~

MONTHLY WEATHER REVIEW

Experiments Using NASA General Circulation Models

WEIYU YANG

Supercomputer Computations Research Institute, The Florida State University, Tallahassee, Florida

I. MICHAEL NAVON

Department of Mathematics and Supercomputer Computations Research Institute,
The Florida State University, Tallahassee, Florida

PuiL1PPE COURTIER
Data Division, Research Department, ECMWF, United Kingdom
(Manuscript received 11 January 1995, in final form 22 September 1995)

ABSTRACT

An analysis is provided to show that Courtier’s et al. method for estimating the Hessian preconditioning is
not applicable to important categories of cases involving nonlinearity. An extension of the method to cases with
higher nonlinearity is proposed in the present paper by designing an algorithm that reduces errors in Hessian
estimation induced by lack of validity of the tangent linear approximation. The new preconditioning method
was numerically tested in the framework of variational data assimilation experiments using both the National
Aeronautics and Space Administration (NASA) semi-Lagrangian semi-implicit global shallow-water equations
model and the adiabatic version of the NASA/Data Assimilation Office (DAQ) Goddard Earth Observing
System Version 1 (GEOS-1) general circulation model. The authors’ results show that the new preconditioning
method speeds up convergence rate of minimization when applied to variational data assimilation cases char-
acterized by strong nonlinearity. :

Finally, the authors address issues related to computational cost of the new algorithm presented in this paper.
These include the optimal determination of the number of random realizations p necessary for Hessian estimation
methods. The authors tested a computationally efficient method that uses a coarser gridpoint model to estimate
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the Hessian for application to a fine-resolution mesh. The tests yielded encouraging results.

1. Introduction

The quality of weather forecasts is highly dependent
on the quality of the initial conditions (see e.g., Rabier
et al. 1994 for recent results). Good initial conditions
that can extend predictability limits may be obtained

from four-dimensional variational data assimilation

(4D Var) of meteorological observations. An impor-
tant feature for a computationally efficient implemen-
tation of 4D Var relates to attaining a fast convergence
rate during the early stages of the minimization process,
a factor that depends crucially on efficient precondi-
tioning. For example, in the current operational practice
at the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Courtier et al. 1994), the cost
of 24 h of data assimilation is equivalent to the cost of
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four days of model integration. With the introduction
of 3D Var, this cost could escalate to an equivalent cost
of six days of model integration. If 30 iterations of the
minimization algorithm are required for attaining a sat-
isfactory convergence in 4D Var, the CPU time re-
quired for a 24-h 4D Var is equivalent to the CPU time
of 100 days of model integration. Courtier et al. (1994)
introduced the incremental approach to reduce this cost
by an order of magnitude. Any economy arising from
a more efficient minimization can be translated into a
relaxation of the simplifying assumptions induced by
the incremental method.

The Hessian of the cost function can be used to esti-
mate uncertainty of any model output and can thus de-
termine aspects of the model that are poorly determined
by observations (Thacker 1989). Conversely, when some
aspects are poorly estimated, the Hessian is ill condi-
tioned. Convergence properties of the minimization pro-
cess in 4D Var are determined by the eigenvalue spectrum
of the Hessian, and convergence speed is related to the
Hessian condition number (the ratio between its maxi-
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mum and minimum eigenvalues ). Geometrically, the iso-
surfaces of the cost function consist of multidimensional
ellipsoids, and the condition number of the Hessian is the
ratio between the dominant (maximum and minimum)
axis length of this ellipsoid. The larger the condition num-
ber, the more the ellipsoid is stretched. An ill-conditioned
Hessian corresponds to the case of large distortion of the
ellipsoid.

When the Hessian is ill conditioned, the calculated
descent direction may be almost orthogonal to the op-
timal descent direction, resulting in an extremely slow
convergence rate. A way to speed up the convergence
and relax the ill conditioning of the Hessian is to intro-
duce a preconditioner so that the condition number of
the preconditioned Hessian is close to unity for fast
convergence of the minimization process. It is clear
geometrically that if isocontours of the cost function
are circular, the gradient will always point radially out-
ward from the minimum, and only one descent iteration
will be required to attain the minimum. In this case, the
Hessian is proportional to the identity matrix, and its
condition number is unity.

The convergence of conjugate-gradient-like methods
may be enhanced by preconditioning a symmetric ap-
proximation G of the Hessian. Such a preconditioner is
a symmetric, positive definite matrix P that is chosen
to make the eigenvalues of P~'G cluster around as few
distinct eigenvalues as possible. If G were to be posi-
tive definite, an ideal preconditioner would be G itself.
There is normally a compromise between using a good
approximation to G with the associated difficulties of
finding and storing its factorization and a poor approx-
imation where many conjugate-gradient iterations may
be required (Conn et al. 1992). For example, Courtier
et al. (1994) used for G a matrix of rank less than 100
in a pattern of size 0(10°).

Choosing a good preconditioner for a given problem
is considered an art. For the state of the art of precon-
ditioning methods, see Axelsson and Barker (1984),
Conn et al. (1992), Axelsson (1994), Oppe et al.
(1994), Ortega (1987), as well as the papers by Con-
cus et al. (1976), and Axelsson (1976, 1985).

To construct a good preconditioner, one should aim
at extracting as much information as possible from the
Hessian. Without second-order Hessian information,
one has to construct a preconditioner with empirical pa-
rameters. Li et al. (1994) and Zou and Holloway (1995)
used rough gradient scaling methods to speed up con-
vergence rate of the minimization processes. Zupanski
(1993a) introduced an empirical parameter to obtain a
preconditioning formula and demonstrated that an opti-
mal value of this parameter induced a faster convergence
rate. The basic difficulty discussed, but not solved, in
Zupanski’s paper is that the Hessian matrix, the best
preconditioner, is unknown since its calculation is pro-
hibitively expensive (see Wang et al. 1992, 1995).

Wang et al. (1992) used a second-order adjoint
model to obtain a Hessian/vector product or a column
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of the Hessian for a cost comparable with that of a
gradient computation. Gauthier (1992) studied the be-
havior of the covariance matrix of the gradient of a 4D
Var problem (Lorenz model) by considering the ob-
servations as random variables. Gauthier showed that
this matrix is related to the observational error covari-
ance matrix. Rabier and Courtier (1992) used this re-
sult to calculate error bars on the solution of their 4D
Var problem. Based on these results (Gauthier 1992;
Rabier and Courtier 1992), Courtier et al. (1994) in-
troduced a preconditioning method to estimate the Hes-
sian of linear systems. Since the tangent linear approx-
imation has a wide range of applicability when applied
to 3D or 4D Var with numerical weather prediction
(NWP) models (see Lacarra and Talagrand 1988; Vuk-
icevic 1991; Rabier and Courtier 1992; Li et al. 1993,
1994), one may at first conclude that Courtier’s method
may be applied in a straightforward manner in most
cases to obtain an accurate Hessian (since the tangent
linear approximation is within a valid range in a general
sense). In this paper, we present a detailed analysis that
shows that by applying Courtier’s method directly to a
nonlinear system, even when the tangent linear ap-
proximation is within a valid range in a general sense,
the estimated Hessian will be largely erroneous since
the Hessian, which is not at the minimum state, is a
function of both control variables and observations.
Thus, we propose here a new algorithm to extend Cour-
tier’s method to highly nonlinear variational data as-
similation problems related to highly nonlinear physics
or to quality control problems (Lorenc and Hammond
1988; Ingleby and Lorenc 1993). Results of numerical
preconditioning experiments with the National Aero-
nautics and Space Administration (NASA) semi-La-
grangian semi-implicit (SLSI) global shallow-water
(SW) equations model and the adiabatic version of
NASA Goddard Earth Observing System-1 (GEOS-1)
C-grid general circulation model (GCM) show our new
algorithm to perform well in practice.

The essential difference between the proposed Hessian
preconditioning method and empirical parameter precon-
ditioning methods is that we directly use information on
the Hessian (the best preconditioner ), such as its diagonal
elements, in order to build the preconditioner, thus allow-
ing it to be directly applied to any variational data assim-
ilation problem. On the contrary, when empirical param-
eters are used as preconditioners, they are usually ob-
tained by some trial and error processes.

In the present paper, we first developed the tangent
linear model (tangent linear model) and adjoint of the
adiabatic version of the NASA GEOS-1 C-grid GCM
(Yang and Navon 1995a). The nonlinear forward model
of the adiabatic version of NASA GEOS-1 C-grid GCM
and its adjoint were used to carry out a series of idealized
4D Var preconditioning experiments in order to test the
accuracy of the estimated Hessian, the impact of a pre-
conditioner consisting of the diagonal elements of the es-
timated Hessian, as well as the performance of the new
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proposed Hessian estimation algorithm. All verification
checks, such as adjoint check, gradient check, and anal-
yses of validity of tangent linear approximation (for in-
finitesimal perturbations) were satisfied up to machine
precision (Yang and Navon 1995a).

The plan of the paper is as follows. In section 2, we
provide a brief description of the adiabatic version of
NASA GEOS-1 C-grid GCM, its tangent linear and
adjoint models, as well as various verification checks
of their correctness. In section 3, we first provide a brief
description of original Courtier’s estimated Hessian
preconditioning method (Courtier et al. 1994). We
then discuss issues related to variational assimilation of
real observations and analyze the impact of the validity
of the tangent linear approximation in Courtier’s Hes-
sian preconditioning method on the accuracy of the es-
timated Hessian, both theoretically and with numerical
implementations. In section 4, a new Hessian estima-
tion algorithm extending Courtier’s Hessian precondi-
tioning method to nonlinear cases is proposed, while in
section 5 we provide the numerical results that confirm
our analysis. In section 6, we discuss the impact of the
number of random realizations used for estimating the
Hessian on the accuracy of the Hessian estimate. In
section 7, we discuss issues related to the computa-
tional cost of our new Hessian estimate algorithm and
provide numerical results related to computationally ef-
ficient implementations. Finally, summary and conclu-
sions are presented in section 8.

2. Tangent linear model and the adjoint of the
NASA GEOS-1 C-grid GCM
a. The NASA GEOS-1 C-grid GCM

In NASA GEOS-1 C-grid GCM, a o vertical coor-
dinate is defined by

where © = p, — pr, p, is the surface pressure, and pr
is a constant prescribed pressure at the top of the model
atmosphere. In the current version pr = 0.

The momentum equations are written in ‘‘vector in-
variant’’ form, as in Sadourny (1975) and Arakawa
and Lamb (1981), to facilitate derivation of an energy-
and enstrophy-conserving differencing scheme. The
thermodynamic equation is written in flux form to fa-
cilitate derivation of a 6-conserving differencing
scheme. The equations involving computation of ten-
dencies for other advected variables such as water va-
por and ozone are also written in flux form. An Asselin
(1972) time filter and a Shapiro filter are used in the
dynamic core of NASA GEOS-1 C-grid GCM.

The earliest predecessor of the GEOS GCM was de-
veloped in 1989 based on ‘‘plug compatible’” concepts
in Kalnay et al. (1989) and improved by Fox-Rabi-
novitz et al. (1991) and Helfand et al. (1991). For fur-
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ther details concerning this GCM, we refer to Suarez
and Takacs (1994 ) and Takacs et al. (1994).

b. Development of the tangent linear model and its
adjoint

To derive the 4D Var system based on the adiabatic
version of NASA GEOS-1 C-grid GCM, we developed
the tangent linear model and adjoint of the GEOS-1
GCM. For details related to model derivations, coding
methods, as well as the methods and results of the ver-
ification of the correctness of these two models, see
Yang and Navon (1995a). Comparing with the anal-
ysis applied to the adiabatic version of NASA Goddard
Laboratory for Atmospheres (GLA) SLSI GCM (Li et
al. 1994), the tangent linear model of the adiabatic ver-
sion of NASA GEOS-1 C-grid GCM appears to display
a better linearity property than the tangent linear model
of NASA/GLA SLSI GCM.

The adjoint model satisfied a verification check up
to 13 digits of accuracy using Eq. (2.18) of Navon et
al. (1992). A gradient check was then performed to
assess the accuracy of the discrete adjoint model. All
verifications of the correctness of the tangent linear
model and adjoint model were satisfied, thus indicating
that the model and its adjoint can be safely used to
perform 4D variational data assimilation experiments.

3. Issues related to use of diagonal of the estimated
Hessian as preconditioner in 3D or 4D Var
experiments

a. Courtier’s method for estimating the Hessian
matrix

Courtier et al. (1994) introduced a preconditioning
method based on an estimate of the Hessian. They as-
sumed a cost function that includes a background term
for a generic problem. Based on the fact that the Hes-
sian matrix is independent of the observations in a lin-
ear system, they introduced a bogus observation related
to the background term to find the minimum of the cost
function. Since in this paper we focus on the impact of
the validity of the tangent linear approximation on the
accuracy of the Hessian estimate in a nonlinear or weak
nonlinear system, we will, for the sake of simplicity,
discuss the minimization problem without involving
the background term. Then, the Courtier et al. (1994)
method can be applied to our problem as follows.

The cost function measuring misfit between the fore-
cast model solution and the available observations dis-
tributed in space and time may be expressed as

J[X(t)] =% 2 {BIX(1)] — X™(1)}"
r=0

X W(r,) {B[X(#)] — X**(1,)}, (3.1)

where B is the observation operator; X (#,) is the vector
of model control variables, which consists of the initial
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conditions in our experiments, at time ¢ = t,; X°*(#,)
is the vector of observational data at time ¢t = ¢,; and
W (z,) is the inverse of the observation error covariance
matrix. For the sake of simplicity, we choose R = 1,
which yields

J[X(10)] = 5 {BIX(10)] = X*(1)}"
X W(to) (BIX(10)] ~ X" (t0)}
+ 2 (B{FIX(19)]} = X™ (1))

X W(tn)(B{F[X(2)]} — X**(ty)),
(3.2)
where

N
F=]]F. (3.3)
n=1
is the operator of the model integration from time
t =1tytot = ty. If B and/or BF are linear operators,
the value of the Hessian J” will be independent of the
observation values.

At the minimum X,;,, the gradient V J vanishes. Let
us introduce random variables 7(z,) and n(ty), whose
expectations are zero and whose covariances are the
diagonal elements of W™'(#,) and W~'(ty), respec-
tively, to the observations

X5%(t0) = X™(t0) + 1(%o) (3.4a)

X% (ty) = X (ty) + 1(ty). (3.4b)

Then VJ (at X, ) is a random variable, and we obtain
(VIVIT) = J”, (3.5)

where the angle brackets stand for the mathematical
expectation and J” is the Hessian matrix.

For each realization i of X (¢,) and X (zy), we
can calculate VJ' (at X;,) and considering p such re-
alizations [it follows a Wishart law, see Aitchison and
Dunsmore (1975) and Wishart (1952), which is the
generalization to the multidimensional case of the x?
law], we obtain the following approximation of Hes-
sian matrix (see also Rabier and Courtier 1992)

p
H=J"=J; = 1 > VIVJT,

i=1
Analogous methods in the deterministic domain
aimed at building approximation of Hessian have been
used in some minimization algorithms—for example,
all quasi-Newton methods of the BFGS (Broyden,
Fletcher, Goldfarb, and Shanno) and DFP (Davidon,
Fletcher, and Powell) variety. Assuming the Hessian is
a constant matrix (which corresponds to the cost func-
tion being quadratic), quasi-Newton methods use sym-
metric rank 1 or rank 2 updates (of the form uv™) at
every iteration using information gathered as the de-

(3.6)
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scent process progresses to update the approximation
of the Hessian or the inverse of the Hessian. This pro-
cess may be called ‘‘earn while you learn.”” As the
number of iterations increases, the updated Hessian
matrix becomes more accurate, and for quadratic func-
tions, one can show that the accurate Hessian is ob-
tained in n steps. [See the discussion of the finite-step
convergence in Luenberger (1984 ).] The reason for the
success of Courtier’s (1994 ) method resides in the fact
that, mathematically, the method translates spread ei-
genvalues consecutively into the vicinity K, of the unity
point, group by group, using low-rank transformations
for constructing high quality preconditioner (Khar-
cenko and Yeremin 1995; Eirola and Nevanlinna
1989). The parameter K| is a measure of the spread of
a cluster of eigenvalues in the vicinity of the unity
point, resulting as an effect of the preconditioning and
yielding a sizable reduction in the condition number of
the Hessian matrix.

b. Extracting information from the estimated Hessian
to build a preconditioner

If we were to have the whole accurate Hessian matrix
at our disposal, the new preconditioned Hessian matrix
will be the identity matrix |, causing the minimization
process to attain its minimum in one iteration. How-
ever, this is an unattainable goal in 4D Var with real-
istic NWP models due to two major limitations on
available computer resources. First, the rank of J;, is,
at most, the number of realizations p, which implies
that we cannot directly use J, as a preconditioner but
we can extract useful information from J; in this case
it is diagonal. The second is that, due to obvious limi-
tations on computer storage resources, we cannot store
the whole Hessian matrix to carry out 4D Var experi-
ments with the NASA GEOS-1 GCM. Thus, in our
preconditioning experiments, we focus only on the di-
agonal elements of the estimated Hessian matrix J, to
improve relative scaling and preconditioning of differ-
ent variables following Thépaut and Moll (1990) and
Courtier et al. (1994).

Because using the diagonal elements of the real Hes-
sian as the preconditioning matrix will make all diag-
onal elements of the preconditioned Hessian equal to
unity, one may assume that the condition number of the
preconditioned Hessian will be greatly improved. This
is especially true in the case when the Hessian matrix
is strongly diagonally dominant. Besides, Forsythe and
Strauss (1955) have shown that using the diagonal of
the Hessian is optimal among all diagonal precondi-
tioning methods.

c. Observations

We assume that the cost function measuring misfit be-
tween forecast model solution and available observations
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is of the form given by Eq. (3.2). Introducing a bogus
observation data X3™(ty) = B(F{B*[X3(f0)1}),
where Xg‘;f(to) is the optimal value of the observations
at initial time, which minimizes inconsistency between
model dynamics and observations, B* is an operator
from observation space to that of model variables X,
and that assumes the form of the generalized inverse of
the operator B satisfying the Moore—Penrose condi-
tions for a unique pseudoinverse [for details on pseu-
doinverse and generalized inverse operators see Na-
shed (1976); Lawson and Hanson (1974); Golub and
Van Loan (1989); Ben-Israel and Greville (1974)].
Then the term (B { F[X(#0)]} — X°*(#y)) in (3.2) may
be written as

B {F[X(#)1} — X**(tw)

= (B{F[X(20)]} — X§™(ty)) + R, (3.7)
where
Robs = XZbS(tN) _ XObS(tN)
= B(F{B*[XG(t0)1}) — X (ty). (3.8)

The bogus observation data X5 (zy) resembles the so-
called model-generated observations. It corresponds to
the assumption that both model and observations are
perfect and ensures that model outputs are absolutely
consistent with the observations. ‘

The second term R°* on the rhs of Eq. (3.7) is a
term representing the inconsistency between model and
observations. It originates from two sources, namely, it
is either due to deficiencies in dynamics or physics of
forecast model and/or is due to inadequate observation
data. During the 4D Var minimization process, if both
observational data and model are being kept invariant,
R°* will be invariant; that is, the minimization process
will minimize only that part of the cost function related
to the first term on the rhs of Eq. (3.7). Thus, if R°™
is large, it would be difficult to reduce the cost function
to lower values. To reduce the R term, if it originates
in deficiencies of dynamics or physics of forecast
model, one should strive to improve the model and/or
to use the variational continuous assimilation technique
proposed by Derber (1989) to correct model solutions
throughout the assimilation interval. If the problem is
due to inadequate data, additional and more accurate
data are required, and sometimes bogus data based on
a priori knowledge may be used to improve the quality
of observational data, as discussed by Thacker (1989).

Since the Hessian estimation method is related to the
minimum state X.;,, we need to find this minimum
state. Clearly, if R°* = 0, the minimum state is given
by Xumin(to) = B*[X°™(#,)] and the cost function will
. be zero at this minimum state. However, if R®® = 0,
since both two terms of the rhs of Eq. (3.2) are quad-
ratic, the minimum of the cost function cannot be zero.
From

VI Xuin(20)] = 0 (3.9)
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and noting that W are symmetric matrices, we find that
the minimum state of the cost function (3.2) is given by

VI X (10)]
= B[ Xuin () IW (20) { B Xmin(£6)] — X*™(20) }
+ (BF)" " [Xnin (10) IW (t)(B { F[Xpmin(0)1)
— XM(ty)) =0, (3.10)

where the prime denotes the first-order derivative. For
a linear system whose Hessian is invertible, Eq. (3.10)
may be written as

Xunin(t0) = HT'[B'TW(£6)X***(20)

+ (BF)' TW(,)X™(#y)], (3.11)

where H™! is the inverse of the Hessian H. To obtain
the minimum state X,;,(¢;) when R°™ # 0, one should
use an iterative method. Moreover, in a nonlinear sys-
tem, Eq. (3.9) does not constitute a sufficient condition
for finding the global minimum.

Thus, we conclude that R°™ + 0 will render our anal-
ysis of Hessian preconditioning more complicated. In
this paper, we use model-generated data as ‘‘observa-
tions’” for all the numerical experiments. Issues related
to use of real observations will be analyzed in a forth-
coming paper.

d. Validity of the tangent linear approximation

To apply Courtier’s method, we must pay attention
to two issues. The first issue is that this method is based
on the assumption that B and (BF) are linear operators,
which brings us to consider the issue of what happens
if B and (BF) are either nonlinear or weakly nonlinear
operators. As the tangent linear approximation has a
wide range of applicability when applied to 3D or 4D
Var with numerical weather prediction models (La-
carra and Talagrand 1988; Vukicevic 1991; Rabier and
Courtier 1992; Li et al. 1993, 1994 ), one may conclude
intuitively that Courtier’s method may be applied in a
straightforward manner in most cases to obtain an ac-
curate Hessian estimate (since the tangent linear ap-
proximation is within a valid range in a general sense).
However, our detailed analysis reveals that in many
situations if an accurate estimated Hessian is required,
the restriction on the validity of the tangent linear ap-
proximation using Courtier’s method will be too strin-
gent for it to be applicable to nonlinear cases of interest.
The second issue relates to minimizing the computa-
tional cost of the method, which consists in choosing
an optimal number p of perturbed gradients of the cost
function and using economical Hessian estimation
methods. These issues will be addressed in sections 6
and 7, respectively.

From the cost function (3.2), noting that W are sym-
metric matrices, we have
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H = J"[X(0)] = B"T[X(£)]W (1) {B[X(£6)] — X**(t0) } + B'T[X(2)IW(0) B’ [X(20)]

+ (BF)'T[X (1) IW () (BF)' [X(10)] + (BF)"T[X (1) IW(t3)(B{F[X(t0)]} — X (t)),

where the double primes denotes the second derivative.
During the minimization process, if either B and/or
(BF) are nonlinear operators, the control variable X is
not at the minimum point and the Hessian will depend
both on values of the control variable X and on the
observations X°%; that is, the real Hessian cannot to be
obtained with Courtier’s method. To apply Eq. (3.6)
to obtain an accurate estimated Hessian, we must re-
quire that the variational data assimilation cases satisfy
conditions where the tangent linear approximation is
valid. Since all the computational steps in Courtier’s

(3.12)

method are related to X,,;.(#,), we choose this mini-
mum state as the basic state for assessing the validity
of the tangent linear approximation in this paper.

The term (B { F{X(#,)]} — X°™(#y)) in (3.2) may
be written by omitting R°™ term and by omitting sub-
script “‘opt’” in X35 as
B{FIX(t0)]} — X**(ty) ~ (B{F[X(to)]}

= B(F{B*[X™(#)1})), (3.13)

and we can then rewrite the cost function with model-
generated observations as

JIX(2)] = % {BIX(t0)] — X™(10) TW(£) {B[X(t0)] — X*™(t0) } + %(B{F[X(to)]}

— B(F{B*[X™(1)1}))"W(tx)(B{F[X(20)]} — B(F{B*[X**(#,)]})), (3.14)
since
B{X(7)] — X**(2,) = B[X(#)] — B{B*[X**(,)]1}
= Li{X(2) — B*[X™(#6)]1} + O({X(t0) — B*[X**(10)]1}?) (3.15)
and
B{F[X(t0)1} — B(F{B*[X**(1,)]})
= L {X (1) — B¥[X*™(1)1} + O({X (%) — B*[X**(%)]1}?), (3.16)
where L, is the tangent linear operator of B, and L, is the tangent linear operator of (BF). Define
JulX(t0)] = %<L1{X(t0) — BHE[X(2)1})TW(#)(L { X(t0) — B*[X™(£0)1})
+ %<Lz{x(fo) — B¥[X*™(26)1} )W (ty){L, { X (20) — B*[X**(10)1}). (3.17)

When the difference between X (#;) and B*[X°*(z,)]
is small enough, we obtain

Ji[X(20)] = J[X(20)], (3.18)

and thus, the Hessian matrices of J[X(#,)] and
Ji[X(#0)] are nearly equal. We found that only by sat-
isfying the condition expressed by Eq. (3.18) can Egs.
(3.5) and (3.6) be used to yield an accurate Hessian
estimate.

To investigate the impact of validity of tangent linear
approximation, we first analyze a simple example (ap-
pendix A). We find that even when the nonlinearity of
operator F, [in Eq. (3.3)] is very weak and the validity
of tangent linear approximation is within an acceptable

range, the estimated Hessian still displays a large error.
Since operators in realistic NWP models possess much
stronger nonlinear properties than the operator F, cho-
sen in this simple example, our analysis reveals that an
accurate Hessian matrix cannot be estimated with
Courtier’s method applied directly to 3D or 4D Var
using a realistic NWP model. Thus, in the next section,
we propose a new algorithm to solve this problem and
obtain satisfactory results in preconditioning varia-
tional data assimilation experiments where nonlinearity
is an issue.

The numerical results of preconditioning variational
data assimilation experiments with either NASA SLSI
global SW model (figures omitted) and the NASA
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GEOS-1 GCM (Yang and Navon 1995b) show clearly
that validity of the tangent linear approximation
strongly impacts the convergence rate of minimization
when the preconditioning Hessian was estimated by
Eq. (3.6). In cases involving Hessian preconditioning
experiments, where the validity of the tangent linear
approximation is not satisfactory, the resulting conver-
gence rate of the minimization processes is much
slower than in cases characterized by a good validity
of the tangent linear approximation. This fact reveals
that with higher validity of the tangent linear approxi-
mation, the Hessian estimate will be more accurate.

It should be noted that in practical 4D Var, attention
is paid primarily to the convergence rate of the mini-
mization process and much less to the accuracy of the
preconditioner. In some instances, the convergence rate
of the minimization process is found to be satisfactory,
although the preconditioning estimated Hessian is in-
accurate. This is due to the fact that some unconstrained
minimization packages are endowed with their own
preconditioning schemes that compensate, to some ex-
tent, effects of this error. Such is the case with L-BFGS
or EO4DGF (NAG 1991) minimization algorithms (see
Liu and Nocedal 1989; Gill and Murray 1979; Gill et
al. 1981). In such instances, one does not have to find
a more accurate Hessian. However, if the error of the
preconditioning Hessian estimate is too large to yield
a satisfactory convergence rate of the large-scale un-
constrained minimization algorithm in variational data
assimilation, one can beneficially apply our new Hes-
sian estimation algorithm to obtain a more accurate
Hessian estimate.

4. An new algorithm for obtaining a more accurate
Hessian estimate

a. The basic algorithm

To extend Courtier’'s Hessian preconditioning
method (Courtier et al. 1994 ) to cases characterized by
higher nonlinearity, we propose to apply a new algo-
rithm to 4D Var experiments to reduce the error in the
estimated Hessian induced by lack of validity of the
tangent linear approximation. The basic idea (illus-
trated in a schematic diagram Fig. 1) consists in divid-
ing the distance L between B[X™"#(¢,)] and X°*(t,)
into n (n > 1) parts, resulting in the fact that the dis-
tance L/n in each part will be much shorter for large
enough n. We also introduce intermediate bogus ob-
servations X §%(#,), which are related to the original
observations, located within the part closer to the cur-
rent initial conditions. Thus, the difference between ini-
tial conditions and intermediate observations X £>(z,)
is reduced enough for tangent linear approximation to
hold, thus allowing us to obtain an accurate Hessian
estimate by using Egs. (3.5) and (3.6). First, we pro-
vide a basic description of our new algorithm.

Let the distance between initial conditions and the
initial time observations be denoted by
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FIG. 1. Schematic diagram illustrating the new
Hessian estimation algorithm.
AX(20) = B[X™®(10)] — X™(t,).  (4.1)
Choosen = 1,letk=n — 1, and
1
—||AX| < e, 4.2)
n

where ¢ is a critical value [i.e., the value of the pertur-
bation n~Y|AX|| which acting upon B(X,,,) yields a
value smaller than the prescribed threshold value €].

(1) Substitute X & = X°* + kn"!AX for X°* in the
cost function (3.2), and define an intermediate cost
function J,,

JIXu(10)] = 3 {BIXe(t0)] = X (1)}

X W (1) {B[Xk(#o)] — X £*(0) }

+ 3 (B{FIX,(1)]} — X (&))"

X W(tn)(B{F[Xi(20)1} — X *(tv)),
(4.3)

where X,(#,) are the intermediate initial conditions at
stage k, at the beginning stage (k = n — 1), X, (%)
= Xitel(zy; F[X,(%)] is the model operator inte-
grated from initial time ¢, to fy starting from X, (z,). In
the numerical experiments with model-generated ob-
servations, we will use B(F{B*[X ¢*(t,)]}), the
model operator integrated starting from intermediate
observations X §*(t,), to generate X §*(y).

(ii) Calculate the diagonal elements of the estimated
Hessian J, using Eq. (3.6) and use them as the precon-
ditioner. :

(iii) Perform a preconditioned minimization itera-
tion process to minimize J;. (This step will be modified
in the final proposed Hessian preconditioning algo-
rithm, see section 4b.)
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(iv) If k = 0, stop the computation process; other-
wise, update k by k — 1, and go to step (i).

Applying this algorithm to the simple scalar variable
example in appendix A, we obtained a clear illustration
of the effects of our proposed algorithms on the accu-
racy of the estimated Hessian (Fig. 2), where the rel-
ative error of estimated Hessian is defined by

ln—l J” _ J" 271/2
RH — [_r_l_ Z ( KESTIMATE kREAL) :| ] (44)

n
k=0 kREAL

The solid line in Fig. 2 represents R corresponding
to the Hessian being calculated at X, ; the dashed line
represents Ry corresponding to the Hessian being es-
timated by the rhs of Eq. (3.6), with p = 30 (short-
dashed line) and p = 3000 (long-dashed line), respec-
tively. From the results of this test we conclude that
our algorithm given by steps (i) —(iv) sizably reduces
the error of estimating the Hessian matrix. Addition-
ally, we draw the following conclusions.

(a) By applying Courtier’s method directly to non-
linear cases, one cannot obtain an accurate Hessian ma-
trix no matter how large a value of p is chosen.

(b) We found that for a chosen parameter p, Ry will
be close to a fixed value Ryciica When n exceeds a
threshold value n.4.o. In other words, if p is fixed, no
matter how accurate the tangent linear approximation
is, one cannot render the estimated Hessian matrix
more accurate than a threshold relative error Ry crtical -
The larger p is, the smaller Ry .1 becomes. For a fixed
p, there is an optimal value of n, which allows us to
reduce computational costs while obtaining an accurate
estimate of the Hessian matrix. In Fig. 2, ngya for p
= 30 is 5, while for p = 3000 .o is about 80, re-
spectively, yielding corresponding values for Rycrsca
that are 1.6 X 107! and 1.6 X 1072, respectively.

This is just a basic analysis that is derived from a
scalar case where the Hessian matrix consists of just
one entry. In practice, these restrictions turn out to be
more stringent if we just use the diagonal elements of
an estimated Hessian as a preconditioner.

The chosen value of n depends on the value of AX.
In practice, n may be chosen to assume values between
2 and 6. If n = 1, our new algorithm is equivalent to
the original Courtier’s method.

b. A modified algorithm for Hessian estimation

From the discussion in section 4a, we concluded that
our new algorithm can sizably reduce the error of es-
timated Hessian induced by limitation on the validity
of the tangent linear approximation in Courtier’s
method. However, in practical 4D Var experiments,
two problematic issues emerged, related to unsatisfac-
tory results obtained due to minimizing an intermediate
cost function J,.
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The first issue is that, since J, is just an intermediate
cost function, and our final goal is to minimize J in
(3.2), a satisfactory retrieved initial conditions vector
that minimizes J, cannot yield a large reduction in the
normalized cost J in Eq. (3.2), especially when a larger
value of n is chosen. To verify this point, using the 4D
Var experiment number 4 (to be described in the next
paragraph) in Yang and Navon (1995b), we carried
out three preconditioning 4D Var experiments with dif-
ferent values of n.

In these test experiments, we used the 4D Var system
of the adiabatic version of NASA GEOS-1 GCM with
1 January 1985 ECMWF 0000 UTC data as the initial
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time observation data. The surface pressure field of the
observational data is displayed in Fig. 3. The first-guess
initial condition is a randomly perturbed initial condi-
tion from the observation data; that is,

Xiniu’al — onbs ( tO) , (45 )

where B is a randomly perturbed coefficient diagonal
matrix whose diagonal elements are given by

bi,i = C1 + C2Di, l = 1, 2, i (46)

with C; = 0.75 and C, = 0.5, while D, is a random
coefficient whose values vary from O to 1, with uniform
distribution. The length of the data assimilation win-
dow is 6 h, and the time step length is 5 min. The
weighting matrix W used in these 4D Var precondi-
tioning experiments is a constant diagonal matrix
whose diagonal components are W, = W, = 107°I
s2m™2, Wy = 10721 K2, and W,, = 1073l hPa 2, re-
spectively. The value of the parameter p used in Eq.
(3.6) was chosen as p = 60. The L-BFGS minimization
algorithm (Liu and Nocedal 1989) was used in these
experiments with an update formula parameter m = 5.
This 4D Var case is characterized by a severe lack of
validity of the tangent linear approximation and as a
consequence the convergence rate of the unconstrained
minimization process cannot result in an efficient speed
up using Courtier’s method. In the test experiments,
after eight iterations of minimization process, the nor-
malized cost function was reduced to about 91.8%
without the preconditioning treatment and was just re-
duced to about 90.2% of its original value when Cour-

R,
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tier’s preconditioning method was applied (see the
solid and dashed lines in Fig. 7, respectively).

We then conducted experiments to test our new basic
algorithm in steps of k = n — 1 using different values
of n. We chose n = 2, 4, and 8. The results are pre-
sented in Fig. 4. We calculated the cost function given
by Jin Eq. (3.2) using the same retrieved control vari-
able fields as used when calculating J,. The solid lines
correspond to variations of J;, while the dashed lines
provide variations of J, both versus the number of min-
imization iterations.

From Fig. 4, we see that when a larger parameter n
is used, the minimization of J; proceeds much faster
than for a smaller value of n. This confirms, experi-
mentally, that our basic idea is correct; that is, as n
increases, the distance between intermediate observa-
tions and the intermediate first-guess initial conditions
is shortened. Thus, the validity of the tangent linear
approximation is increased, which in turn yields a more
accurate estimate of the Hessian with better ability to
speed up convergence of the minimization process.

However, while J, is more efficiently minimized by
using a larger n, the corresponding change in the cost
function J becomes smaller. This is due to the fact that
Ji is just an intermediate cost function; thus, as n in-
creases, the difference between J, and J will increase.
For instance, for n = 8, even though the cost function
J, 1s minimized to zero, the retrieved fields are reduced
to only about 76% of normalized original cost function
J. Since our goal is to minimize J, we must modify
our basic algorithm to achieve this goal.

~ -

___/\L::_-

1200

F1G. 3. Surface pressure field of 0000 UTC 1 January 1985 ECMWF data.
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A second issue is related to the fact that we used the
L-BFGS minimization algorithm in our 4D Var exper-
iments. This algorithm requires information from the
last m iterations to update the formula-generating ap-
proximation to the Hessian matrix. In our experiments,
we chose m = 5. If the number of total iterations is less
than m, the L-BFGS minimization algorithm cannot be
used efficiently. On the other hand, due to computa-
tional efficiency considerations, it is not desirable to
carry out 4D Var experiments requiring a large number
of minimization iterations. As a rule, the total number
of iterations should be a small integer value, for in-
stance, a total of eight minimization iterations is typi-
cal. Thus, in each step of our basic preconditioning
algorithm the total number of iterations will be divided
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FiG. 4. Variation of normalized cost function J/J, vs the
number of minimization iterations at the k = n — 1 stage. The
solid line represents intermediate cost function J,, and the
dashed line represents original cost function J: (a) n = 2, (b)
n=4,and (c)n = 8.

into n (for instance n = 4) steps. If we do not store
information from the previous minimization iterations
with J, for the latter J,_; minimization iterations to be
used in the L-BFGS algorithm, the L-BFGS minimi-
zation algorithm will turn out to be inefficient, due to
the small number of iterations carried out at each step
of the algorithm. However, if we save information from
previous minimization iterations with J, for the latter
Jy—, minimization iterations, the values of cost function
and its gradient will experience sudden jumps since we
minimize different cost functions, causing either failure
or nonsmooth performance of the L-BFGS algorithm.
To remedy the negative impact of the above-men-
tioned two issues, requires a logical modification of our
basic algorithm. This consists of applying the minimi-
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zation iteration process directly toward minimizing the
original cost function J in our modified algorithm in
step (iii), rather than minimizing the intermediate cost
function J;. This is the only change introduced in the
basic algorithm presented in section 4a.

Thus, the step (iii) in our new Hessian precondition-
ing algorithm is now (iii) to perform the precondition-
ing minimization iteration process to minimize the
original cost function J in (3.2).

Since we did not make any assumption concerning
the nature of the nonlinear operators B and F in (i) -
(iv), our proposed preconditioning algorithm may be
theoretically applied to any nonlinear 3D or 4D Var
system.

5. Numerical results of preconditioning variational
data assimilation experiments

We carried out preconditioning variational data as-
similation experiments using either the NASA SLSI
global SW equations model or the adiabatic version of
NASA/DAO GEOS-1 GCM to test our newly pro-
posed preconditioning algorithm. The numerical results
show that this algorithm does indeed possess the ability
to speed up the convergence rate of minimization pro-
cesses due to the increased accuracy of the estimated
Hessian.

a. Experiments using the NASA SLSI global SW
equations model

We first tested our preconditioning algorithm by us-
ing the variational data assimilation system of NASA
SLSI global SW equations model. For a detailed de-
scription of the model see Bates et al. (1990).

The observation used consists of a 12-h preparatory
integration output of 500-hPa fields of 0000 UTC 15
January 1979 ECMWEF data (for the geopotential field
see Fig. 5). The model resolution is (A8, AM)
= (7.5°,7.5°). The length of the assimilation window
is 3 h, and the time step length is 1 h. The first-guess
initial condition is taken to be a randomly perturbed
initial condition from the observation data using Egs.
(4.5) and (4.6) with C; = 0.75 and C, = 0.5. The
total number of minimization iterations is 12, and we
chose n = 2 and n = 6 to carry out two preconditioning
experiments. The value of the parameter p of the
number of realizations used in (3.6) was chosén as p
= 120.

The variation of the normalized cost function versus
the number of iterations is displayed in Fig. 6. It is clear
that our new preconditioning algorithm performs ef-
fectively. This case is characterized by strong randomly
perturbed initial conditions and as such does not satisfy
conditions for the tangent linear approximation to be
valid. Thus, in using Courtier’s method one cannot ob-
tain an accurate Hessian estimation, which is a prereg-
uisite for effectively accelerating the convergence rate

MONTHLY WEATHER REVIEW

VOLUME 124

of the minimization process. Using our new algorithm
results in an impressive speedup of the minimization
convergence rate, which reveals that the error in the
estimation of the Hessian is sizably reduced.

b. Experiments using the adiabatic version of the
NASA GEOS-1 GCM

We carried out two 4D Var preconditioning experi-
ments similar to the case used in section 4b, taking the
total number of minimization iterations to be eight, and
we chose n = 2 and n = 4 for the two experiments,
respectively.

The variation of the normalized cost function versus
the number of iterations is displayed in Fig. 7. From it,
we conclude that our new algorithm does indeed pos-
sess the ability to speed up the convergence rate of the
minimization algorithm. As n increases, the validity of
the tangent linear approximation increases, resulting in
an increased accuracy of the estimated Hessian and a
better ability to improve the convergence rate of the
minimization algorithm. The value of the cost function
attained after eight minimization iterations with the
original Courtier’s preconditioning method required
just three iterations (in the n = 4 case) and four iter-
ations (in the n = 2 case) when the new precondition-
ing algorithm was applied. Other results of 4D Var pre-
conditioning with different first-guess initial conditions
also confirm that our new algorithm achieves a signif-
icant speedup in the convergence rate of minimization
algorithm (figures omitted). In Fig. 7, we observe that
the convergence rate of the minimization is slower in
the first few iterations. This is due to the fact that at the
beginning of the minimization process, the L-BFGS
minimization algorithm was not provided with enough
information to allow it to use its own preconditioning
scheme.

A study of the reduction in the condition number of
the estimated Hessian also shows the new algorithm to
perform very effectively. We know only the diagonal |
elements of estimated Hessian at X,;, (denoted here by
H,, 4, the subscript m denoting the minimum state X,
while d denotes the diagonal matrix) in our 4D Var
preconditioning experiments. Since in a nonlinear sys-
tem, the Hessian matrix of cost function depends upon
the control variables, as the minimization process pro-
ceeds, and retrieved control variable fields get closer to
observations in a least squares sense, H will approach
H,,. In our new algorithm, at different stages k/n, as k
decreases, the minimum state X, gets closer to X,,
= X°*(¢,). Thus, we may use the condition numbers
of the intermediate Hessians H, , , at different stages
k/n of minimization as indicators for estimating the
reduction in the condition number of the Hessian as the
preconditioned minimization algorithm progresses.

In Table 1, K} ,, 4 is the condition number of nonpre-
conditioned Hessian H, ,, ; corresponding to stage k/n,
and K, ;.4 is the condition number of the precondi-
tioned Hessian H,  , 4:
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F1G. 5. Geopotential field used as the observation for carrying out variational data
assimilation experiments using the NASA SLSI global SW equations model.

—_ -1/2 —-1/2
Hp,k,m,d - Hm.d Hk,m.de,d )

(5.1)

where H, , is the Hessian preconditioner estimated
with the original Courtier’s method.

From Table 1 we see that after preconditioning with
Courtier’s method, the condition number of H, ; . s re-
mains still quite large, especially at the beginning of
the 4D Var process. However, using our new algo-
rithm, the condition number of the preconditioned
H; 4 wWill equal unity. This reveals the reason of the
efficiency of our new algorithm.

In this paper, all analyses are based on the model-
generated observations assumption. Extension to cases
involving model systematic error or involving real ob-
servational data requires the inclusion of additional
terms in cost function (3.1) and redefines the minimum
point of the new cost function [e.g., by Eq. (3.10)],
implying that general conclusions previously derived
may still apply.

6. Determination of the parameter p

Another aspect to be considered is how to minimize
the computational cost of the Hessian estimation
method, consisting here in choosing an optimal number
p of realizations of perturbed gradients of the cost func-
tion and using economical Hessian estimation methods.
In this section, we focus the discussion on how to de-
termine the value of the parameter p in Eq. (3.6).

First, let us consider this issue for linear systems. To
obtain a basic insight, we analyzed a simple example;

that is, let X in Eq. (3.14) be a scalar variable, B = 1
and let F(x) = Ax, where A is a constant coefficient.
We calculated the relationship between p and the ac-
curacy of the estimated Hessian (Fig. 8). The results
obtained show that for estimating the Hessian rhs term
of (3.6) with a relative error of less than 1% requires
p to assume a value of about 3000, and for a relative
error of less than 10% the parameter p is required to
satisfy 30 < p < 2000. Thus, in linear systems, p may
be chosen between 30 and 60 as in Courtier et al.
(1994). Since in a linear system, the Hessian has quad-
ratic form [see the second term of the rhs of Eq.
(3.12)], this basic estimation is valid only for simple
linear systems.

In nonlinear systems, both Ryiricas a0d #eiricar depend
on chosen p (see section 4a). Comparing Figs. 2 and
8, one finds that the relative error of the estimated Hes-
sian in a nonlinear system is larger than that in a linear
system. So if the same accuracy of the estimated Hes-
sian is required, one has to use a larger value of p.
Figure 9 depicts variation of the average variance of
diagonal elements of the estimated Hessian versus p
using the adiabatic version of the NASA GEOS-1
GCM and its adjoint. This figure shows that the average
variance of the Hessian will tend to a low stable level
when p exceeds values of between 90 and 120. This
value may be used as a reference for choosing p.

In operational 3D or 4D Var applications, if the con-
vergence criterion of minimization algorithm is met, we
may choose a lower value of p, such as 30-60 to re-
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duce computational costs. In section 5, a value of p
= 60 was chosen for the 4D Var experiments with
NASA GEOS-1 GCM. For the experiments with the
shallow-water equations model, since the computa-
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FiG. 7. Variation of the normalized cost function J/J, vs the number
of minimization iterations using the 4D Var system of the adiabatic
version of NASA GEOS-1 GCM. The solid line is without precon-
ditioning; the dashed line is preconditioning with Courtier’s method
to estimate Hessian; the short-dashed line is preconditioning with
new Hessian estimation algorithm, #» = 2; and the short-long-dashed
line is preconditioning with the new Hessian estimation algorithm, n
=4.
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TaBLE 1. Condition number of Hy,.,4 and H, i ma-

n k kin Kima K, kma

8 7 0.875 318 397.42 20 551.37
4 3 0.75 106 999.53° 3480.50
4 2 0.50 14 638.31 1007.01
4 1 0.25 4656.36 128.88
4 0 0.00 1113.12 1.00

tional cost is not as important a consideration, a larger
value of p, that is, p = 120, was chosen.

7. Reducing the computational cost of Hessian
estimation

Since using Eq. (3.6) to estimate the Hessian re-
quires running the adjoint model p times, we need to
pay attention to the critical issue of computational cost.
In fact, for some strong nonlinear cases, if one does not
apply our new algorithm, the convergence rate of the
minimization processes will be extremely slow due to
ill conditioning of the corresponding Hessian matrices.
Thus, the computational costs exceed the cost required
for applying our algorithm to accurately estimate the
Hessian. In appendix B, we provide such an example,
a variational data assimilation case that does not apply
our new algorithm and displays an extremely slow con-
vergence rate.

We ran the experiments in appendix B on the CRAY
YMP supercomputer. The CPU time for carrying out
500 minimization iterations (the number of function
calls is 559) in the variational data assimilation exper-
iment without preconditioning required 232.988 s; for
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carrying out 500 VDA minimization iterations (the
number of function calls is 728) using the original
Courtier’s method preconditioning required CPU time
of 350.164 s; however, when we ran the n = 2 case
with the new algorithm and 12 minimization iterations
(the number of function calls is 29), the CPU time
required is 95.523 s while for the n = 6 case (the num-
ber of function calls is 18) it is 255.687 s. All CPU
times quoted in above experiments include the CPU
time required for estimating the Hessian matrix. From
this analysis, we may conclude that, using our new Hes-
sian estimate algorithm, one may achieve significant
computational cost savings while obtaining more sat-
isfactory minimization results. It should be noted that
when using our new algorithm most of the CPU time
is spent on estimating the Hessian matrix, which re-
quires running the adjoint model n X p times. For prac-
tical implementation of our new algorithm, attention
should be paid to this computational burden issue.
One may try several economical alternative estima-
tion methods for reducing the computational cost for
estimating Hessian with our algorithm, such as using a
lower value of p. In practical applications, as suggested
by Courtier et al. (1994), the Hessian estimate could
be done off-line. This is based on the fact that the main
features of the observational network data are fairly
stable from day to day. Thus, a Hessian estimate from
observational data on a certain day may be used effec-
tively as a preconditioner for the next several days. An-
other way to reduce the computational cost, suggested
by Courtier et al. (1994) is that of using a coarser grid-
point model to estimate the Hessian, then using it on a
finer mesh as a preconditioner. Besides, we may use
the adiabatic version of the adjoint model to estimate
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the Hessian for 3D or 4D Var while using a full-physics
forecast model, like Zupanski (1993b). Using these ap-
proaches, one can obtain a faster convergence rate of
3D or 4D Var minimization without incurring high
computational cost. In the present paper, we implement
a method using a coarser gridpoint model to estimate
the Hessian, thus alleviating to a large extent the com-
putational cost attached to the implementation of this
new algorithm.

We carried out a series of experiments similar to those
in section 5a but using a coarser gridpoint model to esti-
mate the Hessian. The model resolution for estimating the
Hessian matrix is (A§, AN) = (15°, 15°), respectively.
Thus, the allowed time-step length is extended to 1.5 h.
To further reduce computational cost, a smaller parameter
p was chosen, namely, p = 30. After obtaining the coarse
gridpoint estimated Hessian, we interpolated it to a fine
mesh of grid points. Then we used the interpolated Hessian
as the preconditioner to rerun the variational data assimi-
lation cases in section 5a with a finer mesh resolution [see
also Zhu et al. (1994) for a similar approach].

The results are shown in Fig. 10. We find that the effi-
ciency of the Hessian estimated from the coarse gridpoint
model is just slightly worse than that of the original esti-
mated Hessian, while the computational cost is sizably re-
duced. As the number of grid points and the value of p
decrease, they allow us to carry out the task on the CRAY
YMP supercomputer to a higher level of vectorization and
compiler optimization. The CPU times used for estimating
Hessian with the original model are 82.264 s (n = 2) and

246.664 s (n = 6), respectively, while with the coarse
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dashed line is preconditioning with the standard-grid estimated Hes-
sian and new algorithm, n = 6.
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mesh model they are reduced to just 4.049 s (n = 2) and
12.013 s (n = 6), respectively. This is a very encouraging
result. Some additional test experiments related to the off-
line Hessian estimate and use of the adiabatic version of
the adjoint model to estimate the Hessian for 3D or 4D
Var with full-physics forecast model will be presented in
a forthcoming paper. One should note that the speedup
obtained by using the coarse grid estimated Hessian ex-
ceeds the ratio of computational cost reduction expected.
We hypothesize that this is due to better capabilities of the
optimizing complier induced by the reduced atray size.

8. Summary and conclusions

In this paper, we presented the development of the tan-
gent linear model and the adjoint of the adiabatic version
of NASA GEOS-1 C-grid GCM. We then analyzed Cour-
tier’s preconditioning method using an estimated Hessian,
as well as a newly proposed Hessian estimation algorithm,
extending the original Courtier’s method to some 3D and
4D Var problems characterized by stronger nonlinear prop-
erties (such as we may be confronting in highly nonlinear
physics packages in numerical weather prediction).

Since analysis of observations in section 3¢ showed
that 3D or 4D Var preconditioning research involving
real observation data will be more difficult, we assumed
in this paper that the model is good enough and the
error in data is small enough to allow use of model-
generated data as observations in all 4D Var experi-
ments. Issues involving use of real observational data
will be analyzed in a forthcoming paper.

The impact of validity of the tangent linear approxi-
mation on accuracy of the estimated Hessian in the pre-
conditioning method proposed by Courtier et al. (1994)
was first analyzed for a simple analytic case. We then an-
alyzed the results of preconditioning experiments using the
variational data assimilation systems of both the NASA
SLSI global SW equations model and the adiabatic version
of NASA GEOS-1 C-grid GCM. The results show that the
validity of tangent linear approximation strongly impacts
upon the accuracy of the estimated Hessian. We found that
in many instances if an accurate Hessian estimate is re-
quired, restriction on the validity of the tangent linear ap-
proximation with Courtier’s method will be so stringent as
to impose a modification of Courtier’s method to fit cases
of interest (nonlinearity in 3D or 4D Var).

We proposed an extension of Courtier’s estimated
Hessian preconditioning method to cases with higher
nonlinearity by designing a new algorithm reducing er-
ror in the Hessian estimation induced by lack of validity
of the tangent linear approximation. We applied our
new algorithm to variational data assimilation cases
with stronger nonlinearity using both NASA SLSI
global SW equations model and the adiabatic version
of NASA GEOS-1 C-grid GCM. The results show that
our new algorithm speeds up the convergence rate of
the minimization algorithm better than the original
Courtier’s method. Since we did not make any restric-
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tive assumptions when deriving this algorithm, it has
the potential of being applicable to the preconditioning
of any nonlinear 3D or 4D Var system of interest. Some
more complex data model tests of this new algorithm
will be carried out in future research.

We found that by applying Courtier’s method directly
to nonlinear cases one cannot obtain an accurate estimated
Hessian matrix, no matter how large a value of p was used.
We also concluded that if the parameter p in Courtier’s
method is fixed, no matter how accurate the tangent linear
approximation is, one cannot reduce the error of the esti-
mated Hessian matrix beyond a threshold value.

We also addressed the issue of how to determine the
value of the parameter p in the method used for esti-
mating the Hessian matrix. We found that the relative
error in estimating the Hessian matrix for a nonlinear
system is larger than that of a linear system if the same
value of p is used. In linear systems, the value of p may
be chosen between 30 and 60, like in Courtier et al.
(1994 ). In nonlinear systems, in order to obtain a more
accurate Hessian, one may attempt to choose p between
90 and 120. If the convergence criterion of the mini-
mization algorithm is satisfied, one may relax this re-
quirement and choose a lower value of p, such as 30—
60, for the sake of computational efficiency.

Finally, we discuss issues related to computational
cost. We found out that for some strong nonlinear data
assimilation cases one should use some very effective
preconditioning methods such as provided by our new
algorithm, otherwise the convergence rate will be in-
tolerably slow. A new strategy was tested using a
coarser gridpoint model to estimate the Hessian and
applying the resulting coarse mesh estimated Hessian
as the preconditioner for variational data assimilation
using a fine mesh of gridpoints model for reducing
computational cost. The results obtained are encour-
aging and point te major computational cost savings.
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APPENDIX A

Investigation of the Impact of Validity of Tangent
Linear Approximation on the Accuracy of
Estimated Hessian: A Simple Example

We provide a simple example whose analysis shows
that the impact of validity of tangent linear approxi-
mation on the accuracy of estimated Hessian using
Courtier’s preconditioning method is very serious.
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Let x be a scalar variable and B = 1; let F, in Eq.
(3.3) be given by

F, = x'", (A.1)
with
a<l. (A2)
Since
x*® = x + x(Inx)a + O(a?), (A3)
we have
F,~x(1+p8), (A4)

where f = a Inx. Since we wish F, to possess good
linear properties, we choose x = x; + Ax, with x,
= 100 and | Ax} < xo Inx,, @ = 0.0048251 < 1. Using
a Taylor expansion, we obtain

B =~ a lnx, = const. (A.5)

Hence, F, is a very weak nonlinear function. Figure A1l
shows that the relative error RF of F,

x1** — x(1 + a Inx,)
x(1 + alnxy)

RF = (A.6)

is very small. We choose N = 144, which corresponds
to a 12-h data assimilation window with a 5-min inte-
gration time step, mimicking a typical atmospheric nu-
merical prediction model (e.g., such as in NASA
GEOS-1 C-grid GCM). The initial conditions and ob-
servations were chosen to yield a relative error of the
tangent linear approximation given by
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o IFIX (10)] = FIX™ (1)
D) = LlX (f0) - X (1)
= =15%. A7
U X (o) - X1 o (AT

The value of the ratio [|D||/||LJ| is within the range of a
good degree of validity of tangent linear approximation
(Rabier and Courtier 1992; Li et al. 1993, 1994).

Yet, even for this weak nonlinear operator F), and with
satisfactory validity of tangent linear approximation, we
find that the estimated Hessian has a large relative error.
The relative error of the estimated Hessian is given by
_ | JEstmate — JReaL |

Ry =

" , (A.8)
| JReac |

where Jxgar is the real analytical value of Hessian and
JEstivate 18 the estimated Hessian. We analyzed three
different types of Jgsrvare. The first type is the ana-
Iytical value of Hessian at the minimum point [X (#,)
= X°%(#,)], while the others are estimated Hessians
using Eq. (3.6) with p = 30 and p = 3000, respectively.
We obtained values of Ry given by 158%, 183%, and
157%, respectively. Since operators in realistic NWP
models possess much stronger nonlinear properties
than the operator F, chosen in our example, our anal-
ysis reveals that an accurate Hessian matrix cannot be
estimated with Courtier’s method applied directly to
3D or 4D Var using a realistic nonlinear NWP model.

APPENDIX B

An Example Elustrating an Extremely Slow
Convergence Rate

We rerun the data assimilation experiment in section
5a without applying our new algorithm and with a large
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Fic. B1. Variation of the normalized cost function J/J, with the
number of minimization iterations using the NASA SLSI global SW
equations model (for large number of iterations). The solid line is
without preconditioning, and the dashed line is preconditioning with
Courtier’s method to estimate Hessian.
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number of minimization iterations. The result is pro-
vided in Fig. B1. We can clearly see that when our new
algorithm is not applied the variational data assimila-
tion minimization process displays an extremely slow
convergence rate. After 500 iterations, the normalized
cost function is reduced to 74% (without precondition-
ing) and 32% (using original Courtier’s method), yet,
using our new algorithm, only four minimization iter-
ations were sufficient to reduce the normalized cost
function to 31.5% (n = 2) and 13% (n = 6) of its
original value, respectively (Fig. 6). This example
shows that for some strong nonlinear data assimilation
cases one must use some very effective preconditioning
methods such as provided by our new algorithm.
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