analysis error
cross-covariances through the Jacobian Ak,k21 of the dy-
namics operator. Its evolution equation and the update
equations for the retrospective analysis error cross-co-
variances are

a a faP 5 P 2 K H P , (7a)k2l | k k2l | k21 k2l | k k k,k2l | k21

aa faP 5 (I 2 K H )P , (7b)k,k2l | k k | k k k,k2l | k21

fa aaP 5 A P , (7c)k,k2l | k21 k,k21 k21,k2l | k21

and the details of their derivation can also be found in
TC96.

That retrospective analyses are built on the basis of
future observations can be simply understood by re-
calling the meaning of the time subscript notation used
here. In the linear Gaussian-distributed noise case, the
retrospective analysis at time tk2l is

a t o o ow 5 E{w | w , w , . . . , w }, (8)k2l | k k2l k k21 1

where now, in contrast to the filter estimates (2), the
expectation is conditioned on all observations before,
at, and after time tk2l up to time tk. As mentioned pre-
viously, in the linear optimal case, when the underlying
filter is the KF and the sequence of OMF residual vectors
is actually the innovation sequence, the retrospective
portion just described reduces to the optimal FLKS. In
general, independently of nonlinearities, if the filter is
suboptimal, the corresponding retrospective analyses
are suboptimal as well. This is simply because both the
filter and the smoother are based on the same sequence

of OMF residual vectors vk. Unfortunately, in the sub-
optimal case, there is no guarantee that consecutive ret-
rospective lagged estimates will represent improve-
ments over estimates with smaller lag(s) or even over
the filter results [see Todling et al. (1998) for illustra-
tion].

As pointed out by Todling et al. (1998), one inter-
esting feature of the FLKS that arises directly from its
being formulated on the basis of an underlying filter is
that it incorporates model error covariances naturally
and automatically (see also the appendix). In fact, (5)–
(7) do not depend explicitly on the model error co-
variance. A variety of techniques exists to incorporate
model error in 4DVAR (e.g., Derber 1989; Bennett et
al. 1996; Zupanski 1997). Because 4DVAR is algebra-
ically equivalent to fixed-interval smoothing (see Mén-
ard and Daley 1996; Zhu et al. 1999) and for all practical
purposes we can always choose a lag L in fixed-lag
smoothing that accomplishes the same benefit as fixed-
interval smoothing (Moore 1973), FLKS-based assim-
ilation procedures present a potential alternative to
4DVAR. Since we currently lack the knowledge nec-
essary to parameterize model error covariances, this ad-
vantage of the FLKS over 4DVAR is not very signifi-
cant, but it may prove to be relevant in the future.

3. Practical framework: GEOS-3 DAS
considerations

The algorithm described in the previous section
serves mainly as a guide to help design feasible data
assimilation procedures. It is well known that the com-
putational cost of evolving full covariances is excessive
for filtering, let alone for smoothing as in (7), and likely
not justifiable because of our relative lack of knowledge
of the required input model and observation error sta-
tistics. This has motivated the study of a number of
simplifications to both filtering (e.g., Cohn and Todling
1996, and references therein) and smoothing (e.g., To-
dling et al. 1998, and references therein) procedures. In
this section, we describe the details of our implemen-
tation of the FLKS-based retrospective procedure for
the GEOS-3 DAS. Before describing the retrospective
analysis portion of the implementation we summarize
the current GEOS-3 DAS that approximates, in prin-
ciple, the filter portion of the algorithm.

a. The GEOS-3 analysis and data assimilation system

The Data Assimilation Office (DAO) operational
GEOS-3 data assimilation system consists of three ma-
jor components: an atmospheric general circulation
model (GCM), the PSAS, and the incremental analysis
update (IAU) procedure. At the so-called analysis times,
the GCM provides a forecast field to PSAS so it can
process OMF residuals and generate the analysis state.
The physical space statistical analysis system is an im-
plementation of the EKF equations (1b)–(1c), obtaining
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the analysis state as a correction to the model forecast.
The error covariance evolution expressions (1d) and (1e)
are neglected and, therefore, PSAS functions as a sub-
optimal filter, as in the case of other operational 3DVAR
systems. Each PSAS analysis is used in the IAU pro-
cedure of Bloom et al. (1996) to construct a tendency
term that is used to force the GCM during a 6-h period
around the analysis time. The GCM trajectory obtained
during the IAU integration is known as the assimilated
trajectory.

In GEOS-3 DAS the state space of the GCM is dif-
ferent from the state space of the analysis system and
it is convenient to define a specific nomenclature for the
purposes of the present article. In what follows, we refer
to background as the state vector provided by the GCM
and to forecast as the background field transformed to
the analysis space. The model and analysis spaces are
different because their state variables and grids are dif-
ferent. The GCM state variables are surface pressure,
potential temperature, specific humidity, and the zonal
and meridional components of the wind, where all var-
iables are defined on the Arakawa C grid and on a ver-
tical sigma-coordinate system. On the other hand, the
analysis state vector is composed of sea level pressure,
the zonal and meridional components of the sea level
wind, the zonal and meridional components of the up-
per-air wind, mixing ratio, and geopotential heights,
where all variables are defined on the Arakawa A grid
and in pressure coordinates (see DAO 1996, for details).

We designate an m-dimensional sigma-coordinate
GCM state vector by y(s) and an n-dimensional pres-
sure-coordinate analysis state vector by w(p), to em-
phasize explicitly the vertical coordinate system of these
states. For our purposes, we can represent a GCM in-
tegration as

dy(s)
5 M [y(s)] 1 a f (s). (9)

dt

Here, M is the nonlinear GCM operator and the second
term on the right-hand side corresponds to the constant
IAU forcing term applied to the GCM during the IAU
integration period. The parameter a controls when and
how the IAU forcing f(s) affects the integrations. For
the 6-h IAU time interval [tk21/2, tk11/2] we set t iau 5
tk11/2 2 tk21/2 and a 5 1/t iau, and during the 3-h GCM
background integration time interval [tk11/2, tk11] we set
a 5 0. At an analysis time tk, the GCM-provided back-
ground field (s) is converted into the forecastbyk | k21

(p) through the operationfwk | k21

f bw (p) 5 P[y (s)],k | k21 k | k21 (10)

where for convenience we use similar time subscript
notation as that used in the previous section. The space
conversion operator P is nonlinear since it represents
not only simple interpolation from one grid to another,
but also variable transformations such as conversion

from potential temperature to geopotential heights. This
operator can be absorbed into the definition of the state
vector and become transparent in the description of the
filter and smoother equations. However, to make clear
the connection between the mathematical description
and the actual implementation of these procedures we
opt to refer to P explicitly.

The forecast vector (p) is used to construct thefwk | k21

OMF residual p-vector vk in (3). Instead of calculating
explicitly the weighting matrix (1c), PSAS splits the
calculation of the last term in the analysis equation (1b)
into two steps. The first step is to solve the linear system
of equations

G x 5 v ,k k k (11)

for the variable xk, so that in a second step the analysis
(p) can be calculated byawk | k

f fa Tw (p) 5 w (p) 1 P H x . (12)k | k21 kk | k k | k21 k

To keep notation simple, we denote the PSAS forecast
error covariance with the same symbol used infPk | k21

the previous section. However, as mentioned above,
PSAS does not use (1d) to calculate the forecast error
covariance matrix. Instead, the forecast error covariance
in PSAS is parameterized using simple dynamical con-
straints. Only its variance fields vary (slowly) in time;
its correlations are constant in time. A consequence of
such simplification is that the forecast (p) and thefwk | k21

analysis (p) vectors in (12) are also distinct fromawk | k

those of the previous section, even though they are des-
ignated with the same symbols as in the previous sec-
tion. Furthermore the forecast error covariance formu-
lation of PSAS is for the analysis variables and, in par-
ticular, in pressure coordinates. Moreover, the obser-
vation operator H k in PSAS is linear, that is, H k 5 H k.

To proceed with the GEOS-3 IAU assimilation, the
analysis in (12) is converted back to the model space
through a conversion operator, P1,

a 1 ay (s) 5 P [w (p)],k | k k | k (13)

which is then used finally to construct the filter IAU
forcing fk | k(s) to be used in (9),

a bf (s) 5 y (s) 2 y (s),k | k k | k k | k21 (14)

with fk | k(s) being, in fact, the model-space filter anal-
ysis increment. The actual implementation of P1 is such
that it renders minimal the difference between a field
w(p) in the analysis space and the field resulting from
transforming w(p) to the model space using P1 and,
subsequently, transforming the resulting vector back to
the analysis space using P.

The GEOS-3 data assimilation system does not have
an explicit initialization scheme. It relies on IAU, a
process of gradually introducing the analysis increments
over a certain period around the analysis time, to control
imbalances resulting from the introduction of the in-
crements. The time filtering properties of IAU have been
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FIG. 1. Schematic representation of the IAU procedure. The dashed
arrows represent the 3-h GCM integration that provides the forecast
to PSAS. At each analysis time PSAS uses OMF residuals to calculate
an updated state estimate (analysis; vertical dotted lines). The anal-
ysis-minus-forecast difference is converted to a model-space tendency
term used to force the GCM during a 6-h integration around the
analysis time; this is the IAU period represented by the solid thick
arrows. The cycle is repeated with a 3-h GCM integration, without
the IAU tendency term, to provide the forecast for the next analysis
time. The line formed by the solid arrows represents a time-contin-
uous IAU trajectory, referred to as the assimilation. (Similar to Fig.
1 of Bloom et al. 1996.)

established for a linear system with analysis given by
the sum of a model forecast and an arbitrary analysis
increment (Bloom et al. 1996). IAU acts only on the
contribution to the assimilation state by the increment.
Other strategies employed in 3DVAR-like systems to
control imbalances introduced by the analysis procedure
include those of Gauthier et al. (1999) and Lynch and
Huang (1992). A schematic representation of the IAU
assimilation procedure is shown in Fig. 1. In GEOS-3
DAS, observations are processed in 6-h intervals, which
in the IAU framework implies that the GCM is inte-
grated for 6 h starting 3 h before the analysis time. Going
from left to right in the diagram, at an analysis time,
say t 5 6Z (0600 UTC), observations and a 3-h model
forecast (represented by the right-upward-pointing
dashed arrow) are combined in PSAS to calculate the
filter analysis. This analysis is used to construct the IAU
forcing (14) and the model is integrated forward, forced

by the IAU tendency starting from t 5 3Z (0300 UTC)
up to t 5 9Z (0900 UTC). Beyond this time, the IAU
forcing is set to 0 and the model runs ‘‘free’’ for the
next 3 h. At the end of this free 3-h integration the GCM
provides the forecast to be used in the PSAS analysis
of the 12Z observations, and the cycle is repeated. The
assimilated trajectory is represented in the figure by the
thick-solid rightward-pointing arrows.

b. The GEOS-3 retrospective analysis

We now have the challenge of converting the retro-
spective portion of the FLKS as presented in the pre-
vious section into a practical algorithm. We have seen
above that when building a practical filtering procedure
such as PSAS one of the main approximations is to
avoid dealing directly with the error covariance equa-
tions (1d)–(1e). Analogously, when building a practical
implementation of the retrospective portion of the FLKS
we want to calculate retrospective analysis increments

a a adw (p) [ w (p) 2 w (p) 5 K v , (15)k2l | kk2l | k k2l | k k2l | k21 k

for lags l 5 1, 2, . . . , min(k, L), without having to
calculate the smoother cross-covariances implicit in the
retrospective gains Kk2l | k through (6) and (7). As it turns
out, calculating these cross-covariances can be avoided
since the retrospective gain matrices Kk2l | k can be writ-
ten as

Kk2l | k

k
f T 21T T5 P (I 2 K H ) A H G ,Pk2l | k2l21 j21 | j21 j21 j, j21 k k[ ]j5k2l11

(16)

(see appendix), with the consequence that the retro-
spective increments in (15) become

k
f fa 21T T Tdw (p) 5 P (I 2 H G H P )A H x , (17)Pk2l | k2l21 j21 j21 j21 | j22 j, j21 kk2l | k j21 k[ ]j5k2l11

where we used (11) to replace vk with xk. We see21G k

from this expression that the lag-l retrospective incre-
ment is a linear combination of the columns of the fore-
cast error covariance , as is the original filterfPk2l | k2l21

increment. The advantage of the expression above is
that it refers only to quantities used by the filtering
portion of the FLKS: the (filter) forecast error covari-
ance matrix ; the observation error covariancefPj21 | j22

matrix Rj21; the linear (or linearized) observation op-
erator Hj21 and its transpose (adjoint); and the adjoint
of the Jacobian Aj,j21 of the dynamics operator. The
smoother error cross-covariances and ,fa aaP Pk,k2l | k21 k,k2l | k

and smoother error covariance do not appear inaPk2l | k

(17).

At a given analysis time tk, the retrospective incre-
ments can be calculated through a succession of oper-
ations similar to the two-step PSAS operations (11) and
(12). Defining an n-vector zk | k as

Tz [ H x ,kk | k k (18)

corresponding to the PSAS conjugate gradient solution
xk converted from the observation space to the analysis
space by , the term in the square brackets of (17) canTHk

be calculated using the following algorithm:

j 5 k

while { j . 1 and j $ max(1, k 2 L 1 1)}
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p Tz 5 A z (19a)j, j21j21 | k j | k

f prG x 5 H P z (19b)j21 j21 | j22j21 j21 | k j21 | k

p rTz 5 z 2 H x (19c)j21j21 | k j21 | k j21 | k

fadw (p) 5 P z (19d)j21 | j22j21 | k j21 | k

j 5 j 2 1

endwhile

for a maximum number of time lags l 5 L. In this
algorithm the n-vector in (19a) is the result of thepz j21 | k

adjoint dynamics evolution of the auxiliary n-vector
zj | k, for each backward integration j. This backward-
propagated vector serves as the input to an equa-pz j21 | k

tion (19b) similar to the first step (11) of the regular
PSAS analysis, but now with a different right-hand side.
The next step in the retrospective analysis loop is to
update the n-vector with the analysis-space pro-pz j21 | k

jection of in (19c). Finally, the n-vector z j21 | k inrxj21 | k

(19c) is used to calculate the retrospective analysis in-
crement for each desired lag l up to a maximum lag l
5 L through application of the forecast error covariance
operator in (19d).

Notice that the entire retrospective analysis algorithm
(18)–(19) works in the analysis space. In particular, the
propagation operator 5 (p) in (19a) is de-T TA Ak,k21 k,k21

fined in pressure coordinates and operates on geopo-
tential heights, mixing ratio, zonal and meridional
winds, etc., that is, the analysis variables. In fact, the
linearized dynamical operator Ak,k21(p) is given by

1A (p) [ P M (s)P ,k,k21 k,k21k k21 (20)

where Mk,k21(s) is the m 3 m Jacobian matrix of the
nonlinear operator M in (9),

]M [y]
M(s) [ , (21))]y y5y(s)

and P and P1 are given by

]P[y]
P [ , (22a))]y y5y(s)

1]P [w]
1P [ , (22b))]w w5w(p)

and correspond to the n 3 m and m 3 n Jacobian ma-
trices of P and P1, respectively, where we recall that
m is the dimension of a model state vector and n is the
dimension of an analysis state vector.

A few remarks are appropriate at this point.

• Currently in PSAS the analysis error covariance ma-
trix is never referenced. Indeed, the current im-aPk | k

plementation of PSAS parameterizes the forecast error
covariance matrix in such a simple manner that none
of the terms on the right-hand side of (1d) are taken
into account. However, when the expressions (7) for
the smoother error cross-covariances are bypassed and

the retrospective increments are calculated using the
gains in (16) there are actually no approximations in-
volved. The only consequence of not calculating the
smoother error covariances is that we get no estimates
for the accuracy of the retrospective analyses, which,
in principle, can be extracted from . ExpressionaPk2l | k

(16) is exact for the linear FLKS and its nonlinear
EKF-based extension.

• We see from (17) that an FLKS-based retrospective
scheme allows future observations to be used to cor-
rect previous filter and retrospective analyses impaired
by the lack of observations over a particular region
earlier on in the assimilation. That is, when at time
tk21, say, there are no observations over a certain re-
gion, the filter analysis at this time will essentially
equal the forecast over that region—aside from pos-
sible contributions by farther-away regions through
the forecast error correlations. If at time tk, say, ob-
servations become available over the region in ques-
tion, or information from observations at nearby
downstream regions get propagated through the ad-
joint of the tangent linear dynamics into theTAk,k21

region in question, this new information will be used
to calculate a correction to the filter analysis at time
tk21 as the lag-1 retrospective analysis represented in
(17). In these cases, it is the first term in the square
bracket of (17) that mostly contributes to the correc-
tion to the filter analysis.

• The linear system (19b) solved within the retrospec-
tive analysis algorithm involves exactly the same op-
erators required to calculate the sensitivity of forecasts
to observation changes, as measured by some pre-
specified cost function, as in the approach of Baker
and Daley [2000; cf. with their Eq. (2.7a)]. Further-
more, (19c) involves exactly the operator required to
examine forecast sensitivity with respect to changes
in the background. It has been pointed out elsewhere
that some of the operations in 4DVAR are closely
related to operations required to study forecast sen-
sitivity; the same is true of the operations in FLKS-
based retrospective analysis schemes.

• A simple approximation to the retrospective analysis
portion just described is to replace the adjoint operator
in (19a) by the identity operator. Since in the current
implementation of PSAS the forecast error covariance
is not dynamically determined, and even with its slow-
ly varying forecast error variances it can be thought
of as having a time-independent forecast error co-
variance, one might expect that replacing the adjoint
by the identity operator in (19a) would result in a
reasonable retrospective analysis approximation con-
sistent with the current underlying PSAS statistics.
Todling (2000) has experimented with this idea using
an identical-twin configuration setup for GEOS-3
DAS and has found improvement in the mean error
due to lag l 5 1 and even to lag l 5 2 retrospective
analyses when compared with the corresponding
PSAS (filter) results.
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c. The GEOS-3 lag-1 retrospective-based iterated
analysis

When the system is nonlinear, the idea to feed the
filter estimate back into the analysis equation is partic-
ularly attractive, since we expect the filter analysis to
be a better estimate of the state of the system than the
forecast provided by the model. Indeed, filtering strat-
egies making use of such feedback procedures are com-
monly found in the literature. For instance, Jazwinski
(1970, theorem 8.2) introduces the so-called iterated
EKF, which is suitable for nonlinear observation oper-
ators. Cohn (1997) proposes a similar procedure as an
extension to PSAS for such operators. Iterative proce-
dures aimed at dealing with nonlinearities of the ob-
servation operator are sometimes referred to as locally
iterated methods, since the iterations are performed at
a single time. Jazwinski (1970, theorem 8.3) also pre-
sents an iterative procedure that is aimed at correcting
errors due to the dynamical linearizations required by
the EKF. This procedure involves integrating the model
with a newly estimated trajectory at each iteration and
for this reason it resembles a smoother procedure re-
ferred to as the iterated linear filter-smoother algorithm.
Combining ideas of filtering and smoothing leads to the
possibility of developing globally iterated procedures in
which the filter analyses may be revised by a backward-
filter integration within a certain time interval. Most of
these iterative procedures are inspired by Newton-type
methods for solving systems of nonlinear equations [see
Navon and Legler (1987) and Zou et al. (1993b) for
reviews of these methods].

Motivated by the above, we introduce here a proce-
dure to use the retrospective analysis to improve the
overall GEOS-3 IAU-based assimilation. At first, the
algorithm is based only on the lag-1 retrospective anal-
yses. At any given time tk, when a lag-1 retrospective
analysis (p) is available we can construct a model-awk | k11

space lag-1 retrospective IAU forcing as

1 a bf (s) 5 P [w (p)] 2 y (s), (23)k | k11 k | k11 k | k21

which is similar to (14) but is constructed using obser-
vations one lag ahead of time tk. The lag-1 retrospective
IAU forcing fk | k11(s) is the increment constructed by
subtracting the background from the model-space ret-
rospective analysis, which is different from the retro-
spective analysis increment in (15) constructed by sub-
tracting the filter (or previous retrospective) analysis
from the retrospective analysis. This lag-1 retrospective
IAU forcing can now be used to integrate the GCM over
an IAU integration period already covered before. This
is illustrated schematically in Fig. 2. The diagram re-
sembles the regular IAU procedure presented before in
Fig. 1. In fact, the top part of the diagram, above the
horizontal dotted line, is identical to the regular IAU
procedure. However, now at, say, time t 5 12Z (1200
UTC), we calculate a retrospective analysis by first in-
tegrating the transformed PSAS solution vector in (18)

back in time using the adjoint operation (19a); this is
represented in the diagram by the left-downward-point-
ing dashed arrow. A new PSAS-like linear system prob-
lem can then be solved as in (19b) with the correspond-
ing update (19c), and the lag-1 retrospective analysis
constructed using (19d), as represented in the diagram
by the box tagged ‘‘Retro ANA.’’ In the end, a lag-1
retrospective IAU forcing at t 5 6Z (0600 UTC) is
constructed as indicated in (23), and the GCM is inte-
grated for 6 h using this forcing term as in (9). From
this point on, the procedure follows the regular IAU
schematic until it is time to process the observations at
t 5 18Z (1800 UTC) when the lag-1 retrospective anal-
ysis at t 5 12Z (1200 UTC) can be calculated and the
whole cycle repeated. The thin blue arrows in Fig. 2
correspond to the retrospective trajectory. In the RIA
scheme we concentrate on the iterated filter-smoother
trajectory represented in the figure by the thick solid
arrows. At a given analysis time, the relevant iterated
PSAS analysis is represented in the diagram as the anal-
ysis from the lowest PSAS box in a column of the
diagram (see thick vertical dashed lines).

The IAU filtering properties depend only on how the
analysis increments are applied given a background
field. The standard GEOS-3 assimilation scheme and
the RIA scheme use the same background but different
analyses to construct an IAU forcing: the PSAS analysis
as in (14), and the retrospective analysis as in (23),
respectively. Therefore, the GEOS-3 RIA automatically
benefits from the filtering properties of IAU. Initiali-
zation procedures can also be incorporated in smoother
schemes such as 4DVAR (e.g., Thépaut et al. 1993;
Polavarapu et al. 2000; Zou et al. 1993a; Gauthier and
Thépaut 2001).

From the diagram in Fig. 2 we see that the retro-
spective-based iterated analysis results in a considerable
increase in computational requirements when compared
with the regular procedure in Fig. 1. Each iteration of
the iterated analysis scheme requires one extra 9-h GCM
integration and two extra PSAS analyses. Such an in-
crease in the computational cost can only be justified if
the procedure results in considerably improved analyses.
One way to reduce the computational burden is by cal-
culating some of the steps in (19) at different resolu-
tions. Similarly to the strategy of incremental 4DVAR
of Courtier et al. (1994), we can, for example, integrate
the adjoint of the tangent linear GCM in (19a) at lower
resolution than the actual model integration (9). Also,
the retrospective PSAS-like linear system (19b) can be
solved at lower resolution than the regular linear system
(11) solved in the first step of PSAS. For that matter,
the calculations in (19a) and (19b) do not even have to
be performed at the same resolution. This type of ap-
proach to reduce computational cost involves the de-
velopment of additional interpolation operators and their
corresponding adjoints.
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FIG. 2. Schematic representation of the lag-1 iterated retrospective data assimilation procedure.
Dashed right-upward-pointing arrows represent GCM forecast integration; solid rightward-pointing
arrows represent GCM integration with IAU (thick) and retrospective IAU (thin) forcing. Dashed
left-downward-pointing arrows represent 6-h adjoint model integrations. The boxes labeled ‘‘Retro
ANA’’ stand for the PSAS application in (19b). The retrospective assimilation is used to provide
a revised forecast that is further used to revise the filter analysis at each synoptic time.

FIG. 3. Schematic of the procedure to issue forecasts from retro-
spective analyses using the IAU framework. Arrows are similar to
those in Fig. 1. The main purpose of the retrospective forecast is the
calculation of the OMF residuals indicated by the ‘‘Retro OMF’’ box.

4. GEOS-3 experimental results

a. Configuration and experimental setup

The retrospective analysis procedures of the previous
section were implemented as an extension to GEOS-3
DAS. The retrospective portion of the GEOS-3 software
is compatible with the first operational version of

GEOS-3 DAS, designed to support the National Aero-
nautics and Space Administration’s (NASA’s) Earth Ob-
serving System mission and its Terra satellite. In this
section we refer to this earlier operational version as
GEOS-39 to avoid possible confusion with the final ver-
sion of GEOS-3 operational at the time of this writing.
The GEOS-39 GCM operates at a resolution of 18 lat-
itude by 18 longitude and 48 vertical sigma levels, with
a dynamical core essentially that of Suarez and Takacs
(1995). At the synoptic hours, PSAS calculates the anal-
ysis at a resolution of 28 latitude by 2.58 longitude on
20 pressure levels. Details on the implementation of
PSAS can be found in da Silva and Guo (1996), Guo
et al. (1998), and Larson et al. (1998). As we have
mentioned in the previous section, GEOS-39 uses the
IAU procedure of Bloom et al. (1996) to generate a
time-continuous state trajectory referred to as the as-
similation. For expediency, the experiments performed
for the present article used both the GCM and PSAS at
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FIG. 4. Spatial rms of the (a) time-averaged bias and (b) std dev for the radiosonde geopotential
height OMF residuals for the control experiment (solid curves) and for forecasts from the lag-1
retrospective analyses from the RA experiment (dashed curves): (left) the northwestern quadrant
of the globe defined between longitudes 1808W and 08 and between latitudes 208 and 908N; (right)
the northeastern quadrant of the globe between longitudes 08 and 1808E and latitudes 208 and
908N. Units are in m on the abscissa and hPa on the ordinate.

the coarse horizontal resolution of 48 latitude by 58 lon-
gitude; the GCM and PSAS vertical resolutions were
kept unchanged. We also simplify the experimental con-
figuration by updating the GCM trajectory needed dur-
ing the adjoint integrations only every 6 h. Except for
sea-wind satellite observations, all observation data
types used in GEOS-39 are included in our experiments.
Conventional observations from ships, environmental
and drifting buoys, surface stations, winds from pilot
balloons, aircraft reports, and radiosonde stations are
used. Cloud track wind retrievals and Television Infra-
red Observational Satellite Operational Vertical Sound-
ing (TOVS) geopotential height retrievals are used as
well. Furthermore, the Wentz (1997) special sensor mi-
crowave/imager (SSM/I)-derived total precipitable wa-
ter retrievals are assimilated, though not through PSAS
but rather by using the method of Hou et al. (2000).

Four new components are required to implement the
retrospective capability in GEOS-3 DAS: the adjoint of
the tangent linear GCM; the additional PSAS-like op-

erators involved in (19b); the linear operator (22a) tak-
ing model-space variables into analysis-space variables;
and the linear operator (22b) taking analysis-space var-
iables into model-space variables. Presently, the adjoint
of the GCM includes only the hydrodynamics adjoint
and the adjoint of a simple diffusion scheme. Most mod-
ifications required to PSAS were quite simple since they
only required rearranging operators already available in
the original PSAS software. Some effort was devoted
to derive the proper tangent linear and adjoint operators
for the transformations (10) and (13), because we strove
to make sure that the back and forth operations would
render minimal error. Some of this work was done by
hand, and some was done using the automatic differ-
entiation tool of Giering and Kaminski (1998).

In the present article, only results for the lag-1 (6 h)
retrospective analysis are discussed. We compare the
results of three experiments conducted over the month
of January 1998. To minimize possible differences due
to spinup issues, the experiments are actually started on
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FIG. 5. As in Fig. 4, but for zonal wind radiosondes OMF residuals. Units on the abscissa are
here m s21.

14 December 1997, but the results are ignored during
this half-month period. Our first experiment is taken as
the control and it uses the reduced resolution GEOS-39
data assimilation system mentioned above. The control
is referred to as the CTL experiment. In the second
experiment, referred to as the RA experiment, we also
calculate lag-1 (6 h) retrospective analyses for the entire
month of January 1998. Since there is no feedback in
this experiment, it uses the same background fields and
OMF time series of the control experiment. The third
experiment is aimed at evaluating the lag-1 (6 h) ret-
rospective-based iterated analysis procedure introduced
in the previous section and is referred to as the RIA
experiment.

We evaluate the RA and RIA experiments mainly by
examining the time series statistics of their correspond-
ing residuals. That is, depending on the case, we cal-
culate root-mean-square (rms) of bias and standard de-
viation from the differences of the observations with
either the forecast, or the analysis, or the retrospective
analysis, or the retrospective forecast (see below). To
ease comparisons, we grid the residuals over 48 latitude
by 58 longitude cells on the 20 pressure levels of the

analysis space before calculating any statistics. We cal-
culate statistics only from grid boxes containing 15 or
more reports during the month. In the discussion that
follows, we concentrate on results obtained in the tro-
posphere.

b. Evaluation of the 6-h retrospective analysis

We start by comparing the results of the CTL and RA
experiments using the set of observations assimilated in
the CTL experiment. If the 6-h retrospective analyses
are indeed an improvement over the regular control
analyses, we should see that in some mean sense the
RA observation-minus-analysis (OMA) residuals are re-
duced in comparison to the OMA residuals of the control
experiment. As a matter of fact, one can show that in
the linear optimal case, that is, when the filter gain is
the Kalman gain,

0 a o a TE{(w 2 H w )(w 2 H w ) }k kk k | k11 k k | k11

o a o a T, E{(w 2 H w )(w 2 H w ) }. (24)k kk k | k k k | k

Although there is no guarantee of this holding in general
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FIG. 6. Similar to Fig. 4, but for TOVS geopotential height OMF residuals and different
regions: (left) the Northern Hemisphere, (right) the Southern Hemisphere.

for the suboptimal nonlinear case under study, we would
like to examine the extent to which it does. In practice,
short of perturbing the observational data, to assess this
quantity we must make the usual ergodic assumption
and replace the expectation by a time average. Exam-
ination of the spatial rms of the time-averaged biases
and standard deviations of the OMA residuals when the
analyses are either the regular filter analyses of the CTL
experiment or the lag-1 retrospective analyses of the
RA experiment has shown them to be virtually identical
(results not shown). Therefore, from this point of view
we might be led to think that there is no payoff in
calculating lag-1 retrospective analyses.

Another way of comparing the quality of two sets of
analyses is to compare the skill of forecasts issued from
them. We expect forecasts issued from retrospective
analyses to be superior to regular forecasts for at least
their total lag period, 6 h in the lag-1 case here, since
their initial conditions have had the benefit of obser-
vations that far into each forecast. Hence, we compare
the OMF residual statistics of the regular filter forecasts
of the CTL experiment and of the so-called retrospective
forecasts issued from the lag-1 retrospective analyses.

Since the OMF residuals from a regular GEOS-3 DAS
run, such as the CTL experiment, involve 6-h forecasts
that are produced from partly integrating the GCM with
the filter IAU forcing for 3 h and partly integrating the
GCM for another 3 h without the influence of the IAU
tendencies (see Fig. 1), we must use the retrospective
analyses carefully when constructing OMF residuals
from them. To make a fair comparison, we calculate
OMF residuals from the 6-h retrospective analyses fol-
lowing a forecasting procedure based on IAU. For each
available retrospective analysis for the entire month of
January 1998 a retrospective forecast is issued following
the schematic shown in Fig. 3. As illustrated in the
figure, the retrospective OMF residuals at, say, 12Z
(1200 UTC), are calculated by converting the 6Z (0600
UTC) retrospective analysis to the model space and con-
structing the corresponding retrospective IAU forcing,
following (23). This retrospective IAU forcing is used
as a tendency term during a 6-h GCM integration, start-
ed at 3Z (0300 UTC). At the end of the 6-h integration
the retrospective tendency term is turned off, by setting
a 5 0 in (9), and the model is left to run free for another
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FIG. 7. Globally averaged time-mean OMF residuals for the CTL experiment (solid curves)
and for the retrospective forecasts (dashed curves): (a) the geopotential height TOVS retrievals
residuals; (b)–(d) the geopotential height, zonal wind, and meridional wind radiosondes residuals,
respectively. Units as in Figs. 4 and 5.

3 h, after which the OMF residuals at 12Z (1200 UTC)
can be calculated using the observations at that time.

Using these retrospective forecasts, Fig. 4 shows the
spatial rms of the (top) time-averaged bias and (bottom)
standard deviation for the radiosonde geopotential
height OMF residuals for the CTL (solid curves) and
RA (dashed curves) experiments averaged over the (left)
western and (right) eastern quadrants of the Northern
Hemisphere, for latitudes higher than 208N. These two
domains are chosen because they represent the largest
concentration of radiosondes over the globe. We see
from the top panels that, in the time-averaged bias sense,
the forecasts from the lag-1 retrospective analyses cor-
respond to a considerable improvement over the regular
GEOS-3 DAS analyses. However, the bottom-left panel
shows that for the standard deviations the retrospective
forecasts are considerably degraded compared to the
regular forecasts over what is mostly North America;
results are roughly neutral over most of Europe and
Asia, as seen from the bottom-right panel. Figure 5 dis-

plays similar quantities but now for the zonal wind ra-
diosonde OMF residuals. Except in the northwestern
region between pressure levels 700 and 400 hPa, the
time-averaged bias for the zonal wind radiosonde OMF
residuals is improved when forecasts are issued from
the lag-1 retrospective analyses. In this same region, the
zonal wind OMF standard deviation (Fig. 5b.1) shows
a minor deterioration at levels below 400 hPa, much
less than that seen in the OMF heights in Fig. 4b.1;
minor improvement in the standard deviations are seen
above 400 hPa. Over the northeastern region a minor
but consistent improvement is observed in both the bias
and standard deviation, as indicated in the panels on the
right.

The statistics of OMF residuals for other variables
and other observing systems can also be examined. Fig-
ure 6 shows the spatial rms of the (top) time-averaged
bias and (bottom) standard deviation for the TOVS geo-
potential height OMF residuals. Since TOVS provides
global coverage in the course of a single day, the spatial
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FIG. 8. Spatial rms of the time-averaged bias of OMA residuals for the CTL experiment (solid
curves) and retrospective assimilation from the RIA experiment: (a) the TOVS geopotential height
residuals; (b)–(d) the radiosonde geopotential height, zonal wind, and meridional wind residuals,
respectively. Units as in Figs. 4 and 5.

averages now cover the entire (left) Northern Hemi-
sphere and (right) Southern Hemisphere. We see con-
siderable improvement in the OMF biases and standard
deviations from the retrospective forecast residuals. In-
terestingly, the standard deviation results over the
Northern Hemisphere (Fig. 6b.1) contradict the deteri-
oration observed in the radiosonde geopotential height
OMF residuals (Fig. 4b.1). We attribute this contradic-
tion over North America to contradictions between the
geopotential height observations from the radiosondes
and the TOVS retrievals themselves and not to the ret-
rospective analysis procedure.

Another quantity we have studied is simply the spatial
average of the time-mean residuals. Though we expect
considerable cancellation of errors in this quantity, it
still serves as an indicator of the overall behavior of the
residuals and of the underlying procedure used to pro-
duce them. Figure 7 shows the time-mean OMF resid-
uals for the CTL 6-h forecasts and the lag-1 retrospec-

tive forecasts. The globally averaged time means for
TOVS and radiosonde geopotential height OMF resid-
uals are displayed in Figs. 7a,b, respectively. We see
mostly a reduction in the time-mean residuals when the
retrospective forecasts are used instead of the regular
forecasts, with some overshooting at levels below 700
hPa for the TOVS residuals. The zonal and meridional
wind components of the radiosonde OMF residuals are
displayed in Figs. 7c,d, respectively, and again we see
an overall reduction when the retrospective forecasts are
used, with some overshooting of the mean meridional
wind around 150 hPa.

In terms of the metrics presented here for the non-
linear suboptimal case of the GEOS-3 application, we
see clear benefit in producing the 6-h forecasts from the
lag-1 retrospective analyses over the regular GEOS-3
DAS forecasts. This serves to indicate improved anal-
ysis quality with the RA scheme. This also serves as
further motivation to consider the iterated retrospective
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FIG. 9. Time series of the globally averaged bias for the (top) zonal
and (bottom) meridional component of the cloud-track wind OMA
residuals at 200 hPa. The thin curves are for the CTL experiment,
and the thick curves are for the RIA experiment. Units are m s21.

analysis procedure proposed in the previous section,
since it makes direct use of the retrospective forecasts
(see Fig. 2).

c. Evaluation of the 6-h retrospective-based iterated
analysis

We now evaluate the performance of the 6-h (lag 1)
retrospective-based iterated analysis scheme. We start
by comparing the OMA residuals between the CTL and
the RIA experiments. Figure 8 shows the spatial rms of
the time-averaged bias for TOVS and radiosonde geo-
potential height OMA residuals (Figs. 8a,b, respective-
ly), and for the zonal and meridional components of the
radiosonde winds (Figs. 8c,d, respectively). Although
small, we now actually see improvement in the OMA
residuals due to the iterated analysis. To the extent that
the expectation can be replaced by the time mean, the
inequality (24) holds when corresponds to theawk | k11

iterated analysis, at least in a globally averaged sense.
We have also examined the spatial rms of standard de-
viations of the OMA residuals of both the CTL and RIA
experiments and have found it to change very insignif-
icantly.

Even though small, the improvement due to the RIA
scheme seen in Fig. 8 is also visible directly from the
time series of the globally averaged OMA residual bias.
Furthermore, this improvement is seen not only for
TOVS and radiosonde OMA residuals, but also for other
instruments as well. An illustration is presented in Fig.
9 by displaying the globally averaged bias of the (top)
zonal and (bottom) meridional cloud-track wind OMA

residuals at 200 hPa. The thin curves correspond to the
OMA residual time series from the CTL experiment and
the thick curves are for the RIA experiment. The global
reduction in the bias can be as much as 1 m s21 at times.
This confirms the reduction in the globally averaged
bias of the radiosonde OMA residuals observed in Figs.
8c,d around the same pressure level.

Frequently, changes made to assimilation systems are
evaluated and validated by making comparisons with
independent observations, that is, observations that are
not assimilated by the system. Data-withholding exper-
iments are commonly used to assess the impact of a
particular observing system and can also be used to
evaluate the impact of system changes (e.g., Bouttier
and Kelly 2001, and references therein). Here we choose
to validate the change in the 200-hPa winds of Figs. 8
and 9 by using wind observations from the Global Air-
craft Data Set (GADS) of the British Airways Boeing
747-400 flights, and by using further aircraft wind ob-
servations from the Aircraft Communications, Address-
ing, and Reporting System (ACARS). Neither of these
observation types was used in our assimilation exper-
iments and, therefore, they provide independent checks.

The GADS wind observations have been shown by
Rukhovets et al. (1998) to be of value to GEOS-3 DAS
if used regularly in the PSAS analyses. This suggests
that any changes made to GEOS-3 that show its analyses
to draw more closely to these observations, even when
they are not assimilated, should be considered an im-
provement. With that in mind, we used a dataset of the
January 1998 GADS observations to construct OMA
residuals for the analyses of both the CTL and RIA
experiments. Figure 10 shows maps of standard devi-
ation of the (top) zonal and (bottom) meridional GADS
winds OMA gridded residuals for the CTL experiment
subtracted from the same quantity for the RIA experi-
ment (RIA minus CTL). The color scheme in the figure
indicates that blue (negative values) corresponds to im-
provements due to the RIA procedure. Though we see
areas where the impact of RIA is neutral or negative,
in most places the GADS observations are closer to the
analyses of the RIA experiment than to those of the
CTL experiment.

Similarly, Fig. 11 shows the differences of Fig. 10,
but now for the ACARS wind OMA residuals. The maps
are focused over North America since that is where the
majority of the observations are concentrated in this
case. Relatively neutral results are seen in the meridional
component of the wind (bottom map), but undeniable
improvement due to the RIA scheme is seen in the zonal
component of the wind (top map).

Ultimately, as emphasized by CST94, one of the main
motivations for performing retrospective analysis is to
produce the best possible dataset for climate research.
As such, it is important to examine the climatological
impact of changes induced by the RIA procedure. Since
the results of the experiments discussed here are still
preliminary we do not want to dwell too much on the
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FIG. 10. Maps of the 200-hPa std dev of the GADS winds OMA residuals of the CTL experiment
subtracted from the same quantity for the RIA experiment. The top map is for the zonal wind
and the bottom map is for the meridional wind. Units are in m s21.

significance of performing RA and RIA for the purposes
of improving the climatological aspects of the assimi-
lation strategy—recall that our experiments are for a
very low resolution version of GEOS-39. Still, we can-
not avoid looking more closely to see what is the cli-
matological impact of changes such as those observed
in the wind field. In fact, the significance of the RIA
impact on the upper-level winds can be seen more clear-
ly by looking directly at the monthly averaged winds.
For instance, Fig. 12 shows (top) the zonally averaged
January 1998 monthly mean meridional wind for the
RIA experiment and (bottom) its difference from the
CTL experiment. The bottom panel shows a distinct
tropical wind strengthening at the upper levels and a
slight weakening at the mid- to lower levels when the
RIA scheme is used.

This change in the tropical meridional wind affects
the Hadley circulation. To see the meridional circula-
tion, we calculate the mass streamfunction c by inte-
grating the zonally averaged monthly mean meridional
wind using the expression

p2pR cosf
c 5 [y ] dp9, (25)Eg p top

where y stands for the meridional wind, the operator
represents the time mean, the operator [ · ] represents·

the zonal average, R is the mean radius of the earth, g
is the gravity constant, f is the latitude, and the integral
is from ptop 5 10 hPa to a pressure p. Figure 13 shows
the January 1998 mass streamfunction for both the (top)
CTL and (bottom) RIA experiments. We see a clear
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FIG. 11. Same as in Fig. 10, but for the ACARS wind OMA residuals. Only North America is
displayed since it corresponds to the area where the bulk of these observations are.

enhancement of the Hadley circulation when the RIA
procedure is used, with the mass streamfunction peaking
at about 16 3 1010 kg s21 in contrast to the weaker peak
of 12 3 1010 kg s21 for the circulation of the CTL
experiment. Although we do not expect the circulation
to be well represented at the coarse resolution we use
in our experiments here, it is much closer to the cir-
culation pattern of the full-resolution, 18 latitude by 18
longitude GEOS-3 DAS (not shown), with its tropical
circulation peaking at 18 3 1010 kg s21. This suggests
that the RIA scheme has the potential for improving
climatologically relevant features.

Finally, we compare the skill of 5-day forecasts issued
from the CTL and the RIA analyzed fields. These are
initialized as in Fig. 3. Since our experiments are con-
fined to the single month of January 1998, we have few
independent samples for this comparison. We issued 5-
day forecasts starting from 2 January 1998 every 3 days

until 26 January 1998, to have a small sample of nine
5-day forecasts. We verified that the overall conclusions
and skills calculated from this small ensemble were not
affected by the size of the sample by reducing the size
of the sample down to five members and performing
cross validation. As a measure of forecast skill we cal-
culated anomaly correlations and rms errors [e.g., von
Storch and Zwiers (1999), Eqs. (18.17) and (18.18)].
Both the CTL and RIA forecasts were verified against
their own analyses. Anomalies were calculated using a
10-yr climatology obtained from European Centre for
Medium-Range Weather Forecasts (ECMWF) opera-
tional analyses for the period of 1988 to 1997, and in-
terpolated to the resolution of our experiments. We
should say that the scores shown below are not repre-
sentative of the scores of the operational GEOS-3 data
assimilation system, which operates at higher resolution
than that of the experiments here.
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FIG. 12. (top) The Jan 1998 zonally averaged meridional wind for
the RIA experiment and (bottom) its difference from the zonally
averaged meridional wind of the CTL experiment. Units are in m
s21.

FIG. 13. Mass streamfunction for (top) CTL and (bottom) RIA
experiments. Units are in 1010 kg s21.

Figure 14 shows the anomaly correlations for the 500-
hPa geopotential height field calculated over four dif-
ferent regions for the 5-day forecasts issued from the
CTL (solid curves) and RIA (dashed curves) analyses.
We see that over the (top left) Northern Hemisphere
extratropics forecasts from RIA analyses are of similar
skill as forecasts from the control analyses, at least up
to day 4. Over (bottom left) North America the forecast
skill from RIA analyses shows some deterioration when
compared against the skill of the CTL forecasts. As
when studying the OMF residuals obtained from the
retrospective forecasts using the RA analyses, this de-
terioration over North America might be related to con-
tradictions in the observing system over this area (see
Figs. 4b.1, 6b.1). In fact, this seems to be an issue con-
fined to this region since, for example, over the (top
right) Southern Hemisphere and (bottom right) Europe
we see improvement in skill when the 5-day forecasts
are issued from the RIA analyses.

As a final illustration comparing the 5-day forecast
skill from the CTL and RIA experiments we examine
the rms error of the tropical wind fields at 850 and 200
hPa. Figure 15 displays these quantities for both the
(left) zonal and (right) meridional components of the
wind. The rms errors at 850 hPa are virtually identical,
while at 200 hPa we see a slight improvement when
using forecasts from the analyses of the RIA experiment.

Although these are small improvements they serve as
further confirmation of what we have seen previously
when comparing the analyses of the CTL and the RIA
experiments with independent observations.

5. Conclusions

A central purpose of atmospheric data assimilation is
to produce the best possible estimate of the state of the
atmosphere at any single time. In theory this can be
accomplished by using smoothing techniques since they
are aimed at maximizing data usage through inclusion
of observations in the past, present, and future of the
time an estimate is sought. In the context of sequential
data assimilation, the fixed-lag Kalman smoother
(FLKS) provides a particularly attractive framework.
The FLKS formulation is based fully on the underlying
filtering strategy. Its formulation requires no error co-
variance information beyond what is required by the
filtering approach. Indeed, the FLKS can be separated
into a filter portion and a retrospective analysis (RA)
portion and this separation renders practical implemen-
tation of FLKS-based procedures a relatively simple ex-
tension of an already existing (filter) analysis scheme.

Two different types of retrospective procedures are
investigated in the present work. The first is the original
FLKS-based formulation referred to simply as RA. The
second is an iterated version of the original algorithm,
referred to as RIA. The only difference between these
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FIG. 14. Anomaly correlations for 500-hPa geopotential heights for CTL (solid curves) and
RIA (dashed curves) experiments.

two procedures is that the lag-1 retrospective analysis
of the latter is used to produce a revised filter analysis
that is supposedly of better quality since it uses obser-
vation information from the future. Both of these pro-
cedures are implemented as an extension of the Goddard
Earth Observing System version 3 (GEOS-3) Data As-
similation System (DAS). The GEOS-3 retrospective
procedures implement smoothers that are optimal to the
extent that the underlying filter strategy is optimal. In
the GEOS-3 DAS the physical-space statistical analysis
system (PSAS) is the underlying filter, which is sub-
optimal given the formulation of its error covariances;
as a consequence, the GEOS-3 retrospective procedures
are suboptimal as well. The new components required
for implementing a retrospective capability in GEOS-3
DAS are the adjoint of the tangent linear model of the
GEOS-3 general circulation model (GCM); the rear-
rangement of a few operators already available in the
PSAS of GEOS-3 DAS; and the development of the
tangent linear and adjoint operators responsible for
transforming between model-space variables and anal-
ysis-space variables as well as the adjoint of the operator
transforming analysis-space variables into observables.
The adjoint of the tangent linear GCM used in the pre-
sent work includes the adjoint of the tangent linear hy-
drodynamics and the adjoint of a simple diffusion term;
the adjoint of the physics is not included.

Only results for the 6-h (lag 1) retrospective analysis

were studied here. Although close examination of the
OMA residuals seemed to suggest a rather neutral ben-
efit from the lag-1 retrospective analysis, we saw im-
provement in the 6-h forecasts issued from these lag-1
retrospective analyses: these so-called retrospective
forecasts are a closer match to the observations than the
regular GEOS-3 DAS forecasts. This improved 6-h fore-
cast skill motivated the investigation of the RIA scheme
since this scheme makes explicit use of the retrospective
forecasts. Evaluation of the analyses from the RIA pro-
cedure indicated them to be closer to the observations
than the usual PSAS analyses. The OMA residuals for
independent observations not used during the assimi-
lation further confirmed some of the improvements due
to the RIA scheme. More significant improvements were
seen when examining climatologically important fields
such as the mass streamfunction describing the merid-
ional wind circulation. Finally, anomaly correlations and
root-mean-square errors from a small sample of 5-day
forecasts indicated a mild improvement in skill scores
when analyses from the RIA procedure were used for
the 5-day forecasts instead of the regular GEOS-3 anal-
yses. Although the skill scores were not improved ev-
erywhere over the globe, they were improved generally.

Much study remains to be done to show that retro-
spective analysis is a worthwhile extension of PSAS to
GEOS-3 DAS. Examples of such studies include the use
of a high-resolution retrospective procedure and ex-
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FIG. 15. The rms error from forecast skill study for the (left) zonal and (right) meridional components of the wind
at (top) 200 and (bottom) 850 hPa. Solid curves are for CTL experiment; dashed curves are for RIA experiment. Units
are in m s21.

amination of both the overall statistical behavior of the
results as well as their quality with respect to repre-
senting synoptically relevant situations. However, in
light of the newly operational GEOS-4 DAS, which
replaces the GEOS-3 GCM, we plan to postpone these
studies until the retrospective assimilation capability is
brought to this new system.

Acknowledgments. We thank N. S. Sivakumaran for
his contribution during the initial phase of this work.
We are also thankful to A. M. da Silva for providing
the program for gridding residuals; to J. Tenenbaum and
L. Rukhovets for providing the January 1998 GADS
dataset used in one of our comparisons; and to J. Ar-
dizzone for providing the package to calculate forecast
error skill scores. Comments by the two anonymous
reviewers helped to improve the final version of this
manuscript. The numerical results in this work were

obtained on an SGI Origin 2000 through cooperation
with the NASA Center for Computational Sciences at
the Goddard Space Flight Center and the NASA Ames
Research Center. This research was partially supported
by the NASA EOS Interdisciplinary Project on Data
Assimilation. Preliminary results of this investigation
were presented at the Second International Symposium
on Frontiers of Time Series Modeling: Nonparametric
Approach to Knowledge Discovery, held in Nara, Japan.

APPENDIX

Retrospective Gains as a Function of Filter
Variables Only

The purpose of this appendix is to derive the
alternative expression (16) for the retrospective gain
matrix (see also Zhu et al. 1999). Using (6) and (7) with
l 5 1, 2, . . . , j we have

a f21 T 21T T T TK 5 P A H G 5 P [(I 2 K H ) A ]H G , (A1a)k21 | k k21 | k21 k,k21 k k21 | k22 k21 | k21 k21 k,k21 kk k

aa aT 21 T 21T T T T TK 5 (P ) A H G 5 P A [(I 2 K H ) A ]H Gk22 | k k21,k22 | k21 k,k21 k k22 | k22 k21,k22 k21 | k21 k21 k,k21 kk k

f T T 21T T T5 P [(I 2 K H ) A ][(I 2 K H ) A ]H G , (A1b)k22 | k23 k22 | k22 k22 k21,k22 k21 | k21 k21 k,k21 k k
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aa T 21T TK 5 (P ) A H Gk2j | k k21,k2j | k21 k,k21 k k

f T T 21T T T5 P [(I 2 K H ) A ] · · · [(I 2 K H ) A ]H G . (A1c)k2j | k2j21 k2j | k2j k2j k2j11,k2j k21 | k21 k21 k,k21 k k

This can be written generally, as in (16) or, making explicit use of (1c) for the filter gain matrix, we can also
write

k
f f21 21T T TK 5 P (I 2 H G H P )A H G , (A2)Pk2l | k k2l | k2l21 j21 j21 j21 | j22 j, j21 kj21 k[ ]j5k2l11

which shows that, as pointed out in the main text, the
retrospective gains depend only on filter quantities. The
equation above also indicates that the retrospective por-
tion of the FLKS implicitly accounts for model error
(Todling et al. 1998).
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