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Abstract

In this paper we consider the standard bilinear finite element method (FEM) and the corresponding streamline diffusion FEM for the
singularly perturbed elliptic boundary value problem —&(8’u/dx” + 3’u/dy®) — b(x, y)- Vi + a“(x, y)u = fix, ¥) in the two space dimen-
sions. By using the asymptotic expansion method of Vishik and Lyusternik [36] and the technique we used in [21,22], we prove that the
standard bilinear FEM on a Shishkin type mesh achieves first-order uniform convergence rate globally in L> norm for both the ordinary
exponential boundary layer case and the parabolic boundary layer case. Extensive numerical results are carried out for both cases. The
results show that our methods perform much better than either the classical standard or streamline diffusion FEM. © 1998 Elsevier
Science S.A. All rights reserved.

Introduction

In this paper, we consider some finite element methods for the singularly perturbed elliptic boundary value
problem:

'u 9°

_8a(a L; + P L;) =bx, y) Vu+a®tx, yu=fix,y) in 2=(0,1)x(0,1), (n
x y

u=0 ondf, 2)

where € € (0,1] is a small positive parameter and a =1 or 2.

This problem is a very extensively discussed model for singularly perturbed problems [8,35,36,37]. Also, this
problem is used quite often for testing numerical solvers (cf. Bank [2] and Hackbusch [12, Ch. 10]). In fluid
mechanics, this model problem is related to convection dominated flows. It arises in many areas, such as fluid
flow in water resources; oil and gas reservoir simulation; and in heat and mass transfer in chemical and nuclear
engineering. There is a large number of different methods devoted to this model problem and its corresponding
one space dimension versions. Finite difference methods are discussed in [9,13,26], while finite volume methods
are discussed in [23]. In the context of the finite element method, there is a variety of approaches, such as
Petrov—Galerkin FEM [15], Streamline Diffusion FEM [17,18,39], High-order FEM [1,14] and Adaptive FEM
[7], to name but a few. For more details, see Hughes [16], Carey and Oden [6, Ch. 5] and Zienkiewicz and
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Taylor [38, Ch. 12]. However, few of the above methods are globally uniformly convergent (GUC); that is, the
error between the original continuous solution # and the computed FEM solution u, satisfies:

"I,l - uh”e = Chm

for some positive constant C that is independent of £ and of the mesh size. More details about GUC methods
can be found in [26,30].

It is well known [17] that both the standard FEM and streamline diffusion FEM generally have the following
global error estimates

e —u o< Chm”u”H"(ﬂ) ’

where H"(£2) for n a positive integer denotes the usual Sobolev space [3] with norm ||*[|;».,, and ||-||, denotes
an energy norm on {2. But since & is usually very small for this type problem, there exist very sharp boundary
layers or internal layers [10,41,42]. And usually, |[u] ., < Ce *, where k is some positive integer. Hence, to
ensure global convergence, the mesh size 4 must be less than or equal to £°, where p is a positive number,
which is impossible in practice, since usually £ can be as small as 10™"°. Hence, much work switched to local
error analysis (cf. Johnson et al. [18], Zhou and Rannacher [39] and for more details see Wahlbin [37]).

In the following, we will focus on GUC methods achieved by FEM. It is well known that uniform
convergence can be achieved by using exponentially fitted splines or combinations with other functions as trial
and test space [27,30]. However, they are complicated to use and have very low convergence rate, which is
lle = u,||, < ch'”?, where ||-]|, is a variant of an energy norm. Another type of uniform convergence is achieved
by using hp FEM [33], which is also very complicated and is still under development. Recently, almost optimal
uniform convergence results were achieved for ordinary differential equations and parabolic equations by using
the standard Galerkin or streamline diffusion FEM on a Shishkin type mesh [11,19,30]. The Shishkin type mesh
is a piecewise uniform mesh, which specifies a fine uniform mesh inside part but not all of the boundary layer
and coarse uniform mesh elsewhere a priori, yet still gives convergence that is uniform in . It is very easy to
apply, but the aforementioned studies were restricted only in one space dimension. Recently, Madden et al. [24]
carried out some computational experiments for FEM on Shishkin meshes in two dimensions, and their results
seemed very promising. However no theoretical analysis efforts were carried out as yet. Just as Roos et al. said
in [30]: ‘‘Finite element methods that use Shishkin meshes in two or more dimensions have not been explored in
the literature.”” Up to now, to the best of our knowledge, except for our first attempt applied for the
reaction-diffusion type problem [21,22], the theoretical analysis for FEM on Shishkin meshes in two space
dimensions is still missing.

This paper constitutes another attempt in the above mentioned area. We prove here by using the asymptotic
expansion method of Vishik and Lyusternik [36} (see also [8,35]) and the technique we used in [22], that the
standard bilinear FEM on a Shishkin type mesh achieves first-order uniform convergence rate globally in L?
norm for both the ordinary exponential boundary layer case and the parabolic boundary layer case. Extensive
numerical tests are carried out for both cases. We also present a brief discussion for the streamline diffusion
methods on these Shishkin type meshes. Numerical results are also presented for comparisons between our
methods and the classical standard and streamline diffusion FEM. The results show that our methods are much
better than either the classical standard or the streamline diffusion FEM.

The organization of this paper is as follows. In Section 2, we discuss the pure exponential boundary layer
case, where we assume a = 1 and b, b, and a are positive constants. Then in Section 3, we discuss the more
complicated parabolic boundary layer case, where we take a =2, b, =0, and b,>0. Finally, extensive
numerical results for both cases are provided and discussed in Section 4.

Through this paper we shall use C, sometimes subscripted, to denote a generic positive constant that is
independent of both & and the mesh. Also, we use (-), to denote the derivative with respect to the variable x.

2. Exponential boundary layer case

In this section we consider the following problem:

o’u 9’
Lgua—g<—in+-—L;>—b~Vu+au=f(x,y) in {2, (3)
ax ay
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u=0 on 312, 4

which corresponds to the case of a =1 in (1). To avoid lengthy technicalities, we assume that the coefficients a

and b = (b, b,) are positive constants. For variable coefficients, a similar research work can be carried out (cf.
[22]).

2.1. Derivative estimates of the solution

In this subsection, we will obtain some derivative estimates for the solution of (3), (4) under the compatibility
conditions [27,30]:

(H*) f0,0)=f0,1)=£1,00=A1,1)=0

which ensure that the solution of (3), (4) u(x, y) € C*(2) N C*(£2), where £ = 2 U 3£2. Such compatibility

conditions are necessary for the global pointwise derivative estimates of the solution [27,30]. O’Riordan and

Stynes [27] obtained the derivative estimates for a very similar problem. Hence, we just sketch the proof here.
In this section will make repeated use of the following weak maximum principle:

LEMMA 2.1.1. For any functions w(x, y) € clHn CO(?)), ifw=0on df2and Lw=0 on (2, then w=0 on
0.

PROOF. It can be proved easily by contradiction (cf. Eckhaus [8, Lemma 6.2.1.1]).
By choosing the barrier functions [22,27] properly, we can obtain the following estimates for the solution u of

(3), (4.

LEMMA 2.1.2 B
O |ux, p=c1—e"*"%) on 0,
an ux, y|<Ccl-x) on 2,
iy ut, yl<cl—e2") on 2,
V) lux,y)|<sC(l—y) on Q2.

PROOF. (I) Using the barrier function é(x, y) = C(1 —e'"*"™’%), we have

L(p*u)=Cable ' e 2" —2p3Ce™ T +aC(1 — e T2 f
=C2bh e —a)e "V +aCxf
=0, for sufficiently large C,

where we use the fact that ¢ is very small. Then, from (¢ *u)|,,, =0 and Lemma 2.1.1 we conclude our proof.
(II) Use the barrier function ¢(x, y) = C(1 —x).
(II1) Use the barrier function ¢(x, y) = C(1 — e 72"2"'%),
(IV) Use the barrier function ¢(x, y) = C(1 — y).

LEMMA 2.1.3.
0 |u e y|<Ce' onaf2,
(N |ux, l<Ce™' on Q2.

PROOF. (I) By Lemma 2.1.2(I), we have

u(x, y) — u(0, )
X

u(x, y) — u(0, y)
X

=< lim
x=0"

e (0, y)| = | lim
x—0"

Cc(1—ey b, C
= lim = .
x—0" X &

Similarly, by Lemma 2.1.2(II), we have
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Ly) —uxy 1, y) — u(x,
(1, )| = | tim LD ZHED | | L) =)

(1—x) x> (1-x
. C—x)
<lm 75 =¢

Using the given boundary condition (4), we have u (x, 0) = u_ (x, 1) = 0, which concludes our proof.
(II) Use a similar proof as in (I) by Lemma 2.1.2(IIT) and (IV).

LEMMA 2.1.4.
D Julx, ) <Cl+e ' ™% on
an |ux pl<=ca+ g e %) on

’

SN

PROOF. (1) Consider the barrier function ¢(x, y) = C(1 + &' e'~"'"’*) then we have

L(p*u)=aCl+e e ")xf
=0 for sufficiently large C,

and note that (¢iux)l an = 0, which concludes our proof of (I).
(II) To prove (II), we use the barrier function ¢(x, y) = C(1 + e e Ty,

LEMMA 2.1.5.
(1) qux(x’ y)l = C€~2 on 6!2
an |u”(x, = Ce? on afd

PROOF. (1) From the boundary condition (4), we have u”|_v:0’1 = (. From Egq. (3) and boundary condition (4),
we obtain u,,|,_,, = —& '(f+bu)|,_o, <Ce ™"
(I) Use a similar proof as in (I).

LEMMA 2.1.6. _
D) |u o y<CA+e e ™) on 2,
an Ju, e pl<sc+e2e2"%) on 0.

PROOF. (1) Use the barrier function ¢(x, y) = C(1 + & > &'~"*’*), then

L(p*u,)=aC(l+e e "™)xf

=0 for sufficiently large C.

then using (¢*u_)|,, =0 and Lemma 2.1.1 concludes our proof.
(I1) Use the barrier function ¢(x, y) = C(1 + & e 7729,

REMARK 2.1. From the above estimates, we can see that the solution exhibits very sharp boundary layers at
x =0 and x = 1, which can also be seen by carrying out an asymptotic expansion which is presented in the next
subsection.

2.2. The asymptotic expansion

In this subsection, we will use the general asymptotic expansion method developed by Vishik and Lyusternik
[36] to develop an asymptotic expansion for problem (3), (4). Roos et al. [30, p. 183] sketched its asymptotic
expansion very briefly. Here, we will present a more detailed analysis by using the method of Vishik and
Lyusternik.
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The leading term in the regular part of the asymptotic solution U(x, y) = =, £'U,(x, y) is defined by
—b-VU,+alU,=f(x,y) in 2
U0|x=l = U0|y=1 =0.

Since the regular part of the asymptotic expansion generally does not satisfy the boundary conditions at x =0
and y=0, we have to introduce the boundary layer functions V(& y)=2,_, EVi(£ y) and W(x,n) =
27, ei‘fl/i(x, 7) to eliminate the discrepancies at x =0 and y = 0, respectively, where £ = x/¢ and 5 =y/&.

The first two terms of V satisfy the following ordinary differential equations:

Vodee T b,(V), =0, for £>0
Voleco=—Uo(0, ), Vgl =0

and
V)ee + b,(V)E=b,(Vy), —aV,, for £>0
Vileeo=-U,0,», V|5 =0,

respectively. From which we obtain the solution V (£, y) = —U,(0, y) e "¢,

Similarly, we can obtain W,(x, ) = — U,(x,0)e "".

Note that u — U — V— W is not small near the corner (0, 0) since the boundary layer terms overlay there. We
need a corner layer function Z(&, ) =2,_, £Z(£, 1), to compensate this discrepancy. The first two terms
satisfy the following equations:

Zy)ee + Zy),y, + b 1(Z) +b,(2,), =0, VE>0,>0,
Zo|§=0 =-U,+V, + Wo)|g=o ) ZO|q=0 =—U,+V, + WO)l'r]:()
Z,—0 as {>0,n—00,

and
Z)ee + Z)yy +b,Z), +b,Z),=0aZ,, VE>0,7>0,
Zl|§=0 =-U +v+ Wl)l§=0 » len=o =-—U +V,+W),_,
Z, -0 as oo, 0,

from which we obtain Z (£, ) = Uy(0, 0) e héet,

LEMMA 2.2.1. Let u be the solution of (3), (4) and U, € C*(A2), then
|R(x, y)| < Ce, for all (x,y) EN=0UN ,
where R(x, y) = u(x, y) — u,(x, y) denote the remainder in the asymptotic expansion
Uy, (X, ¥) = Uglx, y) + V(& ) + Wole, m) + Zo(€,7) .
PROOF. Consider the auxiliary asymptotic expansion
U, (x5, y) = Ug(x, ) + Vo(€, ) + &V, (& ) + Wolx, m) + eW, (. ) + Zo(€,m) + eZ,(€, 1)
then from the above construction of these functions, we can find that
Lu,<Ce and |u,|,,<Ce.
Consider the barrier function ¢ = Ceg, we have
L(¢*+u,)=0 on 2 and (¢*u,)|,,=0,

from Lemma 2.1.1 and this concludes our proof.
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2.3. Finite element method on Shishkin type mesh: Case (I)

To construct a Shishkin type mesh, we assume that positive integers N, and N, are divisible by 2, where N, and
N, denote the number of mesh points in the x- and y-directions, respectively. In the x-direction, we can construct
the Shishkin mesh by dividing the interval [0, 1] into the subintervals [0, o,] and [o, 1]. Uniform meshes are
then used on each subinterval, each with N /2 points. Here, o, is defined by o, = min{1/2, 2b1_'aln N_}. More
explicitly, we have

0:x0<xl<“.<xi0<”'<xNx:1’
with i, =N,/2, x,, = o, and

h,=20N.', fori=1,...,i,,

h,=2(1—0)N_"', fori=i,+1,....N,,

X

where h, =x, —x,_,.

In the y-direction, we follow the same way above by dividing the interval [0, 1] into the subintervals [0, o]
and [0}, 1]. Uniform meshes are then used on each subinterval, each with Ny/ 2 points. Here, a, is defined By
o, =min{1/2, 2b, 'eln N,}. More explicitly, we have

0=y0<)’1<"'<)’,'0<"‘<>’~y:lv
with j, =N,/2, y;, = o,, and
— -1 . .
kj—20'yNy, for j=1,...,j5,
-1 . .
ki=2(1-0)N, , forj=j,+1,....N,,

where k; =y, —y,_,.
We shall assume that o, = 2b, 'eInN, o, =2b, elnN,. Otherwise,

_ b, b,
=M\ 4N, 4N, )
in which case & is not so small allowing this problem to be analyzed in the classical way, which is not of interest

here.
Let L= [x,_, x], I=[0, 1], [ =1, X I, h=max, .,y h» K;=[y,-, y,), K; =1 XK, k=max, ;. k; and

I, be the L” norm on any domain 7, here 1 < p < oo. For simplicity, we use ||-|| to denote the usual L* norm
on {2
The weak formulation of (3) is: find u € H ('J(.Q) such that

B(u,v) = (eu,,v,) + (eu,v,) — (bu,, v) = (byu,, v) + (au, v) = (f,v), Yu EH(I,(.Q) ,

where (-,-) denotes the usual LZ(Q) inner product and H (l)(.()) is the usual Sobolev space [3].
Denote the weighted energy norm by

ol = {dlo.I* + dllo, I + oI’} 2, Y v € Ho(12) .
Note that for any v € H (l,(.()), we have

Bv,v)=(ev,v )+ (svy, vy) —bw,v)—- (bzvy, v) + (av,v)

ello,IP + elo,I* + allol = min(1, )0

Let S,(42)CH (1)(!)) be the ordinary bilinear finite element space [3,32] and
N N,

=2 2 w0y (5)

i=0,=0
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be the standard bilinear interpolate of w, where /I and /I are the interpolates in x- and y-directions,
respectively. Here, {(x) 15 the weli-known ‘“hai” function {323.

We seek the finite element solution 4" € S, such that

B, v)= (aul,v,) + (au},v,) = byul,v) — bul, v) + @, v)=(f,v), YvES,, (6)

where J_‘ denotes the standard bilinear interpolate of f.
Let us recall some results from [32] we will use in this paper.

LEMMA 2.3.1 [32, Theorem 2.1 [lw = ILIlw = [[ Il w.
LEMMA 2.3.2 (32, Theorem 2.6] |w — ILw{l.; <{ hilw,]l.;.

LEMMA 2.3.3 [32, Lemma 2.1]

M2, < max e (utx; -, ), lutx M

”Hx“”w.r} = ”““cc,n .

The same results of Lemmas 2.3.2 and 2.3.3 hold true for the interpolate /1 in the y-direction.

2.4. Uniform convergence analysis
In this subsection, we will use the asymptotic expansion given in subsection 2.2 and the technique we used in

[21,22] to prove that our FEM is first-order uniformly convergent in L* norm.
Let us first prove some interpolation estimates for the solution u of (3), (4).

LEMMA 2.4.1. For the solution u of (3), (4), we have

) |u~Mu.; <CNI’N+8), Vi=1,..., i, (7)
(an ||u—HyuH®,Kj$C(N;21n2N>,+.s-), Yi=1....j, (8)
) u—Iul.; <CN*+e), Yi=ig+1,....N,, 9)
ary ||u—17yui|x',5j$C(N;2+a), Vi=jo+t1....N,. (10)

PROOF. First, for i=1,...,i,, by Lemmas 2.3.2 and 2.1.6, we obtain

b = Tl < CHile . < O max(1 + 675 20 72 o100
x t

xx"oc,ll
<Ch(1+& )<CN.’In’N,,

since h, =20 /N, in this case. Hence, (I) is true.
Second, for i=i,+1,..., N, in this case x € [0,, 1]. Use Lemma 2.2.1, we can write I7u in the form

[Tu=1U,+ IV, + [IW, + I1Z, + IIR

where I1LU,, I1V,, II W,, 11 Z, and II R denote the linear interpolation in the x-direction to Uy, V,, W,, Z, and
R, respectively.
Note that U,(x, y) is independent of & we have

Uy = ILU,|.. ; < ChI|Up) .|, <CN?,

where in the last step we used the fact that N_' <h, <2N_' fori=i,+1,...,N..
By Lemma 2.3.3 and the expression of V;, we have
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X X X
Vo(}’ y) - IZYVO(;’ y) o\ g’ )’) sCeTh e g e =N,
m,[l ao_li
w B Y 2 -2 : —bam
0% %5 ) = AW x. 7 ; < Ch;[(Wo)lls SCNG®, since e <1,
Xy X
2(55) - 1a(G )|, <a (G
& &

<Ce Pl celThie — oN T

x

and
IRCx, ) = ILRGc, ). ; <2IRl..; <Ce,

which concludes the proof of (I').
Similarly, we can prove (II) and (II') in the same way by symmetry consideration.
Then, we have:

LEMMA 2.4.2. For the solutton u of (3), (4) we have
o) Hu—Hu”mnSC(N In® N, +N *In® N, + &),
D) = Mgy 1100 < CONLZ+ N, + 6)

PROOF. Using Lemmas 2.3.2, 2.3.3 and 2.4.1, we have

lle = 1T\, o <l = [Tl o + T — I )., (11)
<|lu— ILul.. o+l — ILul.. , (12)
= maxlSisNX”u - I]Xu"m‘,-‘_ + maxlsjsNy”u - IIyu”w,kj ) (13)

which concludes our proof.

From now on, we denote y = [Tu — " and assume
(A*) O0<(C,N, <N <CN ,
(B¥) e<max(N_*In>N, N“2 In*N),
where (A*) ensures that we have a quasi-uniform mesh [3, p. 106] away from the boundary layers.

LEMMA 2.4.3. Let 7= [0, h,] X0, hy], then for any v € S,({2) we have
0 f lv.] dx dy < CGt, 18,)" .,
@ [ o axdy=cinsm) ol

PROQOF. (I) This result can be obtained by using the standard homogeneity argument [3]. Let 7=[0, 1] X
[0, 1], so 7 can be obtained by the transformation x = h x, y = h.y, where 0 <x <1, 0 <y < 1. Hence, we have

1 _ R
[ledacay= [ o5 az s =n, [ gz a5

C
<ch fiv!dxdy ch j|u|hh ay=o | blaxay

h 172
- y
<O ol ) = 0(52) ol

X

which concludes our proof.
(II) The proof is similar to (I).
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LEMMA 2.4.4. For the solution u of (3), (4), under the assumptions of (A*) and (B*), we have
) |6\l =w),, | < CW, +N, Olixl
an o,dT —w,, <"+ N Hlxl

PROOF. (I) Integrating by parts, we have
— (b, (Tu—w),, x) = b, (Ilu — u), x,)

(LI f L )bl(ﬂu —u)x, dr dy,

where S, = [0, 1] X [0, o;,], S, =10,01X [ay, 1] and S, ={0., 1] X [cry, 1].
Note that

[, - wx aros| < cm—uls, | Ixlasey

1 1
<CWN?In*N,+N,; > In’ N, + e)(Area 5))'?|Ix.|
<SCWN?In°N,+ N2 In° N, + & In'* NJle' “x ||, since (Area S,)
=2b,'¢ln N, .

and

[ s o ey | <clm—als, | Dedasay
2 2
=CW;’In* N, + N, In® N, + e)(Area S,)"“lx.|
<SCIN?I°N,+ N2 I’ N, + 9 In'* NJls' *x ]|, since (Area S,)
<2b;'elnN,.

Finally, by Lemmas 2.4.2 and 2.4.3, we have

[ buthi— gy < it =, | Il axy
3 3

<SCN2+N2+ &)k, /h)" 2 Ixl,.

T S;
<C(N_2+N_2+6‘)(h /h )1/2(2 “X“27>”2(§ 1)1/2

<CW.2+N;2 + oNJIxll.s,
where we used the assumption (A*) and the fact that

N.'<h,<2N_' and N,'<h,<2N]' inS;.

y

From the above inequalities and the assumptions of (A*) and (B*), we conclude our proof of (I). Here, we
used the fact that 0 < (In>’N)/N < 0.9 for N > 1, since the maximum value is approximately equal to 0.8045, a
value attained for N = 12.1825.

(II) The proof is similar to (I).

THEOREM 2.4.1. Let u, be the finite element solution of (6) and u be the solution of (3), (4). Under the
assumption of (A*) and (B*), we have

e —d|l<CN;'+ N
y
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PROOF. Note that
C M — " < B(Tu — u", Iu — u™)
=BUTu — u, Mu — u*) + Bu — u", IIu — u") .
By the definition of (6), we have
BUTu — u, Iu — u"y = o((ITu — ). x,) + ST u— ), x,) = (b-V(ITu = u), x) + @Tu = u),x)

Integrating by parts, we obtain

aITu—uw,, x)= > J i fj &llu —u), x, dx dy
N, Y

IsisN sjsN, Yxo Ty

i

S 7 - wiz o

1sisNr.ls)‘sN‘, ¥

S el 4y -l
=t

1sisNX,1sjsN‘_ ¥

I

I

{
S | e ulay - ul.

I<isN,

1 1
S ey el

1 1
=Nl [ [ el ayar,

<Ce'’NWN*In’N,+ N, In’ N, + o)ls' x|,

where we use the fact that y, is independent of x in the above proof.
Similarly, we have

AUTu = w),, x,) < C&'"NN*In*N + N * In* N, + 8)l|&' x|
Also, note that
(@u — u), x) < Cllall.. ol1Tu — ull )|l < Cl|l T — ull,. ol x|
<CWN,;*In*N,+ N, > In*N, + &) [Tu — u"|.
By Lemma 2.4.4, we have
6 -V = u), )| < CWN," + Nl
Hence combining above inequalities with assumptions of (A*) and (B*), we have
|BUIe —u, Mu—u") < COV "+ N Y
On the other hand,
Bu—u", Iu—u"y=(f—f u—u")
< Cllf = flle ol — '] < CNZ + N7 = o]
Using (14)—(21), we have
I - "< cv;' + N

Therefore using Lemma 2.4.2(1), we obtain

(14)
(15)

(16)

(17)

(18)

(19)

(20)
(21)
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e = "l <l = IRu] + T = "] < [l = Tt o + 7T = o] (22)
<CWN?In°N,+ N> In’N,+ e +N_ '+ N ). (23)

which concludes our proof.

REMARK 2.2. Unlike the reaction-diffusion type problems [22] we usually have only first-order uniform
convergence rate in L? norm for convection-diffusion type problems. This fact was also observed in one space
dimension, cf. Kellogg and Stynes [19] and Roos et al. [30]. Since we cannot use duality techniques [3] to

improve error estimates for singularly perturbed problems, which depend on a small parameter &, we obtained
only the above mentioned first order uniform convergence.

2.5. Streamline diffusion finite element methods

In this section, we will present a brief discussion about the popular streamline diffusion method as presented
by Johnson et al. [17].
A description of the streamline diffusion finite element method is as follows: Find u'e S, such that

By, v)= &V, W) + (b -Vu" + au",v — 8b W) = (f,v — 6b W), YV ES,,

where f denotes the standard bilinear interpolate of f.
Then, it is easy to see that for any v € S,, we have

Bsp@, ) = Wl + 8o - Vol + allo]|* = loll5 - (24)
Hence
7w — u")%p < By (ITu — ", ITu — u")
=By (ITu — u, x) + Bspu — u", x)

Note that

B (ITu — u, x) = BUIu — u, x) + (b -V(Iu — u), b - Vx) — (a(ITu — u), 3b - Vy)
and

Bgou — ", x) = &(Vu, V) + (b -Vu + au, x = 8b-Vx) = (f, x — 8b-Vx)

= —e(Au,db V) + (f—f, x —3b-Vy)

By carrying out a proof similar to that in last section, we can obtain uniform stability for ||/Tu — u"mSD only
when & < C&", where n > 1. The different term originates in the perturbation term &(Au, 8y,). Since

|e(Au, b - V)| < £8||Aull || - V|| < Ce 8 2" Y|b - V|| < C 8¢ ||e'*b - iyl

we see that only when 6 < C&", n <1 can we obtain the uniform stability.

3. Parabolic boundary layer case

In this section, we consider the equation

Lu=- (a—”2‘+a”) b——+au =fix,y) in 2=(0,1)%(0,1) (25)
ox By
u=0 on df, (26)

which corresponds to the case of & =2 in (1). For simplicity, we assume that b and a are positive constants. It
is easy to see that L satisfy the same weak maximum principle. This problem is different from the last one in
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Section 2 in that it has complicated parabolic boundary layers [5,8,34,35,36] at x =0 and x = 1 except for the
ordinary exponential boundary layer at y = 1.

3.1. Derivative estimates of the solution

In this subsection, we will obtain some derivative estimates for the solution # of (25), (26) under
compatibility conditions H*. Since the proofs are very similar to those in the last problem, we will just sketch
the important steps.

LEMMA 3.1.1. _
@) |u y|<sc1—e ") on 0,
any lux, )l<Cy on £,

Ay utx, y)lsc —e*” ‘”‘“’f) on £,
AV) |ulx, y)| < C(1 —e "% on 0.

PROOF. (I) Use the barrier function ¢(x, y) = C(1 — e(_z"“_"')”sz).
(Il) Use the barrier function ¢(x, y) = Cy.
(III) Use the barrier function ¢(x, y) = C(1 —e “’*).
(IV) Use the barrier function ¢(x, y) = C(1 —e ™ “' 7%,

LEMMA 3.1.2
) |ux, y)|<C£ > on a4,
) |ux, y)|<Ce' on af

PROOF. (I) By Lemma 3.1.1(I), we have

ulx, 1) — ux, y) ux, 1) — ulx, y)

=

Jut, (x, 1)] = lir‘ni

(I=y) yo1- 1=y
. C(l - e(—zb(l‘y))/sz) 2b6C
< lim 1=y =—5.
y—1 ( y) &

The rest of the proof is similar to Lemma 2.1.2.

LEMMA 3.1.3.
() |ue W[ <CA+e2e ™) on 0,
UD) Jux, y)| < C(1+ & e 4 g 070 o ()

PROOF. (I) Consider the barrier function ¢(x, y) = C(l + g 2elTblIE? ).
(II) Consider the barrier function ¢(x, y)=C(1 + &~ Tet™ ””’ c 4 g ety

LEMMA 3.14.
() |u,x y|<Cs* on o2
D |u (x, y)|<Ce? on af

PROOF. (I) Using the glven boundary conditions (26), we have uyylx 01 =0. From Eq. (25), we have
Uy l,—o, = (boufdy— NIle l,- 01<C€

(II) Using the given boundary conditions, we obtain uxxly 0.1 = 0. From Eq. (25), we have
=fl&"]im01 < Ce™*

uxx x=0,1
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LEMMA 3.1.5. , _
() u,, (e, | <CA+ & ey on 0 _
D |u x| <Cl+ee™ @427 on 0.

PROOF. (I) Use the barrier function ¢(x, y)=C(1 + & * e(_"(]_y))/sz),
(II) Use the barrier function ¢(x, y) = C(1 + & e "™ 4 g 2 e 701735y,

3.2. The asymptotic expansion

This subsection is based on the work of Butuzov [5]. Here, we will use the zero order of Butuzov asymptotic
expansion [5, p. 781, (5)]:

Uy = Ug(x, Y) + Q5 (&, 1)+ 05 (&, W) + Vol ) + P&, m) + PO(E, M + R, M+ R (L)

where

b 1—x 11—y x 1—x
& =", &L= » n=—"a2 > G=—7 and (= &

™
V)
V)

LEMMA 3.2.1. Assume f(0,0)=f(1,0) =0, then for sufficiently small &, we have

|AG, y)|<Ce, Y, y)€ER,

where A(x, y) = u(x, y) — u, (x, y) is the remainder of the above asymptotic expansion.

The above result corresponds to the case n =10 in 5, [p. 787, Theorem]. In the following we will present
additional details for each term.

The regular part u, satisfies the following equation [5, p. 781, (6)]:
g
dy
uy(x,0)=0

b——+ad’u,=f, in 12,

The parabolic layer function Qf''(£,, y) [5, p. 782] at x = O satisfies

2 (1) (1)
9°Qy 0Q, — 20" =9

G
0, y) = —uy(0, ), 0 (£,0)=0,

E)])(gl,)’)—‘)o as £ —

s

Also, we have the following estimates [5, p. 783]:

8”00 (£, )
ag™
"0y (&1, )
ay"

For the parabolic layer function Qf,z)(‘fz, y) at x =1 we have the similar estimates as Qf)”(fl, y).
To eliminate the discrepancies introduced by u,(x, y), le)(fl, y) and Qi,z’ (&, y)yat y =1, we need to define

functions V,(x, n), Pf)”(fl, n) and Pff)(fz,'q) as follows:
The function V,(x, ) satisfies the following equation:

sCe ™, for £=0,0sy<1, m=0,1.

<Ce ™, for £=0,0sy<1, m=0,1,2.

7V, L WV,
> tb—=—=0, forn>0
an an

Volx, 0) = —uy(x, 1)
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From which we obtain its solution as Vy(x, 7) = —u,(x, 1) e °". Hence, we have
Vo, p)|<Ce™ ™", fornp=0
The function P{’(&,,7) satisfies the following equation:
aZP(l) aP(l)
- +b——=0, forn>0
an an
Py(£,0)=—-00 (¢, 1)
P"(£,m—0, when n—o

From which we obtain its solution as P."(&,,m = —Q{ (&, 1) e "". Hence

PO, ml<Ce ™™™ for £,20,7=0.

Similarly, we can find that P{(&,, ) = —Q5 (&, De ™.
To eliminate the discrepancies introduced by functions V,(x, ) + Pf)”( &, m) and Vy(x, ) + PE)Z)( £,,m) at the
corners (0, 1) and (1, 1), we use the functions Rf)l)(g“l, 7) and Rf)z)(g’z,'q).
Function RE,”({I, ) satisfies the following equation [5, p. 786]:
FRY R R
>+ > +b =0 for {,>0,7>0
I am o

R, 00=0, RO,m=—-"0,7m)+ PO, n)

R\V(4,m) >0, when Vi +n* >
Its solution is given by [5, p. 786, (35)]:

R (4, m=R(Em e + Vi 0. + Py")O,m)e™ ",
where [5, p. 787, (41)]

o~ 2. 2
R ml<Ce Vit
From which we obtain
IR (¢, mI = Ce” 47

Similar results hold true for Ry(Z,, 7).
3.3. Finite element method on Shishkin type mesh: Case (II)

To construct a Shishkin type mesh, we assume that the positive integer N, is divisible by 4 while N, is
divisible by 2, where N, and N, denote the number of mesh points in the x- and y-directions, respectively. In
x-direction, we can construct the Shishkin mesh by dividing the interval [0, 1] into the subintervals [0, o],
[o,,1—a,] and [1 — o,, 1]. Uniform meshes are then used on each subinterval, with N, /4 points on each of
[0, 0] and [1 — o, 1] and N, /2 points on [o,, | = 0,]. Here o, is defined by o, = min{1/4, 2a”'eIn N }. More
explicitly, we have

0=x0<x1<'“<xi0<'”<xNx—i0'"<xNX=1’
with i, =N, /4, x, =0,,xy _;, =1— 0, and
h,=40N_', fori=1,...,i,N,—ip+1,...,N,

X

h=21-20)N.", fori=i,+1,...,N,—i,,
i X X 0 a

X

where h, =x;, — x,_,.
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In the y-direction, we follow a similar procedure to that outlined above by dividing the interval [0, 1] into the
subintervals [0, 1 — a'] and [1 — o, 11. Uniform meshes are then used on each subinterval, each with N, /2
points. Here, o, is deﬁned by 0, = =min{1/2,2b" ' InN, } More explicitly, we have

O=yO<yl<---<yjo<...<yN =1,

with j, =Ny/2, y,=1-a, and
— -1 . .
kj—2(l—0'y)Ny , forj=1,...,j,
_ -1
kj—20yNy , for j=j,+1,. },

where k; =y, —y,_,.

We shall assume that o, =22 '¢In N, o= 267 ' In N,. In the following we will use the same notations as
last section.

The weak formulation of (25) is: find u € H (1)(.(2) such that

B(u,v)=(u,,v,) + (£u,,v)) + (bu, v) + @u,v)= (fv), YvEHD). (27)
We seek the finite element solution «” € S, such that
B v)=(Ful,v) + (ul,v) + Gul,v) + @' v) = (fv), YvEHND), (28)

where f denotes the standard bilinear interpolate of f.
In this section we use the following weighted energy norm

lole = (P + o, + I}, Vo€ Hy@).
Note that

5 2012 5 2, |12 9v 2

B.0) = o + o + (b 57.0) + @o.0)

= min(1, a®)(& |, |I* + v |I* + [v]*)

=min(1, a*)[Jv|l%

3.4. Uniform convergence analysis

In this section, we will prove the almost second-order uniform convergence rate in L> norm for the problem
(25), (26). The proofs are similar to those presented for the last problem. Hence, we just provide some important
steps.

LEMMA 3.4.1. For the solution u of (25), (26), we have
I ||u—Hu||w,-<C(N_21nN+a) Vi=1,...,i,N,—i,+1,...,N,
a) l|u—Hu||w,~<C(N t+e), Vi=iy,+1,...,N —i,,

an ||u—Hu||®K\C(N”21nN+g) Vji=jo+1,....N,,
ar) |u—Hu||wK\C(N +&, Yji=1,...,j,-

PROOF. The proof is similar to Lemma 2.4.1 except that here we will use the asymptotic expansion and the
estimates in Subsection 3.2.
By carrying out the similar proof of Lemma 2.4.2, we obtain

LEMMA 3.4.2. For the solution u of (25) (26) we have
) |u— I, n<CWN;*In*N,+ N, ln N, + &),
an  u- Hu”x.[o’x,l PATIUNEr S R C(N P+ N P+ ).
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LEMMA 3.4.3. For the solution u of (25), (26), under the assumptions of (A*) and (B*), we have
&I — wy,, <V, + N Dl xlls -

PROOF. Carrying out an integration by parts,
&UTu —~ u),, )= —bTu — ), x,)

(f L L f)b(nu"u)xydxdy,

where S, =[0,o;]><[0,1-—a;], S, =lo,1-a1X[0,1-g,], S3=[1—a-x,1]><[0,1—o-y] and S,
[1-o,l1]
Note that by Lemma 2.4.3, we have

[, ot =, x| < ctime= s, || 1dacey
i

< ClTu = w5, /0)"* 2 xl,.,

TES,

< Ol =l /1) 2 el ) (2 1)

rES, TES,
< C|fu — ull,. 5, (h, /1) * NN | x5,
<C(N,” I N+ N *In’ N, + &)&' "N, In'"* N | xll,.5., »
where in the last step, we used Lemma 3.4.2 and the fact that
h,=2a"'eN_'InN, and N, '<h <2N]' inS§,.

Similarly, we have

<CN*In* N, + N In* N, + )N, In'> N ||yl 5,

J’ b(ITu — u)x, dx dy
53

and by Lemma 2.4.3, we have

IL b(ITu — w)x, dx dy | < C||lTu — ul|,,, fs |x,| dx dy
2 2

< C|\fu - u|.. s (h, /1,)""? 2 lxlL..

<C||Hu—u||msz(h /h )”2( E Iyl )1/2<722 1)1/2

€S, €s
< (|| — u..s (N, /N 2NNl xl,s,
<CWN*+ N7+ &N, [xl,s,
where we used the fact that
N 's<h,<2N;' and N;'<h,<2N;' inS$,.
Finally,

[ sttty oy | < el | ixlacay
4 4

<CW;*In* N, + N, *In’ N, + e)Area 5,)'"7x, .5,
<CW*In*N,+ N, In* N, + &) In' > N Jlex, |l 5, -

=[0,1] X
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From above inequalities and the assumptions of (A*) and (B*), we conclude our proof. Here, we used the fact
that 0> (In*°N)/N < 0.9 for N > 1, since the maximum value is approximately equal to 0.8045, which is
achieved at N = 12.1825.

THEOREM 3.4.1. Let u,, be the finite element solution of (28) and u be the solution of (25), (26). Then, under
the assumptions of (A*) and (B*), we have

e —u'l<Ccav;' +N 1.
PROOF. Note that
C 1w — |3 <BUTu — ", Mu — u") (29)
=B(ITu — u, I[Tu — u") +Bu — u", Ilu — u"). (30)
From (28) we have
B(Ilu — u, ITu — u*) = £(UTu — w),, x,) + £({Tu —w),, x,) + G&UTu = u),, x) + @ ITu — u), x)

Integrating by parts, we obtain

& (Mu— u),, x,) = f I & (ITu — u), x, dx dy
1s:sN ls;<N

2 j s(Hu——u)L xl IXxdy’
I=isN,1<j<N,

M

S ] texdey- st

I<isN,1=j<N,

I

S | el ay-ebttu ..,
1=i=n, J0

S [ texdayac sima .

1<isN,

1 1
Nl | [ roxldyax,

o Jo
<CeNW.>In*N, +N,?In* N, + &)lex,| .

where we use the fact that y, is independent of x in the above proof.
Similarly, we have

E(Tu —u),, x,) < CeN,N_*In* N, + N * In’ N, + &)l|ex, |
Also, note that
(@ (Tu~ w), x) < Clla*|l.. ollTu = ull | x=ll < ClHTu = ull., ol x| (31)
CN2 0N, + N, 2 In* N, + o)l [Tu — u"], (32)
Combining with Lemma 3.4.3, we have
BUTu—u, ITu —u")| < CN' + N ).
On the other hand,
B(u —u", IMu —u")=(f— f, [lu — u") (33)
< Clf = fl ol — | < V. + NP . (34)
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Combining (31)—(36), we have
M —u"|<cN' +NJY.
Therefore, combining this with Lemma 3.4.2, we obtain
e = w*l < e = 2| + 120t = | < N = DBul.. g + [T — "
<CWN;'+N;D

which concludes our proof.
Streamline diffusion finite element methods

For problem (25), (26), Zhou and Rannacher {39] discussed the local super convergence property of the
streamline diffusion method. Here will show that the streamline diffusion finite element method will have the
same uniform stability as the standard FEM on our Shishkin type mesh.

The streamline diffusion finite element method: Find u" € S, such that

ESD(uh, v)= gz(Vui’, W) + (bu:, v +dbv,) + (@u", v+ dbv ) = (f,v+8b v,), VvES,,

where f denotes the standard bilinear interpolate of f.
Then, it is easy to see that: for any v € S,, we have

By, 0) = &W|* + b, |* + a*oll” = lollzo. -
Hence
01T = " l5p. <Bsp(ITu — u”, [T — u”)
=By, (I — u, x) +Bsp(u — u", x)
Note that
ESD(Hu —u, x) =B(ITu — u, x) + Ol —w),, dbx,) + (@*(u — w), dbx,)
and
Byp(u — ", x) =Bsp(u ) ~Bsp(w”, )
= &' (Au, dbx,) + (f— f. x +dbyx,)

By carrying out a proof similar to the one in the last section, we can obtain uniform stability for
|7 — u"|l¢p. only when &<Cég", where n>2. The problem originates from the perturbation term
& (Au, dby,). Since

| (Au, dbx,)| = Ce&” 8|Aul|| x|l < Cce 88'3||)(y|| =C 88_2"8Xy

1)

we see that only when & < Cg&”, n>2 can we obtain the uniform stability, where in the second inequality we
used the result of Lemma 3.1.5.

4. Numerical experiments

In this section, we will illustrate our methods with two numerical examples. The first one has only typical
exponential boundary layers, while the second one has both exponential boundary layers and parabolic boundary
layers.

Our computations were carried out in double precision on the IBM SP2 clusters at SCRIL The figures were
obtained by MATLAB, where we use (a) to indicate the left figure and (b) to indicate the right figure in each
group, respectively. Since our problems are nonsymmetric and very ill-conditioned, we use a preconditioned
ILUT-GMRES solver from SPARSKIT provided by Saad [31].
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4.1. Example 1

The first example we tested corresponds to the problem given by Egs. (3), (4) where b, = b
is chosen appropriately such that the exact solution is

,=l,a=2andf

e )1 —x)(1—y).

We see that this solution has typical exponential boundary layers at x =0 and y = 0. We choose a bilinear
interpolate [If of f as f and N, =N, = N. The numerical results of our experiments are presented for values of &
ranging from 107 to 107% and for mesh resolutions of N =12, 24 and 48 respectively.

First we tested our standard FEM on Shishkin mesh. The computed L? error is provided in Table 1. To see
more accurately the convergence order, we provide the computed convergence rate

ulx, y)=(1—e )1 -

RY=(ne¥ —ne2"y/n2

in Table 2. Here, e 1s the L? error between the exact solution u(x, y) and the computed solution # (x y) where

= 1/N. From Table 2, we see that u (x, y) approximates u(x, y) uniformly to almost second-order in L? norm,
Wthh is better than predicted by our theoretical analysis. The condition numbers for the coefficient matrices
resulting from the FEM discretization of this problem are provided in Table 3. Here, we calculated the condition
number by MATLAB. Using an inverse estimate [3], we can easily see that the condition number K(A) of the
coefficient matrix A for this FEM is bounded by O(sN In"’N ), which is also shown by Roos [28]. From Table
3, we see our numerical results are very consistent with the theoretical condition number. The pointwise errors
u, —u are plotted in Figs. 1-6 for different £ and N. The results obtained show very clearly the uniform
convergence. They also show that the larger error originates from boundary layers, where in our case the
boundary layers are located at x = 0 and y = 0. The error also displays some oscillations and they pollute other
parts of the domain starting from the corner and boundary layers, which is normal for the standard FEM for such
convection—diffusion type problems [6,17,38]. To compare our standard FEM with the classical standard FEM
on uniform mesh, we performed same computations for the standard FEM on uniform mesh, and we present the

Table 1
Errors in L* norm for Example 1
= N

12 24 48
1.0D - 02 3.9353295D - 03 9.5865477D — 04 3.1808308D — 04
1.0D - 03 5.9899591D — 03 1.4755047D — 03 2.8507499D — 04
1.0D — 04 6.3435845D — 03 1.7507047D — 03 4.3802338D — 04
1.0D — 05 6.3808889D — 03 1.7849438D — 03 4.6954562D — 04
1.0D — 06 6.3848394D — 03 1.7884465D — 03 4.7321017D — 04
1.0D — 07 6.3851212D — 03 1.7887975D — 03 4.7356168D — 04
1.0D - 08 6.3851677D — 03 1.7888327D — 03 4.7359686D — 04
Table 2
Convergence rates RY in L* norm for Example 1
£ N

12 24
1.0D - 02 2.0374 1.5916
1.0D - 03 2.0213 2.3718
1.0D — 04 1.8574 1.9989
1.0D - 05 1.8379 1.9265
1.0D — 06 1.8359 1.9182
1.0D - 07 1.8357 1.9174
1.0D — 08 1.8357 19173
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Table 3
Condition numbers for Example 1
£ N
12 24
1.0D - 02 131.7961 393.1111
1.0D - 03 1.2027e + 03 3.4905¢ + 03
1.0D — 04 1.1963¢ + 04 3.4211e + 04
1.0D - 05 1.1958¢ + 05 3.4154¢ + 05
1.0D — 06 1.1958¢ + 06 3.4148¢ + 06
1.0D - 07 1.1958¢ + Q7 3.4147¢ + 07
1.0D - 08 1.1958¢ + 08 3.4147¢ + 08
x107
0.03+ 15+

0024

¢ 0 o 0

Fig. 1. Example 1: Standard FEM on Shishkin mesh for & = 1072 @ N=12; (b) N=24.

0.035 154

0.024

0 o [N

Fig. 2. Example 1: Standard FEM on Shishkin mesh for &= 107°: (@) N=12; (b) N =24.

003+ 1584

0.024

0 0 9 o

Fig. 3. Example 1: Standard FEM on Shishkin mesh for &= 1077: (@ N=12; (b) N=24.
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4 25«

34 2+

[ ) 0 ¢

Fig. 4. Example 1: Standard FEM: (a) N =48, £= 10", Shishkin mesh; (b} N =12; £= 10"°, Uniform mesh.

0 o | L

Fig. 5. Example 1: Standard FEM: (a) N =48, ¢ = 107°, Shishkin mesh; (b) N =24; £=10"", Uniform mesh.

o 9 ¢ 0

Fig. 6. Example 1: Standard FEM: (a) N =48, = 1077, Shishkin mesh; (b) N =48; &= 10"", Uniform mesh.

results in Figs. 4(b)-6(b) for £ = 107>. When & becomes smaller, the error amplitude becomes very large. From
these results we see that our standard FEM on the Shishkin type mesh performs much better than the classical
standard FEM in as far as the error amplitude is concerned. The pollution range is not clear, since the plotting
scale is not of the same order of magnitude.

Then, we investigated the streamline diffusion (SD) FEM on our Shishkin type mesh and the standard
streamline diffusion FEM [17]. Here, in order to ensure global uniform convergence, we took the diffusion
parameter to be § = £ . Unfortunately, in this case our SD FEM does not improve the standard FEM solution.
The pointwise errors are exactly the same as the standard FEM. The reason is that the diffusion parameter & is
too small to have any sizable effect. Then, we tried the popular choice & = 1/N. The results with the SD FEM
on our Shishkin mesh and uniform mesh are presented in Figs. 7—12. Even though our SD FEM on Shishkin
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00
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Fig. 8. Example 1: SD FEM on Shishkin mesh for &= 1077: (@ N=12; (b) N=124.

e - 0 o

Fig. 9. Example 1: SD FEM on uniform mesh for &= 107% (@) N=12; (b) N=24.

mesh exhibit some oscillations, both methods display a very good local uniform convergence, a fact which was
proved recently by Zhou and Rannacher [39], where they also measured accurately the convergence rate for the
local pointwise error.

4.2. Example 2

The second example is for the problem given by Egs. (25), (26) where b=1, a=1 and f is chosen
appropriately such that the exact solution is
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9 0 o 0

Fig. 10. Example 1: SD FEM on uniform mesh for £=10"": (a) N =12; (b) N = 24.

0 0 [

Fig. 11. Example 1: SD FEM for N =48, ¢= 107*: (a) Shishkin mesh; (b) Uniform mesh.

[

Fig. 12. Example 1: SD FEM for N =48, ¢= 107": (a) Shishkin mesh; (b) Uniform mesh.
— —(1 = — - 2
u(r, y) = (1= e (1= 71 —e Ty,

This solution has the typical exponential boundary layers at x = 0 and x = 1, and it has a parabolic exponential
boundary layer at y = 1. We choose a bilinear interpolate If of f as fand N, =N, = N. The numerical results of
our experiments are for values of ¢ ranging from 107% to 107* and for mesh resolutions N = 12, 24 and 48,
respectively.

First, we tested our standard FEM on Shishkin mesh. The computed L’ error is provided in Table 4. To see
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Table 4
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Errors in L norm for Example 2

&

N

12

24

48

1.0D —02
1.0D —- 03
1.0D — 04
1.0D — 05
1.0D — 06

9.3876868D — 03
7.7191053D — 03
7.5300586D — 03
7.5100947D - 03
7.5063255D — 03

2.9110260D — 03
2.1519899D — 03
2.0551015D — 03
2.0453154D — 03
2.0440796D — 03

8.7095706D — 04
5.8664613D — 04
5.4455535D — 04
5.4109647D — 04
5.3940714D — 04

more accurately the convergence order, we provide the computed convergence rate RIZ in Table 5. From Table 5,
we see that «"(x, y) approximates u(x, y) uniformly to almost second-order in L norm, which is better than our
theoretical analysis. The calculated condition numbers by MATLAB for this problem are provided in Table 6.
From these results we see that the condition number is just proportional to & '. It is better than the theoretical
condition number which should be proportional to & °. For the sake of comparison, we performed the
computations for standard FEM on the Shishkin mesh and uniform mesh. The pointwise errors u, — u are
plotted in Figs. 13-18 for different £ and N, respectively. We see that the large error also originates from
boundary layers, where in our case the exponential boundary layers are located at x =0 and x =1, and the
parabolic boundary layer is located at y = 1. The error also displays some oscillations and it polluted other
regions of the computational domain by propagating from the exponential layer y = 1. We conclude that our
standard FEM on the Shishkin type mesh performs much better than the classical standard FEM in both the error
amplitude and the oscillation frequency.

As for the SD FEM, our SD FEM does not improve the standard FEM as well as in Example 1. Since in order
to ensure global uniform convergence, the diffusion parameter 8 should satisfy 8 < Cé&", n>2 which is too
small to have any effect. We tested 6 = &', which yields almost the same solutions as the corresponding standard
FEM. Then we tried the popular choice 8§ = 1/N. The results with the SD FEM on our Shishkin mesh and
uniform mesh are presented in Figs. 19-24. They show that no oscillation occurs for either of the SD FEMs.
Both methods display very good local uniform convergence, but the SD FEM on our Shishkin type mesh
resolves the exponential boundary layers in a much better fashion than SD FEM on the uniform mesh. As N
grows larger, the error is dominated only by the parabolic boundary layer.

Table 5
Convergence rates R': in L* norm for Example 2
€ N
12 24
1.0D —02 1.6892 1.7409
1.0D - 03 1.8428 1.8751
1.0D — 04 1.8735 1.9161
1.0D — 05 1.8765 19184
1.0D — 06 1.8767 1.9220
Table 6
Condition numbers for Example 2
& N
12 24
1.0D — 02 513.0415 973.9048
1.0D - 03 5.6629¢ + 03 1.1022¢ + 04
1.0D — 04 5.7141e + 04 1.1148¢ + 05
1.0D - 05 5.7192¢ + 05 1.1161e + 06
1.0D — 06 5.7194¢ + 06 1.1161e + 07
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Fig. 13. Example 2: Standard FEM for N=12, ¢= 107 (a) Uniform mesh; (b) Shishkin mesh.

LA

Fig. 14. Example 2: Standard FEM for N = 12, ¢ = 107% (a) Uniform mesh; (b) Shishkin mesh.

0 0

Fig. 15. Example 2: Standard FEM for N =24, ¢= 1072 (a) Uniform mesh; (b) Shishkin mesh.

-
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[} 9 0

Fig. 16. Example 2: Standard FEM for N =24, £ = 107°%: (a) Uniform mesh; (b) Shishkin mesh.

o 9 9 o

Fig. 17. Example 2: Standard FEM for N =48, ¢= 107%: (a) Uniform mesh; (b) Shishkin mesh.

0 o o @

Fig. 18. Example 2: Standard FEM for N = 48, &= 10" (a) Uniform mesh; (b) Shishkin mesh.
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oo ’ 0 o

Fig. 19. Example 2: SD FEM for N=12, &= 107 % (a) Uniform mesh; (b) Shishkin mesh.

o o ' [}

Fig. 20. Example 2: SD FEM for N=12, ¢= 107% (a) Uniform mesh; (b) Shishkin mesh,

[ o0

Fig. 21. Example 2: SD FEM for N =24, ¢ = 1072 (a) Uniform mesh; (b) Shishkin mesh.
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Fig. 22. Example 2: SD FEM for N=24, ¢= 107%: (a) Uniform mesh; (b) Shishkin mesh.

¢ 0

0 ¢ ¢ o

Fig. 24. Example 2: SD FEM for N =48, ¢ = 107% (a) Uniform mesh; (b) Shishkin mesh.

5. Conclusions

Our numerical examples show that both SD FEMs on the Shishkin mesh and the uniform mesh with § = 1/N
provide a much better control on the error oscillations than the standard FEM. The results also show that both
methods display an excellent local uniform convergence, a fact which was proved recently by Zhou and



J. Li, IM. Navon | Comput. Methods Appl. Mech. Engrg. 162 (1998) 49-78 77

Rannacher [39] for an almost rectangular mesh, where they also measured accurately the convergence rate for
the local pointwise error. For the one space dimension problem, Guo and Stynes [11] recently proved the global
uniform convergence for a SD FEM on a Shishkin mesh. But it still remains an open problem [11] whether the
global uniform convergence can be retained for SD FEMs in two space dimensions, which is the reason why
additional work was dedicated to local error analysis (cf. Johnson et al. [18], Zhou and Rannacher [39] and
Wahlbin [37]). Numerical results (see Tables 2 and 5) show that our standard FEM on Shishkin type mesh is
GUC in almost second-order in L* norm, which is better than our theoretical analysis. At present, it is still
unknown if this almost second-order convergence rate can be obtained theoretically for convection-diffusion
type problems (it is still unsolved even in one space dimension [19]), or it is just a superconvergence
phenomenon [39]. Further investigation is certainly required. Even though our standard FEM on Shishkin type
mesh is GUC, it still displays some oscillations around the boundary layers. Other more stable techniques are
under development, such as, the stabilized FEM and the techniques developed recently by Franca and Hughes et
al. [4,10], along with those discussed in [38, Ch. 12] and Carey and Oden [6, Ch. 5}].

Our methods can be applied directly to those nonlinear problems which have uniform asymptotic expansions
[35]. Research work on this topic is currently under development. Also, several tests for higher-order FEM on
Shishkin mesh are being pursued. Extension to triangular elements and problems with interior layers was
investigated by Madden and Stynes [24]. However the theoretical analysis is still missing, and further research
work is needed in this area.
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