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Abstract—This paper develops the data-assimilation procedure in order to allow for the assimila-
tion of measurements of currents and free-surface elevations into an unsteady flow solution governed
by the free-surface barotropic Navier-Stokes equations. The flow is considered in a 2D vertical sec-
tion in which horizontal and vertical components of velocity are represented as well as the elevation
of the free surface. Since a possible application is to the construction of a coastal (limited area)
circulation model, the open boundary control problem is the main scope of the paper. The assimila-
tion algorithm is built on the limited memory quasi-Newton LBFGS method guided by the adjoint
sensitivities. The analytical step search, which is based on the solution of the tangent linear model,
is used. We process the gradients to regularize the solution. In numerical experiments we consider
different wave patterns with a purpose to specify a set of incomplete measurements, which could be
sufficient for boundary-control identification. As a result of these experiments we formulate some
important practical conclusions. © 2006 Elsevier Ltd. All rights reserved.

KeyWOI‘dS—Navier—Stokes equations, Free surface, Open boundary, Optimal control, Adjoint
equations, Data assimilation, Ocean, Waves.

1. INTRODUCTION

The simulation of water circulation in coastal areas requires the application of advanced computer
flow models. A recent tendency is to use 3D models based on the baroclinic nonhydrostatic free-
surface Navier-Stokes equations (fsSNSE) [1-3], rather than on the shallow-water equations (SWE)
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or the primitive hydrostatic equations (PHE). This can be explained by the fact that in coastal
areas in particular we often meet baroclinic conditions (freshwater inflows), effect of topographic
steering (flow separation) and nonhydrostatic situations. It may also be required to solve the
bottom boundary layer. In practice, full 3D models are mostly applied as a ‘zoom’ designed
to resolve important local details, as long as global ocean models are still based on SWE or
PHE. Thus, we almost certainly face the problem of specifying boundary conditions at the open
boundary of a limited area. These conditions are generally unknown. Some information could
be extracted from global models, if available. However, it could be quite approximate or even
incompatible (due to possible multiphysics). In order to find or to make more accurate boundary
conditions at the open boundary one can use data assimilation. The boundary conditions must
be recovered by a process of adjustments until the model solution agrees with measured data
at the internal points of the domain. By data we will understand the velocity measurements
performed by current meters and the elevations measured by tide gauges, for example. This
problem can be referred to as an optimal control problem while the unknown boundary conditions
are considered as controls [4]. The process of adjustment can be systematized by calculating
appropriate sensitivities to guide a gradient descent algorithm.

The need of solving the open boundary problem for the incompressible fsSNSE represents the
main difficulty of the case. Hence, there are very few rigorous results on the existence and
uniqueness of the forward problem solution. For periodic boundaries the solvability of the initial
boundary problem for the viscous fsNSE was proven in [5], but it took about twenty years to
prove the inviscid case [6]. For fsSNSE with open boundaries we are not able to mention any
reference. Probably, the closest result is obtained for PHE [7]. The situation is far better with
SWE. The existence of global weak solution of the viscous 2D SWE with all nonlinear terms was
proven in [8].

Concerning the solvability of the open boundary control problem for fsSNSE one could find
even less. Optimal control theory for Navier-Stokes equations without free surface has been
the concern of numerous papers, among them [9-12], and for an example application one can
refer to [13]. A method for assimilating the altimetry data into the solution of NSE (without
considering free surface) via external stress control is proposed in [14,15]. Here the problem for
perturbations is considered in the domain with mixed boundaries (periodic and Neumann). The
method requires the altimetry data to be specified everywhere or to be dense enough. These
data, of course, may not be available in reality. The existence of an optimal control is proven in
the case of small perturbations and a very viscous fluid only.

This paper develops the data-assimilation method based on our recent results presented in [16].
In that paper we have derived the variation in the free-surface variable using the mapping into a
fixed domain—the approach commonly used in the aerodynamic shape optimization [17]. Then,
we define the tangent linear model (TLM) and the continuous (inconsistent) adjoint model.
Although we considered a 2D vertical section and the barotropic case, the extension to the
full 3D baroclinic model is straightforward. Thus, we can consider that the free surface can be
treated exactly in 2D or 3D by the method in [16]. On the other hand, the open boundary
is solved only approximately even for the 2D barotropic case. However, we show the way of
constructing boundary conditions (BC) for the adjoint model, such that they are consistent with
the approximation of open boundaries accepted in the forward model. We acknowledge the
importance of characteristics in designing BC for open boundary [18]. Thus, we express fsSNSE
variables via variables of hyperbolic equations for which we know the characteristics and vice
versa. Particularly, we use the characteristics of the 1D SWE. This sort of coupling cannot be
entirely consistent, of course. However, it works quite satisfactory under the long wave assumption
which need only be made at the boundaries. We control the incoming characteristic variable at the
open boundary, which represents the normal incident wave. For the baroclinic case characteristics
of PHE or the multilayer SWE can be used. The extension to the 3D case is possible in the same
way.
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We build the data-assimilation procedure based on the limited-memory quasi-Newton LBFGS
minimization algorithm [19], while for the step search we use an analytical approach based on the
solution of the TLM. Also, we introduce a regularization method, which consists of smoothing the
sensitivities (gradients) by using the steepest descent or the conjugate gradient process defined
in Sobolev’s space [20]. This process generates a discrete family of smooth approximations, such
that its Sobolev’s norm is a monotonic increasing function of the iteration number. The density
of this family can be controlled by the appropriate choice of the space order. The method works
very well in the presence of low-frequency nonperiodic trends, which are usually badly approxi-
mated in orthogonal bases (for example, the Fourier basis). The need of regularization, even for
exact observations, is demonstrated and explained. We design a series of numerical experiments
in which we pay special attention to the assimilation of incomplete observations in different wave
systems (progressive, standing, and mixed waves). We recognize that reflections result in the ir-
reversible loss of information, thus making ill-posed the inverse (control) problems for equations
describing waves. In these problems, the convergence rate depends on the information available
for sensors rather than on the efficiency of the minimization procedure. We formulate simple
conclusions concerning the lay-out of sensors. If followed in practice, it might help reduce sig-
nificantly the number of iterations required for solving the control problem. That is important
in real-time applications. Finally we show that we can solve the open boundary control problem
using local velocity observations, which differ essentially from depth-averaged values due to local
nonlinear effects such as eddies developing in the vicinity of sharp changes in the bathymetry.

The rapid improvement in reliability and availability of data from coastal waters is driving the
need for data-assimilation methods effective in tidally dominated flows. The model presented here
allows direct assimilation of unsteady water levels by the adjoint method applicable to shallow
tidal flows (as well as to deep water flows). Further applications for the method are to the creation
of operational coastal flow models that assimilate measurements of current flows and water levels
in order to calculate a ‘nowcast’ of flow conditions at all locations within the model area. This
in turn can be used as an initial condition for a short-term forecast.

2. PROBLEM STATEMENT

Let us consider a 2-D free-surface flow in a channel, where the z-axis is directed along the
channel, and the z-axis from the channel bed to the surface. Velocities u = u(z,z,t), w =
w(z, z,t) are associated to -, z-axes, respectively (see in Figure 1). The governing equations are
as follows:

% +u(z, h(m,t),t)% — w(z, h(z, t),t) = 0, (1)
e, @

%—t‘-+§§ T, 3)

%%)-+-g—z+g=\ll-w, (4)

b _o 0. .0 ¢_0(, 0\, 0(, 0
Dt ot Yoz Yo =0z \Moz ) Tz \Mez )
ze(0,L), ze(H()h(zt), te(0,T),

where h(z,t) is the elevation function describing a free surface, H(x) is the channel-bed shape
function, L is a position of the right boundary, un(z, 2,t) and p.(z, z,t) are effective viscosities
in £ and z directions, respectively, and g is the acceleration due to gravity; p = (po — pz)/p is
relative pressure, where pg is pressure, pz-atmospheric pressure at the sea level, and p = const is
density.
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The initial state is assumed to be known and we will consider it, for simplicity, as trivial
h(z,0) = Z, u(z,z,0) =0, w(z,2,0) =0, (5)

where Z = const is the elevation of the undisturbed fluid. For the channel bed (z = H(z)) we
apply no-slip boundary conditions
u =0, w=0. (6)

By neglecting the surface tension and the viscous normal stress, we have the dynamic condition
for the free surface as follows:

p=0. (7)

When considering boundary conditions for lateral boundaries one should distinguish between
physical boundaries, where the known physical behavior of the state variables can be specified,
and artificial or ‘open’ boundaries introduced for computational purposes. The task of specifying
boundary conditions on the open boundaries is not trivial and, in the case of systems which are
predominantly hyperbolic, requires a characteristic analysis of the problem to be involved. Let
us assume that the open control boundary is at £ = 0 and the passive boundary is at z = L.
In [16] we introduce an approximate treatment of open boundaries for fsSNSE using characteristic
variables of SWE as follows:

Vi=q+(c-u)(h—-2), Va=gq—(ct+a)h-2), 8)

where

h
a=—3 . o= =), q=/ wdz. )
(h—H) H
One can note that the relationship between Vj, V5, and primitive variables h, u of fsNSE is
nonlinear, unless @, ¢, and h, the upper limit of integration in the expression for ¢ in (9), are
considered as coefficients which are dependent on z, t only. The inverse relationship is also
nonunique, unless we introduce an assumption concerning the distribution of v on 2. Let us
assume that @, ¢, and h in (9) are defined (for example, in the numerical model these values are
extrapolated from the previous time step), and u is uniform through the depth. Then A, u can

be linearly expressed via V;, V; as follows:

h(O,t)=Z+%<E—E),
a

u(0,2,t) = 5(71‘7{‘) [((+2) v+ (1-2)w].



Open Boundary Control Problem 1273

Now, the quantity V;(0,t), which is the incoming characteristic variable, is used as a control
variable, i.e., it is as a given function, while V5(0,t) is the outgoing characteristic variable, which
must be computed (using (8)) in the interior points and then extrapolated to the boundary. The
boundary values for w can be calculated using the irrotationality condition that yields

ow(0,z,t)
For the open passive boundary at = = L we write
h(L,t)=Z + —;—/l,
1 @ (12)
t) = ———— - .
Ul 2t =30 -m (15

Now Vi(L,t) is the outgoing characteristic variable, which is extrapolated from interior values.
When the passive boundary represents a real physical boundary (solid/liquid interface), then the
‘no-flow’ conditions are considered as follows:

MLO=Z+2,  u(LyH=0. (19)

Let us denote as h, = il(:ltn, t) elevation measurements given at some points z, € (0,L); and
as Uym = W(Zi, Zm,t), u-velocity measurements at some points z; € (0,L) along the trajec-
tories Zy, := Zm(z1,t) € (H(z), h(z,t)). We formulate a boundary control problem as follows:
find V4 (t) and S = [h,p,u,w]" subjected to constraints (1)-(4) and boundary conditions (5)—(13)

such that
JW(®) = inf J(U1(¢)),

J(Vi(¢)) =3 Z/ h(xn,t) ) "
T3 Z > /0 (w(@1, Zom (21, ) — Gu,m)? dt.
l m

3. TANGENT LINEAR (TLM) AND
ADJOINT MODEL STATEMENTS

The procedure for deriving the TLM and the adjoint equations in the present case is not trivial.
The main difficulty consists of deriving the variation on the surface elevation function h. We use a
coordinate transformation in the vertical to shift the problem into a domain with fixed boundaries
and calculate the variation in h from the Jacobian matrix of the transformation. This variation
is then mapped back into the original coordinate system, where the variations in the other flow
parameters are calculated in a usual way. Then we use scalar product formulas redefined for
the domain with variable bounds to derive the adjoint equations and the surface and the bed
boundary conditions. The detailed description of the method is presented in [16]. Thus, the
TLM reads as follows:

h (0h 8h Ok
b bRy B — = 5
/H2<8t+u6:z+6xu W | 6(z — h)dz =0, (15)
ou1 0w ~
£+’6—Z'+Q2‘h—07 (16)
Di 0p Ou. B Ou. e
—’Tt+av-+55u+(—9;w+Q3-h—\Il-u, 17
Dw  0p (911)~ Ow _
Tt e Ta T T =T (18)
z € (0,L), zE(H,h), te (0,7).
- oh oh .
Qi h:= a,16t+a,2a +a,4h 1=2,3,4, (19)
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where
a1 =0 az 2 — H ou 2,4
' ’ ' h—H 082’ ' h—
z— H du z—H [ Ou
BI=TR"Ho M2 "h-H("E
as 4 —-———-—-—h_lH((w el—ueg)%——egg—f),
_ z-How _ z-H o
MI=TFTHe: T Th-H'6z
1 o, op
YMTTRCH ((w o1~ ues) 0z + Bz) ’
€1=Z_H@ e2=%+z—H0h—H
h—H ot’ 6x h—-H 0z

The initial and boundary conditions for TLM are as follows:

h(z,0)=0,  i(z,2,0)=0, @(z,z0) =0,

— ey

Ou
0z

Boundary conditions for lateral boundaries expressed via characteristic variables are given by
equations (10)—(13) written in terms of variations in all state variables involved.

The adjoint model related to the TLM given above reads as follows:

_Or*  O(u(z,h,t)h*)  OhOu(z, h,t) bt _F

ot oz oz 0z =Th
ot owr
oz 8z

D O Ow . Ow
Dt 8z o0z " oz
Dw* 0p* Ou , Ou , * _ *
Dt "3 " 57 +5u —2h*é(z - h) =T - w*,

z € (0,L), z € (H,h), te (0,7),

6h
w* + 25;h*6(z —h) =V u*+7,,

te (0,7),

(20)
(21)
(22)

(23)

4 b h P h h
F= —/ a“s;‘dz+—/ aigs:dz—/ a; 487 dz ), s;eS*=[h*p*,u*,w*], (24)
ot ’ or Jyg a

=2 H

n.=—z(h—ﬁn)5(x—mn)

ra==3"" (u - tim) 6z — 20)5(z — Zim).
l m

(25)

(26)
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Initial and boundary conditions for the adjoint problem are

h*(z,T) =0, p*(z,2,T) =0, u*(z,2,T) =0, w*(z,2,T) =0,

z
z=H:u*" =0, w* =0,

z=h:p* =0,
—0:h*(0,t)= S Ly *(0,2,8) = ——V;* @7)
= . b} - h—H 1> u Ix2) - h H 1>
z =L (‘open’) :h*(L,t):—-:-l_zIVz, u*(L, z, t)— V2, (28)
z = L (no-flow) : h*(L,t) = W —H HV2 , u*(L,z,t) =0. (29)

The adjoint characteristic variables V;* and V5* are defined below,
Vi= o @+t De),  Vi= o (44— 1))
17 2 7 27 2 77

where N
QS* =h*(h—H), q* =/ u* dz_
H

The variable V}* in (27) and V' in (28),(29) are outgoing characteristic variables and have to be
interpolated from the interior. Finally, the sensitivity (gradient) on V;(0,t) is

8J(11(0, 1))

O A GK)

= —(c+ @)V (0,1). (30)

4. OPTIMIZATION PROCEDURE AND REGULARIZATION

We use the limited memory quasi-Newton LBFGS method for large scale optimization [19] to
perform the minimization of (14). The iterative process can be presented in the form

VI () = VE(t) + Bd" (1), (31)

where d? = D(B - VJ*,d*~1,d¥=2,...) is a current direction of descent evaluated based on
the recent gradient VJ* and a limited number of directions d*~1,...,d*~™ taken from previous
iteration steps; B is an operator introduced for the regularization purpose, and £ is a step length.
The step search algorithm is a modification of a well-known routine CSRCH [21]. As an initial
guess we use the analytical step calculated as follows (see [20]):

J (d(t), VE(t))

P=—FwvFw)

(32)

where

J (d*(t), Vit E/ R (@n,t) (P (@n,t) = hn) dt

+%Z Z/ @ (21, Zm(21,1)) (WF (21, Zin (21, 1)) — Q) dt.
I m YO

The quantities A*(x,,,t) and @*(2;, Zm (21,t)) are obtained by solving the TLM (15)—(19) assum-
ing Vi (t) = d*(t) and u = u*, v = v*, h = h*. If the step satisfies the sufficient decrease condition
and the curvature condition, it is taken as a required value. Otherwise, the routine searches for
the step around the initial guess in its own way. We should mention that the analytical step
obtained via the TLM is optimal for the linear problem (because the TLM coincides with an

(33)
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original problem). It works well for nonlinear problems if the nonlinearity is moderate, i.e., it
does not totally dominate the system behavior. Otherwise, we should return to the nonanalytical
step search methods (for example, the gold section method, as implemented in CSRCH).

Another important issue is regularization. It is well known that most inverse problems are
ill-posed in some sense. For example, the inverse operator may be unbounded. As a result,
errors of a different nature are amplified and assimilated into the solution. The foundations of
regularization theory had been developed by Tikhonov [22] in the early 1960s. For a state-of-art
practical review on this subject one can refer to [23]. It is observed that the Tikhonov method is
not particularly efficient if the problem is solved by iterative methods. The main reason here is
that the choice of the regularization parameter is not transparent, i.e., one may proceed by trial
and error approach, that could be rather expensive in terms of computational costs. Another
drawback is that in the nonlinear case introducing penalty terms may generate additional points
of zero variation. That is why different regularization methods had been proposed [20,24]. The
basic idea of these methods consists of restricting the control space. In [24] the multilevel (wavelet)
representation of control functions is used, while the decision concerning the appropriate level
is taken based on the analysis of the minimal eigenvalue of the Hessian. The efficiency of this
approach depends on the distribution of eigenvalues associated to the problem of interest. In fact,
in the case of the diffusion equation, only, a few leading eigenvalues have to be considered. In [20]
the control function is updated in the Sobolev’s space W5 of order p. One can note, however,
that the choice of p is not obvious either. In our case even using of W} proves redundant, because
it slows the convergence rate drastically. To avoid this difficulty we use the approach as follows.
Let us consider a function f(t) and its generalized norm as follows:

Ol = [ Z (29 s

We would like to construct a family of functions g™ which successively approximate f in a manner
that [|g™ — f|lwg is a decreasing function of m, while ||g™ (/w2 is a monotonic increasing function
of m. It is suggested in [20] that such a family can be generated by an iterative process based
on the steepest descent (SD) or on the conjugate gradient (CG) method working in Sobolev’s
spaces. For example, the SD method in W] can be presented as follows:

g™H(E) = g7 (1) = BoP™ () — FQ™, & = £(0), (34)
t T T
P™(t) = /0 /f (™) - f() dnde, Q™= /0 @0 - f@) dt. (35)

At each iteration step the parameters By and (; must be calculated to minimize the norm
llg™*1(t) — £(t)llwg- By choosing m we can always find an approximation to f, which we believe
is reasonably ‘smooth’ compared to f itself. For example, we can suggest the criterion as follows:
increase m until

g™ (2) — £(0)llwsz < g™ (#) — F(®)llwe
I1£@) — 7O0)llwz 1£(0) — F®)llwg

Since we use the initial approximation g°(t) = f(0), at first the left-hand side of (36) is equal to
zero and the right-hand side to a. By (36) we actually demand that the convergence g™(t) to f(t)
in W9 = L, should be faster (up to the factor ) than the convergence of their WZ-norms. When
we put f = V.J*, the iterative process (34),(35) along with the stopping criterion (36) define the
action B-VJ := g™*! which is used by LBFGS. Because the control function is a weighted sum
of the gradients from all iterations it must belong to the same solution space as gradients. If we
treat the gradient as suggested above, the overall iterative process (31) is not biased (in contrast
to the Tikhonov method). The iterations must converge to the minimum of (14). However, the
process is ordered in the sense that || V}*(t) llw;z is supposed to be a monotonic increasing function
of the iteration number k.

0<a<l (36)
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5. NUMERICAL EXAMPLES

5.1. General Description of the Numerics

A trial numerical implementation has been made using a finite-difference semi-explicit solu-
tion of the problem with a fixed regular mesh similar to the well-known SOLA algorithm {25].
Equations are discretized on a staggered grid using a hybrid scheme for advection terms. The
Poisson equation for pressure is formed and solved by the SOR method in the case of the forward
equations and the TLM, and by a direct solver based on banded LU-decomposition in the case
of the adjoint equation. In solving the forward model, the solution k, p, u, w is saved in the
memory. This data is recalled when the TLM or the adjoint problem is running. Because the for-
ward, the TLM, and the adjoint equations differ only in source terms a single solver is used. The
numerical experiments carried out here are usually referred to as ‘identical twin experiments’.
For a certain value of the control function Vi(t) we perform the forward run. The solution at
the measurement points is interpreted as observations (measured data record). Then, the control
function Vj(t) is considered as the unknown function that has to be estimated in the course of the
data assimilation procedure, while the difference §V;(t) := Vy(t) — V{¥(t) defines the estimation
error. For minimization of the objective functional (14) we use LBFGS using the analytical step
search as described above. We start from the trivial initial guess V(t) = 0 in all assimilation
tests that follow. If no special stopping criterion is used, the iterative process is terminated by
the step search routine, when it recognizes the direction suggested is not a direction of descent.

In order to underline a general applicability of the method we design special test cases when
the bed function suddenly changes from being deep to shallow (and vice versa). In reality
this describes a situation near the ‘shelf’ edge, which is essentially nonhydrostatic. The change
happens over one space discretization step, i.e., % always remains bounded. The two channel
geometries called ‘step’ and ‘pit’ are shown in Figure 2. Channel dimensions are: L = 3000m,
Z = 100m for the bathymetry ‘step’, and L = 5000m, Z = 200m for the ‘pit’. The number
of grid nodes used in all calculations presented here is N, = 100 and N, = 20, and the time
discretization step is At = 0.36s. All the computations are performed for viscous flow assuming
fy = 0.1, but pp =0,

fU9=0 | %

(a) A ‘step’. (b) A ‘pit’.
Figure 2. Channel bathymetry.

The bathymetry is chosen to enable consideration of a few possible wave patterns. If the open
right boundary is used, then we observe clean progressive waves in section B for the bathymetry
‘step’, and in section C for the ‘pit’. Measurements within section B for the ‘step’ contain
the same components as the boundary control function Vi (t), shifted in time and scaled at the
step. In this case the data-assimilation problem is nearly trivial and the iterations converge
very quickly (see Figure 3). The situation is more complicated while considering the bathymetry
‘pit’. Here incident waves are partially reflected from the right step, then the reflected part is
partially reflected from the left step and goes toward the right boundary, and so on. As a result,
in addition to waves directly arriving from the control boundary, measurements within section C
contain secondary (tertiary, etc.) signals originated within section B. These waves enter section C
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logl J(k)/J(0), Q(KMQ(0), G(k}G(0) ]
IN

log{ J(k)J(0), Q(k}(0) ]

number of iterations (k)

(a) Convergence history with an insignificant ini-
tial ‘shock’ for different values of the wave-length.

0 12
number of iterations (k)

(b) Convergence history with a strong initial

‘shock’: without regularization—lines 1b, 2b; reg-

ularized solution—lines 1c, 2c.

Figure 3.

log J(k)/J(0)

10 15
number of iterations (k)
(a) Open right boundary: both u(z1,y1,t) and
h(x1,t) are assimilated—line 1; only u(z1,y1,t) is
assimilated—line 2; only h(z1,t) is assimilated—

log J(k)/AJ(0)
b I L

4

5}

0 10 2

number of iterations (k)
(b) No-flow right boundary: both u(z1,¥1,t)
and h(z1,t) are assimilated—line 1; corre-
sponding G(k)/G(0)—line 4; only u(zx1,y1,t) is

assimilated—line 2; only h(zi,t) is assimilated—
line 3.
Figure 4. Convergence history J(k)/J(0).

line 3.

along the incoming characteristics. Therefore, we still have the progressive wave here, but the
assimilation algorithm has to filter the incident signal out of the mix. The assimilation example
for this case is given in Figure 4.

In section A for the bathymetry ‘step’ and in sections A and B for the ‘pit’ we observe a
combination of progressive and standing waves (it is worth underlining that reflections always
occur if |%£I- # 0|. If sensors are located in these areas, the assimilation problem becomes more
complicated. The situation is different because information propagates in both directions, i.e.,
as from the control boundary to the sensors, so from the opposite side. Nevertheless, if the right
boundary is open, the wave regime here is dominated by a progressive wave. The surface elevation
for the bathymetry ‘step’ with the open right boundary can be seen in Figure 5. When the no-flow
right boundary is used, we observe standing waves throughout the channel; see Figure 6. This is
the least favorable case for the data assimilation via boundary control. Now the information is
redistributed over the spatial domain and some sensors may turn out to be located in the areas
of the low informational content. For example, the elevation sensors could be located in the wave
nodes shown by dashed lines in Figure 6, where the surface is almost motionless. Obviously, such
measurements carry very little dynamic information that raises the issue of solvability.
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Figure 5. The surface elevation: open right boundary and bathymetry ‘pit’ in Fig-
ure 2a.
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time,s
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Figure 6. The surface elevation: no-flow right boundary and bathymetry ‘pit’ in
Figure 2b.

In order to generate the control function Vj(t) we use the expression as follows:
ZA wt
Vl(t) = T (1 — COS (m)) s (37)

where A[m/s] is the amplitude and P[s] is the wave period. Equation (37) defines a ‘lifted’
sinusoid which generates simultaneously the two phenomena: a periodic wave and a rise of the
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mean flow level. That produces a nonzero mean flow and causes vertical eddies to develop in the
vicinity of steps. We introduce also two additional notations to describe results. The first one
denotes the norm of the gradient G* := ||VJ¥(t)||1,(0,7), and the second one the norm of the
estimation error Q¥ := ||6V;(2)]| L»(0,7—sT), Where 6T is the length of a ‘blind’ spot. This is a
time interval required for a perturbation from the nearest sensor to reach the control boundary.
We will consider relative values J*/J° G*/G°, and Q*/Q° presented in the logarithmic scale.
The summary of numerical experiments is given in Table 1.

Table 1. Summary of numerical experiments.

Name| Assimil. Lines Related Lines Sensors Bathymetry/BC Parameters:
Result Forward Location atz=1L T[s], A[m/s], P[s]
Solution
El.1 |Figure 3a|1la, 2a, 3a | Figure 7a |1, 2, 3,4 hq, @1; step/open 820 1.0 248
Figure 3b|1la, 2a 1 = 2250 m,
Figure 7b|2 y1—mid-depth
E1.2 |Figure 3a|1b, 2b, 3b as E1.1 step/open 82011.0 | 124
El1.3 |Figure 3a|lc, 2¢c, 3c as E1.1 step/open 820|1.0 62
E2.1 |Figure 3b|1b, 2b Figure 7a |1, 2, 3,4|as E1.1 step/open 690 1.0 248
Figure 7b|4
E2.2 |Figure 3b|1c, 2¢ Figure 7a |1, 2, 3,4|as E1.1 step/open 690(1.0 248
Figure 7b|3
E3 Figure 8 |1, 3,4 Figure 7a |1, 2, 3,4]as E1.1 step/open 690(1.0 248
E4.1 |Figure 4a1, 2 Figure 9a |1, 2, 3, 4|hq, @1; pit/open 720|0.5 60
Figure 4b|1, 2 Figure 5 |h(z,t) |z1 =3900m,
y1—mid-depth
E4.2 |Figure 4a |3 Figure 9a |1, 2, 3,4 hy as E4.1 pit/open 72010.5 60
Figure 4b|3 Figure 5 |h(z,t)
E4.3 |Figure 4a|4 Figure 9a |1, 2, 3, 4|4, as E4.1 pit/open 720]0.5 60
Figure 4b|4 Figure 5 |h(z,t)
E5.1 |Figure 101, 2 Figure 9b |1, 2 Ry, @1 as E4.1 pit/no-flow 720]0.5 60
Figure 112 Figure 6 |h(z,t)
E5.2 |Figure 103 Figure 9b |1 hy as E4.1 pit/no-flow 720]0.5 60
Figure 11|3 Figure 6 |h(z,t)
E5.3 |Figure 10|4 Figure 9b |2 17 as E4.1 pit/no-flow 720(0.5 60
Figure 11 |4 Figure 6 |h(z,t)
E5.4 |Figure 10|5 Figure 9b |3 ha, G2; pit/no-flow 720]0.5 60
Figure 6 |h(z,t) |z1 =3900m,
z2 = 4270 m,
y2—mid-depth
E5.5 |Figure 106 Figure 9b |4 hi, ho; pit/no-flow 720{0.5 60
Figure 6 |h(z,t) |z1=3900m
zo = 4640 m
E6.1 |Figure 12| 1a, 2a, 3a | Figure 13a|1, 2, 3, 4|41; pit/open 3600)0.75| 248
Figure 5 z1 = 3900 m,
y1—the bed node
E6.2 |Figure 12| 1b, 2b, 3b|Figure 13b|1, 2, 3 51, u1; pit/open 3600/0.75( 248
Figure 5 1 = 1800 m,
y1—the surface node
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(a) Only u(z1,y1,t) is assimilated.
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G(k)/G(0)—line 2; Q(k)/Q(0)—line 3.

Figure 10. Convergence history (no-flow right boundary).
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Figure 11. Control problem solution (no-flow right boundary). The control func-
tion Vi (t)—line 1; final estimation error—line 2.
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5.2. A Need of Regularization

It is well known that inverse problems are generally ill-posed. Thus, the solution method must
be robust in respect to errors. One of these errors is related to the initial ‘shock’ in the adjoint
solution, which results from the discontinuity of the residuals r, and 7, at t = T. In order to
illustrate this effect we consider numerical examples using the bathymetry ‘step’ and the open
right boundary. We assume that the velocity and the elevation sensors are located in the middle
of section B, where we observe a clean progressive wave. Let us take a look at Figure 7a. Here
line 1 shows the control function V;(t), line 2 the depth-averaged inlet velocity @(0,t), line 3
the velocity data record 4(z1,t), and line 4 the elevation data record fz(zl, t). First we choose T
such that iz(-,T) and 4(-,T) are small and, therefore, the residuals r(T) = h°(-,T) — iz(-,T)
and 7(T) = ¥°(-,T) — 4(-,T) are small too. We solve the control problem assimilating these
data. The results are presented in Figure 3a. Here, the three cases referred to as ’a’, ‘b’, and ‘¢’
correspond to different values of the wave period P in (37): ‘a’—P = Py; ‘b—P = Py/2; ‘c’'—
P = P,/4. Convergence history results are presented as follows: line 1 shows log(J*/J°), line 2
log(Q*/Q°), and line 8 log(G*/GP). As we mentioned before, the case when we can observe a
clean primary progressive wave is the most favorable. Thus, the iterative process has converged
to a minization threshold just in few steps. We can note, however, that the convergence depth
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depends on the wave-length: the shorter are waves, the larger is the minimization threshold.
This effect is apparently related to the approximate treatment of open boundaries. Indeed, we
construct control invariants for the barotropic fsNSE using characteristics of SWE. These two
models are consistent when describing a hydrostatic flow, i.e., in the long-wave case. We should
mention that the solution corresponding to the shortest wave period in Case ‘¢’ is not yet a
short wave. However, the solution errors, particularly generated by the ‘shock’, contain high-
frequency components, which are short waves for the model. These components do not entirely
leave the computational domain via ‘approximate’ open boundaries and could survive long if not
dissipated by the viscous terms. In order to magnify this effect we choose the observation window
shorter than in previous examples (T" =~ 690s), as it is shown by vertical line in Figure 7a. We
note that A(-,T) and 4(-,T) are now close to their maximum values. The initial discontinuity
in source terms 7, and 7, generates oscillations in the adjoint solution, which should normally
pass through the computational domain and vanish. In the case of an approximate boundary
treatment these oscillations are partially reflected back creating new errors. In Figure 3b we can
see the convergence history for P = Py, which is given in lines 1b, 2b. The corresponding result
from Figure 3a is presented here for comparison in lines 1a, 2a. The difference in the minimization
depth achieved in these two cases is more than obvious. Let us now look at Figure 7b. Here
line 1 shows the control function Vj(t), line 2 the estimation error in the case without initial
‘shock’, and line 4 the estimation error in the case of a strong initial ‘shock’. Next, we apply
regularization as described in Section 4 (o = 1 in (36)). The convergence history is presented in
lines 1c, 2¢ in Figure 3b, while the corresponding final estimation error is in line 8 in Figure 7b.
It can be seen that the latest result is essentially better: regularization allowed oscillations to be
suppressed and achieve more than an order of magnitude smaller values of J and Q. On the other
hand it slowed the convergence rate. (Remark. Although the regularization of that type may
slow the convergence rate it can be seen only in those simple cases as above, when the process
converges in few iterations. In more complicated cases we may need more iterations to solve the
control problem anyway and this ‘side’ effect of regularization should not be noticeable).

Another source of errors is, of course, a measurement error. This is not necessarily an instru-
mental error. For example, in addition to long waves, which are of main concern in applications
related to the oceanography, the real case could contain short waves induced by a random wind
stress. If these waves cannot be presented at a certain level of discretization, they should be
regarded as the measurement error, since sensors measure real physical values. The error of that
type is sometimes called the ‘representation’ error.

In the next numerical experiment we consider the same test example as in Figure 7a, with the
observation window T = 690s. The records @(z;,t) (in line 8) and h(zy,t) (in line 4) are now
contaminated by Gaussian noise with mean values o, = 0.3ms~! and o5, = 1 m correspondingly.
The noise is essentially comparable to the useful signal. The results of solving the control prob-
lem are presented in Figure 8. Here, line 1 shows Vj(t), line 2—the estimation error without
regularization, and line 3—the estimation error when using regularization. In the last case the
iterative process has been stopped by the residual rule [26] after the third iteration. We note that
the estimation error is now much smaller and the solution does not exhibit that strong oscillatory
behavior. In conclusion, numerical examples show the need of regularization to build a robust
data assimilation algorithm. The efficiency of the regularization method suggested in Section 4
is also demonstrated. We use regularization in all numerical examples that will follow.

5.3. A Need for Co-Located Measurements

In Section 5.1 we described different wave patterns. Then, in Section 5.2 we considered the
simplest assimilation case, where the clean primal progressive wave was observed. A more com-
plicated wave pattern arises when we chose the bathymetry ‘pit’. We assume that sensors are
located in section C at z = z; as shown in Figure 5. In this case observations contain both a
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primal signal delivered directly from the control boundary and signals resulted from reflections,
which occur in the cavity in section B. However, all perturbations in section C propagate from
the left to the right, i.e., belong to the only one characteristic family. To demonstrate this effect
more clearly we choose the wave-length that is comparable to the size of the cavity. The results
of the forward modeling are presented in Figure 9a. Here line 1 shows the control function V;(t),
line 2—the depth-averaged velocity @(0,t), line 3—the velocity record 4(z1,t), and line 4—the
elevation record A(zy,t). The surface pattern related to this case is shown in Figure 5. Looking
at the records 4(z;,t) and i(h;,t) we note that they are apparently complex, although Vi(t)
contains only one harmonic component. The results of solving the control problem are presented
in Figure 4a. Here line 1 shows the convergence history when both 4 and h are assimilated,
line 2—when only 4 is assimilated, and line S—when only h. We can see that the iterative pro-
cess converges almost equally in all these cases. This example illustrates an important result on
the solvability of the open boundary control problem, which can be formulated as follows: if the
sensors are located in a progressive wave area, then measurements of the elevation or the velocity
profile performed at a single location provide necessary and sufficient information to identify the
boundary control V;(t).

Next we consider the no-flow right boundary, which produces standing waves throughout the
channel. As we mentioned before, information is now redistributed over the spatial domain. Thus,
the success of solving the control problem may depend on the information content available
for sensors. We consider several sensor configurations in order to show that only co-located
measurements of the elevation and the velocity do provide sufficient information to identify
the boundary control. Results of forward modeling are presented in Figure 9b. The control
function V;(t) is given by line 1 in Figure 9a, and the corresponding surface elevation is given in
Figure 6. We also show here locations of sensors z;. The data records are presented in Figure 9b.
Here line 1 shows h(z,), line 2—i(z,), line 3—h(x,), and line 4—i(x3). The results of solving
the control problem are presented in Figure 4b. Here line 1 shows the convergence history when
both @(z1,t) and h(z;,t) are assimilated, line 2—when only 4(xy,t) is assimilated, and line 3—
when only ﬁ(xl,t). We intentionally put sensors in the surface elevation node, where the real
dynamics of V;(t) cannot be directly observed either in h(zy,t), or in @(z,t) (apart from a
short time interval at the beginning). If we use both, this allows us to minimize the objective
functional deeply enough and obtain a good quality solution. On the contrary, if we assimilate
4(zq,t) or fz(xl, t), the iterative process stops converging at quite a shallow minimization level. To
understand the reason it is worth looking at the behavior of G(k)/G(0) compared to the behavior
of J(k)/J(0) in Figure 4b. In the first case (@ and h) the behavior of the relative gradient norm
G(k)/G(0) in line 4 is nearly the same as behavior of J(k)/J(0) in line 1. The two lines start
to diverge only when approaching the minimization threshold. The same sort of behavior can
be seen, for example, in Figure 3a under different circumstances. For the second case (4 or it)
results are presented in Figure 10. Here line 1 shows J(k)/J(0), line 2—G(k)/G(0), and line 3—
Q(k)/Q(0). The left part corresponds to line 2 and the right one to line 8 in Figure 4b. This
figure shows that G(k)/G(0) quickly becomes much smaller than J(k)/J(0), i.e., the residuals
of a certain level produce incomparably smaller gradient. This apparently indicates that the
information content could be assimilated very slowly or it is already exhausted. In addition we
should look at the final estimation error presented in Figure 11 correspondingly. Here line 1
shows the control function V;(t), and line 2—the estimation error. We note that the estimation
error is a function containing essentially the same as a control function frequency components or
lower, i.e., it is obviously a systematic assimilation error.

In the next example we assimilate observations from the elevation and the velocity sensors,
but located at two different positions: A(z;,t) and 4(zs,t). We note that z3 is located between
the two elevation nodes z; and z5. Since there is a phase shift m/2 between h and u, z3 is the
velocity wave node. The convergence history for this case is shown in Figure 12, line 2.
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Here line 1 shows the same convergence history as in Figure 4b. The example shows the im-
portance of the sensor location: the complementary velocity data has to be measured in the same
point as the elevation data. In addition we assimilate measurements from two elevation sensors
located at z; and x5 correspondingly. The convergence history is presented in Figure 13, line 3.
Those examples show that the convergence is warranted only if using co-located measurements
of u and h. In practice we should interpret the term ‘co-located’ considering the wave-length
scale, of course. Thus, another result on the solvability of the open boundary control problem
can be formulated as follows: if the sensors are located in the area where standing waves oc-
cur, then co-located measurements of the elevation and the velocity profile are needed to provide
necessary (but maybe not yet sufficient) information to identify the boundary control Vi(t).

5.4. A Benefit of the Cross-Sectional Resolution

There are several reasons why we may need the cross-sectional resolution and, therefore, should
use models other than SWE. In the 2D case the important reason could be that u(z, 2,t) is not
uniform in depth (v(z, z,t) can be other than the linear function of z). When using SWE, we
should measure the discharge or the depth-averaged velocity. In reality we may have a single
velocity sensor located at a certain depth. For example, one could measure the Lagrangian data,
i.e., the dynamic trajectory of a float that gives velocity estimation at the surface. The surface
value may differ significantly from the depth-averaged value, of course. Thus, if the measured
local velocity is interpreted as a depth-averaged velocity by the SWE model, then the solution
of the control problem could contain an essential error. We design numerical experiments to
show that when using fsNSE, the control problem can be correctly solved based on local velocity
measurements. For tests we use the bathymetry ‘pit’ with the open right boundary. In order to
generate eddies we use the longer observation window T = 1h, and the control function V;(t) as
shown in Figure 13a, line 1. Then we consider the two cases.

In the first case (referred to as ‘a’) we use only data from the velocity sensor located at z; (see
Figure 5) in the grid node that is the nearest to the channel bed. The velocity data record % is
given in Figure 13a line 2. For comparison, the depth-averaged value of the velocity @ is shown
here by line 3. In the second case (referred to as ‘b’) we use the velocity sensor located at z4 in
the grid node that is the nearest to the surface. The velocity record is given in line 2, Figure 13b,
and the data record of a co-located elevation sensor is given here in line 1. The depth-averaged
velocity @ is shown in line 3 for comparison. In both cases we should pay attention to the
difference between the local velocity and the depth-averaged velocity values. The convergence
history is presented in Figure 14. Here for the two cases ‘a’ and ‘b’ as described above line 1
shows J(k)/J(0), line 2—Q(k)/Q(0), and line 3—G(k)/G(0). The first example shows that we
were able to find the boundary control even though the sensor was located within the eddy. The
process required many iterations to be completed, but had been steadily converging and converged
to a deep minimization threshold. In the second case we observe much faster convergence because
of using the co-located elevation data.

6. CONCLUSION AND DISCUSSION

In this paper we present the data-assimilation algorithm, which allows assimilation of the veloc-
ity and surface elevation measurements into the unsteady flow solution governed by the barotropic
fsNSE via open boundary control. We minimize the objective functional using the adjoint sen-
sitivities obtained by solving an inconsistent (discretized continuous) adjoint model described in
detail in [16]. In order to derive the adjoint equations we use a mapping in the vertical to shift
the problem into a fixed domain; then the variation in the surface variable h is calculated from
the Jacobian matrix of the mapping. We should mention that for data assimilation in the ocean
and the atmosphere it is commonly accepted using consistent adjoint models obtained by means
of automatic differentiation (AD). Because the fsNSE cannot be differentiated in the usual way,
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the application of AD to the corresponding forward fsNSE solver might not be straightforward.
The exact consistent adjoint model could be obtained when applying AD to the TLM solver
implementing (15)-(20). Users of models formulated in the surface-terrain following coordinates
may apply AD directly.

Although both the forward model and the adjoint model developed are nonhydrostatic, open
boundaries are hydrostatic, since we build the control invariants based on the characteristics of
SWE. We recognize that this approach is approximate. On the other hand, there are practical
considerations which may justify it, unless we possess an exact theory of open boundaries for
fsNSE (and that looks like a very difficult task). The nonhydrostatic effects are usually associ-
ated with the short waves or sharp bed changes (shelf edge). In practice we have some freedom
to draw the open boundary. Thus, it has to pass those areas where the bed gradient is moderate.
Short waves are not of main concern in the oceanography anyway. Since the open boundary could
be far enough from sensors, the short waves originated from it may have been dissipated due to
turbulence or dispersed by short waves of a local origin. Thus, the flow could be controlled from
the boundary essentially by long waves. We have seen in Section 5.2 that the nonhydrostatic
inconsistency shows itself on the ‘error generated’ short waves arising in the course of the assim-
ilation. As an example we considered the ‘initial shock’ in the adjoint solution. We also have
demonstrated how the problem of the ‘error generated’ short waves can be successfully treated by
using regularization. Another important consideration is that the control problem is quite robust
to the boundary treatment errors. The boundary control of fsNSE by SWE-based characteristic
invariants can be regarded as a sort of a weak coupling between the two models. For example, we
may consider the output of a global SWE model as background values for the fsNSE limited area
model. Since we do not claim the exact coincidence of the output and input values, the local area
model determines the acceptable input values within the control loop. After that the convergence
rate usually noticeably slows down and the iterative process must be stopped. Possibly, even if
there are no data to assimilate, nonexact boundary conditions at the open boundary have to be
applied in a weak sense. This idea is actually very close to the idea of coupling between the
multiphysics domains via ‘virtual’ control described in [27].

In Section 4 we introduced a regularization method, which has been used in numerical tests
described in Section 5. The idea of this method is to extract a certain smooth part of the gradient
at each iteration step and use it to build the direction of descent. The key point is how to perform
this extraction. We use the CG method working in the Sobolev’s space W3 to approximate the
gradient starting from its trivial initial value. The advantage of this approach is that it can
provide an arbitrarily dense family of approximations to the given function (by choosing the order
of Wa-space and the parameter o afterwards) compared to the methods based on expansion in
a Fourier series, for example. The fact that we process only gradients could be a weak point of
this regularization method if working within the CG minimization loop. However, as we have
observed in numerous numerical tests, this fits perfectly well with the limited-memory LBFGS.
A detailed discussion on this subject is beyond the scope of this paper. It is worth noting that
this regularization method avoids the practical problem of choosing the regularization parameter.
The order of Sobolev’s space can be chosen once and then serves well for a wide class of controls.
We have found that the parameter o in (36) can be simply taken equal to one.

In Section 5.2 we have considered numerical tests in order to identify a set of incomplete
measurements sufficient for solving the open boundary control problem. The main conclusion
was that to warrant the solvability we need co-located measurements of the velocity profile and
the surface elevation, at least in the sense of the wave-length scale. In reality, the flow is always a
mix of progressive and standing waves. Progressive waves can be resolved based on the velocity or
the elevation observations collected at any point within the flow (for the 2D cross-sectional model,
of course), assimilation results for standing waves depend on the sensor locations. When the set
of sensors consists of a co-located pair and a single velocity or elevation sensor, the convergence
is apparently dominated by the pair. The additional single sensor, if located in the wave node,
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may play even a negative part reducing perceptibly the convergence rate. This is an important
point that requires us to revise a ‘narrow’ outlook that more information always produces better
results from an assimilation.
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