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Abstract

Optimal control of the 1-D Riemann problem of Euler equations is studied, with the initial values for pressure and

density as control parameters. The least-squares type cost functional employs either distributed observations in time or

observations calculated at the end of the assimilation window. Existence of solutions for the optimal control problem is

proven. Smooth and nonsmooth optimization methods employ the numerical gradient (respectively, a subgradient) of

the cost functional, obtained from the adjoint of the discrete forward model. The numerical flow obtained with the

optimal initial conditions obtained from the nonsmooth minimization matches very well with the observations. The

algorithm for smooth minimization converges for the shorter time horizon but fails to perform satisfactorily for

the longer time horizon, except when the observations corresponding to shocks are detected and removed.
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1. Introduction

Optimal control methods are presently employed for various applications in different fields: aerody-

namics, meteorology, acoustics, financial mathematics and chemistry to mention but a few. Since the vast

majority of applications consist of the minimization of a cost functional derived from continuous models,
we have solved an optimization problem involving a cost functional for a discontinuous model. Our results

show that, for the example considered, nonsmooth optimization methods provide very good results in

combination with the adjoint method for subgradient computation.

Nondifferentiable optimization algorithms employing subgradients were introduced following the sem-

inal work of Lemarechal [45] (e.g., [11,46,53,55,66] to cite but a few).
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Cost functionals involving a model with nonsmooth solution were employed in variational data as-

similation in atmospheric sciences [79], for inverse design problems involving transonic diffusers: 1-D [60] or

2-D [20], in acoustics [34], for the research of a convex hull with bounded curvature of a given set of points

[35], in mechanical structures (minimizing the maximal stress over an arch structure [33]), for chroma-

tography [42], capital asset management [47], in the design of a duct flow with a shock [18,24,40], for airfoil

design [28,39,43,58].

Although our model contains many types of discontinuities, we want to emphasize the fact that the

nonsmoothness of a least-squares type cost functional (as considered in our research) appears only if the
location of discontinuities of state and data coincide [29,73]. At a first glance, this would imply that smooth

optimization methods may be suitable outside the region of nonsmoothness. But our numerical results

show that this assertion is not valid in many cases, as opposed to nonsmooth optimization techniques,

which were successful for all the considered cases.

In our opinion, this is closely related to the fact that the gradients computed using the numerical adjoint

method are in a close neighborhood to the analytic gradient values, but they do not converge as the number

of grid points increases. As consequence, they provided enough information for the subgradient methods,

but not for the gradient-based methods.
Several other nongradient methods were considered for optimization problem derived from discon-

tinuous models: e.g., stochastic optimization methods for the design of a minimum time changeover op-

eration for a pressure vessel avoiding the formation of explosive mixtures [7] or for aerodynamic shape

optimization [38], genetic algorithms [64] for wing optimization. For these methods, the drawback is the

relatively large number of analyses required (i.e., large memory demands) as the number of variables

increases.

In the case of gradient-based methods different remedies to alleviate the influence of the discontinuities

were employed. For variables which are continuous across the shock one can avoid dealing with shocks by
considering cost functions based on the above variables (e.g., the surface flux for inverse nozzle design as

used by Matsuzawa and Hafez [57]). For most cases the shocks were smoothed using numerical dissipation.

It was shown that sometimes smoothing is equivalent to modifying the cost function [57]. An alternative

smoothing procedure has been introduced by Valorani and Dadone [71], namely a filtering process which

was obtained by modifying a set of sensitivity equations by adding artificial dissipative terms. The opti-

mization search was performed on the original nonsmooth objective function computed with an accurate

(nonsmoothed) flow analysis but with smoothed flow sensitivities.

If the shocks are weak at design conditions (e.g., transonic flows) acceptable results can be obtained by
addition of artificial dissipation. However, accurate treatment of the shock waves is essential in other cases

(e.g., supersonic flows). The alternative approach to shock smearing is shock fitting which involves careful

integration of the objective function through the shock wave [60]. Perturbation of a discontinuous function

produces delta functions and formulations based on variations of smooth functions have to be modified

[40]. Another approach was to introduce the shock location as an explicit control variable [18]. A coor-

dinate straining method was also employed by Narducci et al. [60]. It consists of a coordinate transfor-

mation aimed at aligning the calculated shock with the target followed by addition of a penalty term

proportional to the square of distance between the shocks.
Results for the optimal control of the Euler equations were obtained, among others, by Anderson and

Venkatakrishnan [2] (in 2-D), Arian and Salas [4] (in 2-D), Dadone and Grossman [21,22] (2-D and 3-D)

and Cliff et al. [16–18] (1-D, 2-D and 3-D).

Theoretical contributions (combined with practical applications in certain cases) for the adjoint method

were provided by Giles and Pierce [25–28] (for Euler equations) and Ulbrich [72–75] (in the setting of

optimal control for scalar conservation laws). A generalized adjoint for physical processes in atmospheric

sciences with parameterized discontinuities was studied by Xu [78]. Numerical aspects of the adjoint model

for discontinuous nonlinear atmospheric models were discussed by Zhang et al. [80].
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Problems with discontinuities in an optimal control setting or in sensitivity-based control were studied

by Mohammadi and Pironneau [59], Bardos and Pironeau [5,6], Gunzburger [31,32], Tolsma and Barton

[70] and Zhang et al. [79]. Practical aspects of control of problems with shocks were presented by Iollo and

Salas [41], Birkmeyer et al. [9], Stanewsky [69], Jameson [43], Bein et al. [8], or Wang et al. [77].

This paper presents theoretical and numerical results for an optimal control problem of the unsteady 1-

D Riemann problem of Euler equations (shock-tube). The numerical solutions of the optimal control

problem were obtained using both nonsmooth and smooth optimization algorithms. The present research

extends our previous results in optimal control for a continuous flow [36] and sensitivity analysis for dis-
continuous flow [37].

This specific problem was chosen due to the fact that it has an analytical solution which is characterized

by the presence of many types of discontinuities: shocks, contact discontinuities and wave rarefaction re-

gions. This Riemann problem may be briefly described in the following way: a gas tube is divided by a

membrane into two regions with different values for pressure and density fields and a zero velocity field.

After the membrane is suddenly removed the gas moves freely.

Our optimal control problem consists of moving the regions of discontinuities to desired locations by

matching the desired flow to the numerical flow. It has very interesting aerodynamic applications, since
discontinuities in the flow variables during the flight have been shown to be related to the onset of flow

separation, leading-edge vortex burst or the appearance–disappearance of more subtle flow structures [1,3]).

The control parameters consist of the initial values of pressure and density to the left and to the right of

the membrane. We consider the initial velocity to the left and to the right of the membrane to be zero. The

cost functional is the weighted difference between the observations and the numerical values for density,

pressure and velocity fields. The observations obtained from the analytical solution of the Riemann

problem are computed in two ways: either at the end of the assimilation window or distributed in time

during the assimilation window.
Two numerical models were chosen, representative of possible approaches for solving a flow with dis-

continuities: a high-resolution model (HRM) and a model with artificial viscosity (AVM).

We employ a nonsmooth optimization algorithm described in [53,54,76], which is a hybrid algorithm

that combines the characteristics of the variable metric method and the bundle method. We also apply a

smooth optimization algorithm (L-BFGS) described in [51,62]. Both methods require the computation of a

subgradient (respectively, the gradient) of the cost functional. This subgradient (respectively, gradient) is

obtained from the adjoint model derived from the original numerical model.

We consider two time horizons representative for the time evolution of the flow. The selection of the
length of the time horizons was based on two requirements. We wanted to ensure that all desired char-

acteristics of the discontinuities are still present in the flow at the end of each time window. Moreover, if

one would slightly increase the larger time window then some of the discontinuity characteristics will

disappear from the spatial domain considered.

We obtained excellent results using nonsmooth optimization for both models and for both time hori-

zons. The numerical flow corresponding to the optimized initial conditions matches closely the observations

and one can see from the figures presented that the location of the discontinuities was changed to the

desired location. The figures describing the evolution of entropy at various stages of the minimization
process show that the numerical solution satisfies the entropy condition, which is a required characteristic

of the physical solution of the shock-tube problem.

The L-BFGS algorithm did not converge in many cases. Even for the cases where convergence was

obtained one may notice a large difference between the L-BFGS optimization results and the desired values

of the control parameters. One of the main reasons for this behavior is the fact that the numerical values of

the gradient do not match very well the analytical values, even as the number of grid points increases.

For the model with artificial viscosity a discontinuity detection method was used to eliminate the points

where the shock is located from the computation of the cost functional and its gradient (or subgradient).
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As a result of this technique the optimized results were obtained at the same level of accuracy but in fewer

minimization iterations.

The paper is organized as follows. Section 2 introduces the governing equations (unsteady Euler 1-D) for

the flow. Section 3 describes the discretization of the 1-D Riemann problem in space and time using both

the high-resolution model and the artificial viscosity model. In Section 4 we present results related to ex-

istence of solutions for optimal control problem considered. Section 5 discusses methods of nonsmooth and

smooth unconstrained optimization employed for this research. Methods of detection of discontinuities in

data are presented in Section 6. Numerical results obtained for the optimal control problem of 1-D Euler
equations are displayed in the tables and figures of Section 7. Section 7 also discusses the evolution of the

cost functional for both methods of minimization, both models and both time horizons considered. Finally

Section 8 presents the summary and conclusions.

2. Governing equations

The one-dimensional unsteady equations of gas dynamics (Euler equations) can be written in conser-
vation law form as

Ut þ FðUÞx ¼ 0; U ¼
q
m
e

2
4

3
5; FðUÞ ¼

m
m2

q þ P
m
q

� �
ðeþ P Þ

2
64

3
75; ð1Þ

where q is the density, u is the velocity, m ¼ qu is the momentum, P is the pressure and e is the internal

energy per unit volume. The variables are related by e ¼ qe þ 1
2
qu2, where e ¼ P=ððc � 1ÞqÞ is the internal

energy per internal mass with c the ratio of specific heats (which is taken to be 1.4).

The ‘‘shock-tube problem’’ can be described as follows: a tube, filled with gas, is initially divided by a

membrane into two sections. The gas has a higher density and pressure in one half of the tube than in the

other half, with zero velocity everywhere. The initial conditions for density, velocity and pressure are
similar to the values for the Sod shock-tube problem [68],

qleft ¼ 1:0 > qright ¼ 0:125; uleft ¼ uright ¼ 0:0; pleft ¼ 1:0 > pright ¼ 0:1;

where the subscripts left and right correspond to the initial position with respect to the membrane. At time
t ¼ 0 the membrane is suddenly removed and the gas is allowed to flow. We expect a net motion in the

direction of lower pressure. Assuming uniform flow across the tube, there is variation in only one direction

and 1-D Euler equations apply. The flow variables: pressure, density and velocity are computed as a

function of time and space.

We consider the spatial domain to be the interval ½0; 1�. The boundary conditions are specified as follows:

the boundary values for U (at x ¼ 0 and x ¼ 1) do not change throughout the process.

The solution of this Riemann problem for Euler equations [50] consists of five distinct regions as shown

in Figs. 1 and 3: low pressure and density region (region 1), area between shock and contact discontinuity
(region 2), area between contact discontinuity and rarefaction wave (region 3), rarefaction wave region

(region R) and high pressure and density region (region 4).

3. Numerical models

The main difficulties encountered when solving numerically the shock-tube problem of gas dynamics

(and, in general, for any problem which has a nonsmooth solution) appear in the regions of discontinuities.
The numerical solution may be smoothed in those regions (e.g., due to introduction of a dissipation term)
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or it can sharpen discontinuities (using high-resolution methods). For this reason we chose one numerical

model from each of the above mentioned categories: namely a model with artificial viscosity (AVM) and a

high-resolution model (HRM) with a Riemann solver.

Fig. 1. Pressure, velocity and density: initial guess (}) and exact observation (thin line) at time¼ 0.24 for the artificial viscosity model

and first set of observations (a), (c), (e) and for the high-resolution model and the second set of observations (b), (d) and (f).
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As a footnote we mention that for very accurate numerical solutions adaptive mesh refinement AMR

may be used in conjunction with Riemann solvers (e.g., [49] for Euler equations). Our experience with an

AMR model in the framework of sensitivity analysis for discontinuous flows was presented in [37].

Our research aims to perform optimal control of flow with discontinuities using either smooth or

nonsmooth optimization techniques for minimizing the cost functional. The minimization requires avail-

ability of either the gradient or the subgradients of the cost functional obtained, using the adjoint model

derived from the forward model (either AVM or HRM models).

The first model (by Cowan [19]) uses finite elements which are piecewise constant in time and piecewise
linear in space. The elements are discontinuous in time but continuous in space. By using discontinuous

discretization in time we were able to march sequentially in time and solve for only a fraction of the total

solution at one time. To improve the stability of the method a least-squares operator was added to the basic

Galerkin formulation. In order to obtain nonoscillatory approximations to discontinuities, discontinuity-

capturing operators have been developed within the framework of this Galerkin/least-squares method. For

more details about this modified discontinuous Galerkin method the reader is referred to [67]. An artificial

viscosity term was included to stabilize the numerical solution with the effect of spreading flow disconti-

nuities over several computational cells. The method employs a high-order scheme for the smooth regions
of the flow combined with a low-order solution which is employed near the discontinuities. The above

combination is described in [52] as MC-ML method (with the high-order scheme using a consistent mass

matrix while the low-order scheme employs a lumped mass matrix).

The second model employs Roe�s approximate Riemann solver combined with an entropy fix [48] and it

is a component of the package CLAWPACK [49]).

4. Theoretical framework of the optimal control problem

We solve the following optimal control problem:

Minimize the cost functional Jðq; zÞ subject to z 2 Uad ðOPTÞ

where z is the control, Uad is the space of admissible controls and q ¼ qðzÞ is the entropy solution of the

Cauchy problem for a system of conservation laws (Euler 1-D equations described in the previous section):

oq
ot

þ oF ðqÞ
ox

¼ 0; ð2Þ

qðx; 0Þ ¼ zðxÞ; ð3Þ

with 06 t6 TW (the length of the assimilation window).
Since the solution of the system (2) may develop discontinuities after a finite time, weak solutions should

be considered. Additional entropy conditions must be imposed to select the ‘‘physically’’ relevant weak

solution.

An entropy function is defined and an additional conservation law holds for it for smooth solutions. This

conservation law becomes an inequality for discontinuous solutions [30,48]). It is known that for the Euler

equations of gas dynamics (employed for this research) there exists a physical quantity (the entropy),

known to be constant along particle paths in smooth flow and to jump to higher value as the gas crosses a

shock. The correct weak solution is picked out using a property of the entropy, namely that it can never
jump to a lower value (a numerical version of this approach was employed for the high resolution model

described in the previous section). The numerical evolution of the physical entropy is described in Section 7.

For the system of gas dynamics equations, which is a strictly hyperbolic symmetrizable nonlinear system

of conservation laws, entropy functions can be found (e.g., [30,48]).
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We will follow here the approach of Ulbrich [74] to derive existence results for optimal controls. His

work, related to scalar laws of conservation with source terms, can be extended to our case (the 1-D system

of Euler equations without source terms).

For our problem the control vector zðxÞ is

zðxÞ ¼
qðx; 0Þ
mðx; 0Þ
eðx; 0Þ

2
4

3
5 ¼

qðx; 0Þ
qðx; 0Þuðx; 0Þ

Pðx;0Þ
ðc�1Þ þ 1

2
qðx; 0Þðuðx; 0ÞÞ2

2
4

3
5;

with q the density, u the velocity, m ¼ qu, P the pressure, c the ratio of specific heats and e the internal

energy per unit volume.

We consider that the controls (initial data) are in ðL1½0; 1�Þ3 with small total variation. In this case,

Bressan and his collaborators showed that the weak solutions of the conservation laws depend continuously

on the initial values, with a Lipschitz constant in L1 which is uniform w.r.t time. Moreover, they obtained

L1-stability for initial data [12–14].

If the control problem (OPT) is particularized to the optimal control problem for 1-D Euler equations

for gas dynamics (described in Section 2), the existence of the optimal controls is obtained as a consequence
of three properties described below. In our research the cost functional J for the optimal control problem

(OPT) assumes two possible forms:

• If the observations qobs are obtained only for the final time TW

JðqÞ ¼
Z 1

0

ðqðx; TWÞ � qobsðx; TWÞÞ2 dx: ð4Þ

• If the observations qobs are distributed at assimilation times 06 t6 TW

JðqÞ ¼
Z t¼TW

t¼0

Z x¼1

x¼0

ðqðx; tÞ � qobsðx; tÞÞ2 dxdt: ð5Þ

Then, the existence of the optimal controls for the optimal control problem for 1-D Euler equations for gas

dynamics is obtained as a consequence of several properties described below.

(P1) The function F (in 1-D Euler equations for gas dynamics) is locally Lipschitz.
(P2) Denoting BVð0; 1Þ the space of functions of bounded variations on the interval (0,1), the admissible

set Uad is bounded in BVð0; 1Þ and compact in ðL1ð0; 1ÞÞ3.
(P3) The cost functional J is (at least) sequentially lower semicontinuous.

Using the properties (P1)–(P3) one can prove that the optimal control problem (OPT) has a solution

ẑz 2 Uad in a similar way to the proof of existence of optimal controls obtained by Ulbrich [74].

First we prove that if J satisfies (P3) then

z 2 Uad 
 ðL1ð0; 1ÞÞ3
� �

,!JðqðzÞ; zÞ ð6Þ

is sequentially lower semicontinuous.

Indeed, let the sequence ðzkÞ 
 Uad converge in ðL1½0; 1�Þ3 to z0. We have that z0 2 Uad using property

(P2). Bressan et al. [14] proved that weak solution obtained as limit of front tracking approximations
depends Lipschitz continuously on the initial data, which implies that qðzkÞ ! qðz0Þ in Cð½0; TW�;L1Þ. It
follows from property (P3) that

lim
k!1

JðqðzkÞ; zkÞP Jðqðz0Þ; z0Þ;

which establishes the lower semicontinuity of the operator defined in (6).
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Finally let ðzjÞ be a minimizing sequence for the optimal control problem (OPT). Using compactness of

Uad there exists a subsequence which converges to ẑz 2 Uad. We have proved that the operator (6) is se-

quentially lower semicontinuous, which implies that ẑz is a solution for the optimal control problem (OPT).

This concludes the proof of existence of solutions for (OPT).

5. Minimization algorithms

In order to minimize the above described cost functional we employed both nonsmooth and smooth

optimization algorithms. A brief description of specific algorithms from each class implemented in this

research is provided in the following two subsections.

5.1. Nonsmooth optimization: hybrid method

Since the gradient of a Lipschitz-continuous function f exists only almost anywhere we have to replace

the gradient by the generalized gradient

of ðxÞ ¼ convfgj there exists a sequence ðxiÞi2N such that lim
i!1

xi ¼ x; f differentiable at xi;

i 2 N and lim
i!1

rf ðxiÞ ¼ gg;

where ‘‘conv’’ is the notation for the convex hull.
We assume that we can compute the value of the function and an arbitrary subgradient g 2 of ðxÞ (i.e.,

one element of the generalized gradient) at any point in the domain.

The most efficient globally convergent algorithms for nonconvex nonsmooth optimization are based on

versions of the bundle methods (e.g., [11,46,55,66]). We employed a hybrid method (described in [54,76])

which combines the characteristics of the variable metric method and the bundle method.

The algorithm generates a sequence of basic points ðxkÞk2N and a sequence of trial points ðykÞk2N satisfying

xkþ1 ¼ xk þ tkLdk; ykþ1 ¼ xk þ tkRdk; y1 ¼ x1;

where tkR 2 ð0; tmax� and tkL 2 ½0; tkR� are appropriately chosen stepsizes, dk ¼ �Hk egkgk is a direction vector, egkgk is
an aggregate subgradient and the matrix Hk accumulates information about the previous subgradients and

represents an approximation of the inverse Hessian matrix if the function f is smooth.
If the descent condition

f ðykþ1Þ6 f ðxkÞ � cLtkRwk

is satisfied with suitable tkR, where cL 2 ð0; 0:5Þ is fixed and �wk < 0 represents the desirable amount of

descent, then xkþ1 ¼ ykþ1 (descent step). Otherwise a null step is taken which keeps the basic points un-

changed but accumulates information about the minimized function.

The aggregation is defined in the following way: denoting by m the lowest index j satisfying xj ¼ xk
(index of the iteration after last descent step) and having the basic subgradient gm 2 of ðxkÞ, the trial sub-

gradient gkþ1 2 of ðykþ1Þ and the current aggregate subgradient ~ggk, we define ~ggkþ1 as a convex combination

of these subgradients:

~ggkþ1 ¼ kk;1gm þ kk;2gkþ1 þ kk;3 egkgk ;
where kk are determined by minimizing a simple quadratic function depending on these three subgradients

and two subgradient locality measures (this approach replaces solving a rather complicated quadratic

programming problem which appears in the standard bundle method [46]).
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The matrices Hk are generated using a symmetric quasi-Newton rank-one update after the null steps (to

preserve the property of being bounded and other characteristics required for the global convergence) or

the standard BFGS update after the descent steps (for both types of updates see [23]).

5.2. The L-BFGS unconstrained optimization algorithm

We also implemented the L-BFGS method ([51,62,63]) which performs the unconstrained minimization

of a smooth nonlinear function for which the gradient is available. L-BFGS is a limited memory method

based on the well-known BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm.

The main idea of this method is to use curvature information only from the most recent iterations to

construct the Hessian approximation. Instead of storing fully dense n� n approximations it saves just a few

vectors of length n that represent the approximations implicitly.
Each step of the original BFGS method has the form

xkþ1 ¼ xk � akHkrJk; k ¼ 0; 1; 2; . . . ;

where ak is the step length and Jk is the cost functional at step k of the minimization iteration. Hk is updated

at each iteration by means of the formula

Hkþ1 ¼ V T
k HkVk þ bksks

T
k ; ð7Þ

bk ¼
1

yTk sk
; VK ¼ I � bkyks

T
k ; ð8Þ

sk ¼ xkþ1 � xk; yk ¼ rJkþ1 �rJk: ð9Þ

The matrix Hkþ1 is obtained by updating Hk using the pair ðsk; ykÞ. For L-BFGS a modified version of Hk is

stored implicitly by using a certain number (say m) of the vector pairs ðsl; ylÞ that are used in the formulae

(7)–(9).

The product HkrJk can be obtained by performing a sequence of inner products and vector summations

involving rJk and the pairs ðsl; ylÞ. After the new iterate is computed, the oldest vector pair in the set of

pairs ðsl; ylÞ is deleted and replaced by the new pair ðsk; ykÞ obtained from the current step (9). In this way the
set of vector pairs includes curvature information from the m most recent iterations (usually 36m6 10Þ.

For numerical experience using the L-BFGS method the reader is referred to [81].

We would like to conclude this section discussing our preference for L-BFGS over other smooth min-

imization algorithms. One may argue that for our case the number of control parameters may not justify

the selection of a limited memory method. We consider that our approach (using the adjoint method for the

gradient computation) may be easily and successfully implemented for optimal control problems in higher

dimensions with a much greater number of control variables. In that case improvements in the efficiency of

the numerical optimization will be determined not only by choosing the adjoint method over other methods
for the gradient calculation but also by selecting a limited memory minimization algorithm.

6. Detection of discontinuities in data

In the setting of smooth minimization one may consider that, by eliminating the observations corre-

sponding to discontinuities from the computation of the cost functional, one may obtain a function which is

smoother (i.e., more suitable for smooth optimization). Several approaches can be found in literature for
the detection of discontinuities.
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The discontinuity locking system (DLS) is employed for differential-algebraic equations (DAE) by Birta

and Oren [10], Park and Barton [65] and Mao and Petzold [56], to cite but a few. The idea for this approach

(DLS) is to lock the function evaluator for the initial-value problem solver so that the equations evaluated

are fixed while an integration step is being taken, thus presenting a smooth vector field to the solver.

The approach we employ here is a modified application of a discrete regularization method proposed by

Lee and Pavlidis [44]. Let ðxi; yiÞi¼0;...;n be the set of data points with xi < xiþ1. We want to find the nþ 1

quantities zi that minimize a combination of the discrete curvature and the discrete difference between

observation and desired data,

Xn

i¼0

ai
ziþ1 � zi
xiþ1 � xi

�
� zi � zi�1

xi � xi�1

2

þ b
Xn

i¼0

ðzi � yiÞ2; ð10Þ

with a0 ¼ an ¼ 0 and ai ¼ 1 for i ¼ 1; . . . ; n� 1.

Differentiating (10) with respect to zk and setting the derivatives to zero yields a system of nþ 1 equa-

tions with nþ 1 variables. The parameter b is chosen such that it satisfies: b � 1=ðminkðxkþ1 � xkÞ2Þ which
implies diagonal dominance for the derived system of equations.

As a result of solving this system we obtain a set of data points ðxi; ziÞi¼0;...;n which are used for dis-

continuity detection for both the function and its derivative.
Let us consider the following quantities:

errorðiÞ ¼ zi � yi difference between observation and desired data

curvðiÞ ¼ ziþ1 � zi
xiþ1 � xi

� zi�zi�1

xi�xi�1
approximation of the curvature

Discontinuities in the derivative of the function are characterized by successive zero crossings of curvðiÞ
while function discontinuities are characterized by successive zero crossings of curvðiÞ and errorðiÞ.

Consequently, in the interval ½xi; xi¼1� we have function discontinuities the points if curvðiÞ �
curvðiþ 1Þ < �� and errorðiÞ � errorðiþ 1Þ < ��, where � depends on the accuracy of the model.

7. Numerical results

Our goal was to control the location of the discontinuities by matching the numerical flow to obser-

vations corresponding to a flow which contains the desired location of discontinuities.
For many problems (including ours) the problem of finding a ‘‘matching’’ flow at a given time is

equivalent to the problem of finding the corresponding vector of initial conditions (the initial conditions

serve as the control variables in the optimal control setting).

For practical applications of this approach (namely controlling the location of the discontinuities) it is

more important to consider the impact on flow parameters due to the change of shock location rather than

the explicit description of the new discontinuity location. For this reason we concentrated our research

efforts on matching the flow to a desired flow rather than introducing the explicit shock location as a

variable in the optimal control setup (as performed by Cliff et al. [18] for duct flow with quasi 1-D Euler
equations).

We used the discrete forward model to obtain the tangent linear model and then the adjoint model which

provides the gradient or a subgradient of the cost functional to the smooth (nonsmooth) minimizer. If the
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location of the discontinuities were to be introduced as an explicit variable, then the original model should

be modified to accommodate the new requirements, a change requiring complex adjustments. For this

reason we consider our approach more suitable for practical optimization problems involving disconti-

nuities.

We considered as forward models an artificial viscosity model AVM and a high-resolution model HRM.

For each of the two numerical models we employed unconstrained optimization methods (L-BFGS algo-

rithm for smooth optimization and PVAR algorithm for nonsmooth optimization) described in Section 5.

The control variables were chosen to be the initial parameters to the left and to the right of the mem-
brane: pressure pL; pR and density qL; qR. The desired observations were obtained as exact solutions of the

shock-tube problem at times t ¼ 0:15 or 0.24 starting with prescribed initial conditions. We considered two

set of parameters: (ONE) and (TWO):

ONE ¼ ½qL ¼ 1:1; pL ¼ 1:1; qR ¼ 0:2; pR ¼ 0:2�;

TWO ¼ ½qL ¼ 2:5; pL ¼ 2:0; qR ¼ 0:5; pR ¼ 0:6�:

The initial guess for both minimization methods (INIT) is characteristic for the Sod shock-tube problem

([68]),

INIT ¼ ½qL ¼ 1:0; pL ¼ 1:0; qR ¼ 0:1; pR ¼ 0:1�:

The initial values for velocities to the left and to the right of the membrane were taken to be zero.
The numerical results for both models (AVM and HRM) using each of the optimization methods

(L-BFGS and PVAR) are presented in Fig. 2 (the evolution of the cost functional vs. the number of

minimization iterations) as well as Fig. 3 (the numerical flow obtained using the results of optimization

compared with the observations). The values of the optimized control parameters are presented in Table 3

(HRM) and Table 4 (AVM). We considered two different time horizons for the optimal control problem:

TW ¼ 0:15 or 0.24 (in nondimensional units). They were chosen for two main reasons. First, at the end of

the time window the flow exhibits all five regions of discontinuities previously discussed in Section 2.

Second, if one increases the time horizon from TW ¼ 0:24 to a slightly larger value time ¼ 0:3 one can see
from Fig. 4 that several characteristics of the discontinuities have already disappeared from the spatial

domain considered.

As discussed in Section 4 we consider two expressions for the cost functional, with observations located

either at the end of the assimilation window or with distributed observations in time.

When the observations were located at the end of the time window (t ¼ TW) the following discrete form

of the cost functional was considered:

JðUð�; 0Þ;Pð�; 0Þ; qð�; 0ÞÞ ¼
XNp

i¼1

WUðiÞðUnumðiÞ
�

�UobsðiÞÞ2 þ WPðiÞðPnumðiÞ � PobsðiÞÞ2

þ WqðiÞðqnumðiÞ � qobsðiÞÞ2
�
;

where

Uðx; 0Þ ¼ 0:0; x < 0:5
0:0; x > 0:5

�
; Pðx; 0Þ ¼ pL; x < 0:5

pR; x > 0:5

�
; qðx; 0Þ ¼ qL; x < 0:5

qR; x > 0:5

�
;

with ðqL; pL; qR; pRÞ the control variables described above. Np is the number of points for space discreti-
zation, WU; WP; Wq are weights matrices attached to points (the identity matrix in our implementation).

670 C. Homescu, I.M. Navon / Journal of Computational Physics 187 (2003) 660–682



Fig. 2. Evolution of the logarithm of cost functional vs. number of iterations at time¼ 0.24 for HRM: PVAR+first set of observations

without (a) or with (b) distributed observations; PVAR+ second set of observations (c)) and, respectively, for AVM (PVAR+first set

of observations (d); L-BFGS with discontinuity detection and term removal and first set of observations (e).
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Unum; Pnum; qnum are the fields of velocity, pressure and density at time tfinal while U
obs; Pobs; qobs are the

observations for velocity, pressure and density.

Fig. 3. Pressure, density and velocity: observations (thin line) and numerical solution (}) at time¼ 0.24 for the first set of observations

HRM (PVAR (a), (c) and (e)) and, respectively, for AVM (L-BFGS with discontinuity detection and term removal (b), (d) and (f)).
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For distributed observations the discrete form of the cost functional is

JðUð�; 0Þ;Pð�; 0Þ; qð�; 0ÞÞ ¼
XNobs

j¼1

XNp

i¼1

WUðiÞ Unum
ðjÞ ðiÞ

��
�Uobs

ðjÞ ðiÞ
�2

þ WPðiÞ Pnum
ðjÞ ðiÞ

�
� Pobs

ðjÞ ðiÞ
�2

þ WqðiÞ qnum
ðjÞ ðiÞ

�
� qobs

ðjÞ ðiÞ
�2

:

In addition to the notations for the previous cost functional we denote by Nobs the number of instances

when the observations are determined during the assimilation window, Unum
ðjÞ ; Pnum

ðjÞ ; qnum
ðjÞ are the fields of

velocity, pressure and density at time tðjÞ, while U
obs
ðjÞ ; P

obs
ðjÞ ; qobs

ðjÞ are the observations for velocity, pressure

and density at the same observation times tðjÞ with 16 j6Nobs.

Table 3

Optimization results for the high-resolution model

Parameter qL pL qR pR

First set of observations and time¼ 0.15

Desired 1.1 1.1 0.2 0.2

L-BFGS 1.10143 1.10251 0.19934 0.19865

PVAR 1.10059 1.10187 0.19942 0.19884

First set of observations and time¼ 0.24

Desired 1.1 1.1 0.2 0.2

L-BFGS Failed Failed Failed Failed

PVAR 1.09815 1.08966 0.19993 0.19894

PVAR [d.o.] 1.10088 1.10915 0.20122 0.19886

Second set of observations and time¼ 0.24

Desired 2.5 2.0 0.5 0.6

PVAR 2.49591 1.97919 0.49941 0.60096

Table 1

Gradient of the cost functional with respect to the control variables for the high-resolution model

100 points 200 points 400 points 500 points Exact value

qL 0.910031588 0.900192636 0.893206369 0.894630746 0.922092236

qR 0.792576124 0.765652869 0.742964725 0.741700828. 0.711993332

pL 0.426147283 0.259507114 0.138748378 0.162920439 0.511979175

pR 0.398853592 0.530988984 0.627920012 0.615861264 0.568648995

Table 2

Gradient of the cost functional with respect to the control variables for the artificial viscosity model

200 points 400 points 500 points 1000 points Exact value

qL 0.906984749 0.900370054 0.899532462 0.898418391 0.922092236

qR 0.593117245 0.589481465 0.588288589 0.583323087 0.711993332

pL 0.205244621 0.198562144 0.201226646 0.236071976 0.511979175

pR 0.737312984 0.745349578 0.745462328 0.732442672 0.568648995
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7.1. Numerical results for the high-resolution model HRM

For the HRM model the optimized values of the control parameters are in excellent agreement with the

parameters� desired values for both assimilation windows when the nonsmooth optimization package

PVAR was employed. Fig. 2 shows a decrease of more than two orders of magnitude for the cost func-

tional. The optimized values of the control parameters ½qL; pL; qR; pR� obtained as a result of nonsmooth
minimization (the row PVAR in Table 3) display a very good agreement with the desired parameters. This

remark is also supported by Fig. 3, which presents the comparison between the numerical optimized so-

lution and the observations.

For the model HRM we also employed a cost functional with time-distributed observations for the

larger time window TW ¼ 0:24. The optimized values of the control parameters obtained as a result of the

nonsmooth minimization are shown as entries in the column PVAR [d.o.] (distributed observations) in

Table 3. Since we have already obtained optimized results almost identical to the desired values of the

parameters using only final time observations, the additional information provided by time-distributed
observations was extraneous. Although it does not have any major impact for our problem, we wanted to

prove that our methodology is successful also for the time-distributed approach, which is common for

large-scale optimization problems in atmospheric sciences (e.g., [61]).

To verify the robustness of our approach we considered the second set of parameters (TWO). The results

obtained using nonsmooth optimization PVAR (also shown in Table 3) are in very good agreement with

the desired values of the parameters. Fig. 4 shows that the flow obtained with the optimized control pa-

rameters as initial conditions matches closely the observations. It also shows that the new location of

discontinuities matches the desired location.
The evolution of the entropy during various stages of the minimization process (computed at the end of

the assimilation window) is displayed in Fig. 5. It is known that the correct weak solution should satisfy the

entropy condition, which states that the entropy of fluid particles does not decrease. Over the contact

discontinuity the entropy decreases, but since fluid particles do not cross the contact discontinuity, the

entropy of the particles does not decrease. This shows that the numerical solution has indeed the char-

acteristics of a physical solution.

Table 4

Optimization results for the artificial viscosity model

Parameter qL pL qR pR

First set of observations and time¼ 0.15

Desired 1.1 1.1 0.2 0.2

L-BFGS 1.09712 1.09947 0.20432 0.19756

L-BFGS [t.r.] 1.10031 1.10459 0.20514 0.19786

PVAR 1.09685 1.09933 0.20439 0.19782

First set of observations and time¼ 0.24

Desired 1.1 1.1 0.2 0.2

L-BFGS 1.02638 1.00347 0.18012 0.19296

L-BFGS [t.r.] 1.09742 1.10173 0.20004 0.20154

PVAR 1.09737 1.09966 0.20357 0.19874

PVAR [input] 1.09741 1.09961 0.20344 0.19867

Second set of observations and time¼ 0.24

Desired 2.5 2.0 0.5 0.6

PVAR 2.488763 1.964391 0.4867374 0.6241672
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Fig. 4. Pressure, density and velocity: Numerical (}) and analytical (thin line) solution of high-resolution model for the shock-tube

problem at time¼ 0.30 (a), (c) and (e); observations (red line) and numerical solution of nonsmooth optimization (}) for the high-

resolution model at time¼ 0.24 for the second set of observations (b), (d) and (f).
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Fig. 5. Evolution of numerical (}) and analytical (thin line) entropy (shown at final time t ¼ 0:24 for the high-resolution model and for

the first set of observations) during nonsmooth minimization: (a) iteration¼ 0, (b) iteration¼ 5, (c) iteration¼ 10, (d) iteration¼ 15, (e)

iteration¼ 20 and (f) iteration¼ final iteration.
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The L-BFGS minimization converged to the desired parameters only for the shorter time window

(TW ¼ 0:15). For the larger time window (TW ¼ 0:24) the L-BFGS minimization failed. We explore in more

detail this failure at the end of this section.

7.2. Numerical results for the artificial viscosity model AVM

We also applied successfully the nonsmooth minimization algorithm PVAR to the artificial viscosity

model AVM which represents the class of models which smooth the discontinuities (see Table 4).

As seen in Table 4, L-BFGS converged only for the time window TW ¼ 0:15. For the larger time window

TW ¼ 0:24 L-BFGS proved useful in a different setting. By using the L-BFGS output as an initial guess for

the PVAR method we obtained convergence to the desired parameters in fewer minimization iterations. The

values of the control parameters obtained using this approach are shown in the row PVAR [input] of Table 4.
To alleviate the impact of discontinuities we tested a method whereby we removed from the cost

functional the terms computed at the discontinuities. The shock discontinuities were found using the

discontinuity detection method presented in Section 6. Since the shock location changes in the forward

model after each minimization iteration it was necessary to apply the method of discontinuity detection at

each iteration.

Fig. 6. The numerical (solid line) and analytical (dashed line) value of the cost functional JðqL; pL; qR; pRÞ in a neighborhood of the

initial guess for the control parameters INIT ¼ ½qL ¼ 1:0; pL ¼ 1:0; qR ¼ 0:1; pR ¼ 0:1�.
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After removal of the aforementioned terms, the minimization was successful (see row L-BFGS [t.r] (term

removal) of Table 4). One can notice that the solution obtained after minimization was more accurate

compared to L-BFGS without term removal, especially for the larger time window. This may suggest that

this approach should be employed for smooth minimization methods if the minimization gives a solution

which is not ‘‘close enough’’ to the desired solution.

7.3. Additional numerical considerations

The control variables employed for this research were the initial values for only the pressure and density.

Additional consideration would be required if we add the initial values for the velocity to the control

variables. This is based on the fact that many decisions in the numerical model are based on the sign of the

velocity. As a consequence, if one would choose the initial values of the velocity as part of the control
variables one may expect that during the minimization their updates may have values which are not

physical. One should also keep in mind that their corresponding adjoint variables may lead to solutions

developing bifurcation points [15].

One may argue that the distance between the first or second set of parameters (ONE) and the initial

guess (INIT) is rather small. But Fig. 1 shows large differences in the location of discontinuities and the

Fig. 7. The numerical (solid line) and analytical (dashed line) value of the cost functional JðqL; pL; qR; pRÞ in a neighborhood of the

second set of parameters TWO ¼ ½qL ¼ 2:5; pL ¼ 2:0; qR ¼ 0:5; pR ¼ 0:6�.
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values for the flow variables for the corresponding flows, which provides a good argument for our choice.

The second set of parameters (TWO) was chosen to be at a much larger distance to the initial guess (INIT)

in order to test the robustness of our approach.

Figs. 6 and 7 show that the nonsmoothness of the cost functional appears only if the location of dis-

continuities of state and data coincide. But this does not translate into a successful run of the smooth

optimization method L-BFGS.

Some of the reasons of failures of the L-BFGS method for our problem are discussed below.

For some cases (e.g., for HRMmodel using the first set of observations and time window TW ¼ 0:24) one
can notice that the optimization criteria were satisfied (decrease of the cost functional), but the updated

vector of control variables did not qualify as a solution from the physical point of view.

But we consider that the main reason behind this failure was given by the fact that the numerical values

of the gradient of the cost functional did not converge to the analytical values as the number of grid points

was increased for both models: HRM – Table 1 – and AVM – Table 2.

But although the convergence was not achieved, the fact that these values were in a ‘‘close enough’’

provided enough information for the nonsmooth optimization method PVAR to be successful even for the

cases where L-BFGS did not work.

8. Summary and conclusions

We solved an optimal control problem for a flow which includes several types of discontinuities (namely

we carried out a flow matching for a 1-D Riemann problem for Euler equations: shock-tube problem). The

control variables considered were the initial conditions at the left and at the right of the membrane for

pressure and density. Existence results were proved for the solution of the optimal control problem con-
sidered here. The cost functional was taken to be the (weighted) difference between the numerical and the

desired solution of the model. The observations were taken either at the end of the time window or they

were time distributed within the assimilation time horizon.

For the present problem flow matching was equivalent to relocation of discontinuities to a desired lo-

cation. Since in all practical control applications discontinuities are captured using either high-resolution

models or models which smooth the solution we employed here two numerical models representative of

both approaches. For each forward code its corresponding discrete adjoint model was then employed for

computing the gradient (or a subgradient) of the cost functional required for carrying out the minimization
of the cost functional (using either nonsmooth or smooth algorithms for minimization). The two assimi-

lation windows for minimization were chosen such that the flow with discontinuities retained all its

characteristics at the end of each time window. If we were to use a slightly larger time window the model

time evolution will change some of the characteristics of discontinuities.

The method of nonsmooth optimization (PVAR) employed for minimizing the cost functional was

found to be very robust. For each of the different sets of observations employed we obtained optimized

values of the control parameters in very good agreement with the desired results. The smooth minimization

algorithm (L-BFGS) provided good results for the shorter time window and failed for the longer time
window even after scaling the gradient of the cost functional. Better results for L-BFGS minimization were

obtained when we removed from the cost functional the observations terms corresponding to the shock

points, identified using a method of discontinuities detection.

The cost functional is nonsmooth only if the location of discontinuities and data coincide, which may

suggest a good behavior of smooth optimization algorithms outside a close neighborhood of that location.

But this behavior was not observed in our numerical simulation. We consider that the main reason behind

the L-BFGS failure is the fact that the numerical values of the gradient, computed by the adjoint method, do

not converge to the analytical values as the number of grid points is increased. But being ‘‘close enough’’ to
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the analytical values provides sufficient information for the nonsmooth optimization method to be suc-

cessful, since this method employs subgradients and not gradients of the cost functional.

The evolution of the entropy during various stages of the minimization process shows that the numerical

solution of the optimal control problem we obtained is a physical solution since the correct weak solution

of the shock tube problem must satisfy the entropy condition.

A very useful characteristic of the methodology for optimal control for discontinuous flow presented in

this article is the ease with which it can be implemented in applications where the forward model is already

discretized.
Extending this approach to optimal control problemswith discontinuities in 2-D or 3-D renders the adjoint

method even more appealing computationally, due to the larger number of control parameters involved.

An important topic to be addressed in future research is related to the issue of noisy observations. One

may expect in this case that the cost functional should have new components which will account for the

effect of the noise.

We consider our research to be only a small step towards the complete solution of optimal control of

problems with discontinuities. Although published results are rather few, one may foresee a growing

number of research efforts dedicated to the numerical and theoretical study of this class of important
optimal control problems.
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