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1. Abstract

In this article, we describe a novel non-intrusive reduttiwdel for three-dimensional
(3D) free surface flows. However, in this work we limit the tieail resolution to be a
single element. So, although it does resolve some non-btatio dfects, it does not
examine the application of reduced modelling to full 3D fseeface flows, but it is an
important step towards 3D modelling. A newly developed imdnisive reduced order
model (NIROM) [1] has been used in this work. Rather than taking the standaii P
approach using the Galerkin projection, a Smolyak sparskigterpolation method
is employed to generate the NIROM. A set of interpolationctions is constructed to
calculate the POD cdiécients, where the POD cfiiients at previous time steps are
the inputs of the interpolation function. Therefore, thisdal is non-intrusive and does
not require modifications to the code of the full system arehisy to implement.

By using this new NIROM, we have developed a robust afidient reduced or-
der model for free surface flows within a 3D unstructured nfeste element ocean
model. What distinguishes the reduced order model devdlbpee from other exist-
ing reduced order ocean models is (1) the inclusion of 3D dyoswith a free surface
(the 3D computational domain and meshes are changed withaliement of the free
surface); (2) the incorporation of wetting-drying; and (8¢ first implementation of
non-intrusive reduced order method in ocean modelling.tNfogortantly, the change
of the computational domain with the free surface movemenaken into account
in reduced order modelling. The accuracy and predictivelo#ipy of the new non-
intrusive free surface flow ROM have been evaluated in Balzard Okushiri tsunami
test cases. This is the first step towards 3D reduced ordeellimggin realistic ocean
cases. Results obtained show that the accuracy of freeceysfablems relative to the
high fidelity model is maintained in ROM whilst the CPU timeréesluced by several
orders of magnitude.
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2. Introduction

The numerical simulation of ocean modelling is importanatwide range of ap-
plications such as atmosphere, sea ice, climate predjdtiospheric management and
especially natural disasters (for example, flood and tsijndrhe natural disasters of-
ten cause big losses and tragic consequences. In ordewtterdte losses, a real-time,
early-warning and rapid assessment model is required.rnpadson to 2D modelling,
3D ocean modelling provides better understanding and muarie mformation about
local flow structures, vertical inertia, water level chasgensteady dynamic loads on
structure interacting with fluids, flow structures closediands and dikes etc. How-
ever, the majority of existing 3D ocean model&fsufrom an intensive computational
cost and cannot respond rapidly for tsunami forecastinghitncase, model reduction
technology has been presented to mitigate the expensivecGRIputational cost since
the model reduction technologyfers the potential to simulate complex systems with
substantially increased computatidfi@ency.

Among existing model reduction techniques, the properagitimal decomposi-
tion (POD) method has proven to be dfic@ent means of deriving the reduced basis
functions for high-dimensional nonlinear flow systems. R@D method and its vari-
ants have been successfully applied to a number of resealds, fior example, signal
analysis and pattern recognitio?j [ statistics B], geophysical fluid dynamics and me-
teorology B, ocean modellingq, 6, 1, 7], large-scale dynamical systentj,[ecosys-
tem modelling 9], data assimilation of wave modellind(, 11], ground-water flow
[12), air pollution modelling L3], shape optimisationl{], aerospace desigi’}, 16],
lithium-ion batteries convective Boussinesq floWg][ mesh optimisation model B
and also shallow water equations. This includes the workefb8escuet al. [19, 20],
Daescu and Navor2[l, 22], Chenet al. [23, 24], Du et al. [25] as well as Fangt al.
[26, 27].

However, the standard reduced order modelling is usuategged through POD
and Galerkin projection method, which means iffets from instability and non-
linearity dficiency problems. Various methods for improving numericatability
have been developed such as regularisation metB8ld Petrov-Galerkin b, 26],
method of introducing a éusion term P9, 30] and Fourier expansior8[]. For non-
linear dficiency problems, a number of methods have been proposadlinglem-
pirical interpolation method (EIM)32] and discrete empirical interpolation method
(DEIM) [33], residual DEIM (RDEIM) B4], Gauss-Newton with approximated ten-
sors (GNAT) method35), least squares PetreGalerkin projection methodp], and
quadratic expansion metho8d, 27].

However, those methods are still dependent on the full msdeice codes. In
many contexts, the source codes governed by parti@rditial equations need to be
modified and maintained. Developing and maintaining theedifications are cum-
bersome37]. To circumvent these shortcomings, non-intrusive apginea have been
introduced into ROMs. Chen presented a black-box sterteitfrlation non-intrusive
method (BSIM) based on machine learning meth@&d% [D. Wirtz et al. proposed the



kernel methods where the learning methods are based onugaibrs vector machines
and a vectorial kernel greedy algorithi3g] 39. Audouzeet al. proposed a non-
intrusive reduced order modeling method for nonlinear petaized time-dependent
PDEs using the radial basis function approach and P@D41]. Klie used a three-
layer radial basis function neural network combined withCPREIM to predict the
production of petroleum reservoirdd]. Walton et al. developed a NIROM for un-
steady fluid flows using the radial basis function (RBF) iptéation and POD43].
Noori [44] and Noack 5] applied a neural network to construct the ROM. Xigio
al. presented a non-intrusive reduced order modelling methioddvier-Stokes equa-
tions based on POD and the RBF interpolati@hdnd applied it successfully into
fluid-structure interaction problemd§, 47]. The CPU computational times are re-
duced by several orders of magnitude by using this POD-RBthaode Xiaoet al.
also introduced the Smolyak sparse grid interpolation oethto model reduction to
construct the NIROMT].

POD ROM approaches have been applied to ocean problsn®7, 49, 50]. Dao
et alintroduced ROM into tsunami forecastingd], and Zokagoa and Soulaimaii(]
used POIIROM for Monte-Carlo-type applications. In their work, th©B-based
reduced-order models were constructed for the shallowrvesfeations. In shallow
water modelling, however there are some errors in resuleswitvolving ocean prob-
lems like radical topography changes, short waves and floved around the buildings
or mountains. The work of Fanet al[48, 27], Du et al [3€], and Xiaoet al [5] in-
troduced POD ROM for 23D Navier-Stokes unstructured mesh finite element fluid
modelling. However 3D free surface flow examples were nduited in their work
due to the dficulty in implementation of intrusive POD-ROMs. The implemeion
difficulty was caused by the change of both the computational shoaina 3D unstruc-
tured meshes with free surface movement. However, NIROMyable of handling
this issue easily.

This paper, for the first time, constructs a NIROM for freeface flows in the
framework of an unstructured mesh finite element ocean mddes is achieved by
using the Smolyak sparse grid interpolation method. Thelgkesparse grid method
is a widely used interpolation method and is used to overcthraecurse of dimen-
sionality. It was also used for uncertainty quantification électromagnetic devices
[51] where the Smolyak sparse grid was used to calculate statigtvarying material
and geometric parameters which were the inputs of the ROMo ¥i al. first used
Smolyak sparse grids to construct ROY and it has been shown to be a promising
non-intrusive method for representing complex physicatay using a set of hyper-
surface interpolating functions. The NIROM can be treated hlack box, which uses
a set of hypersurfaces constructed based on the Smolyadegpédt collocation method
to replace the traditional reduced order model. The errotisé NIROMs come from:
the POD function truncation error (the ability of the basisdtions to represent the
solution), the error associated with having just a certaimber of solution snapshots
(rather than the solution at all time steps) and the erramftbe calculation of the
NIROM solution (for more details, please s&2]) using, for example, sparse grids or
Radial Basis Functions.

In this work, the newly presented NIROM method based on Sekobparse grids
is applied to complex ocean free surface flows. The capgplufinewly developed



NIROM for 3D free surface flows are numerically tested angsiitated in Balzano and
Okushiri tsunami test cases. The main novelty of this wotkésinclusion of 3D flow
dynamics with a free surface and the wetting-drying frorite Bolutions from the full
fidelity ocean model are recorded as a sequence of snapahdtispm these snapshots
appropriate basis functions are generated that optimafiyesent the flow dynamics.
The Smolyak sparse grid interpolation method is then uséatto a hyper-surface that
represents the ROM. Once the hyper-surface has been attestrthe POD cdécient
at current time step can be obtained by providing the POIicgents at previous time
steps to this hyper-surface. Numerical comparisons betilee high fidelity model
and this NIROM are made to investigate the accuracy of thi®hNIROM for free
surface flows.

The structure of the paper is as follows. Sectigresents the governing equations
of free surface flows. Sectiofpresents the derivation of the POD model reduction
and re-formulation of the governing equations using the Iakosparse grid method.
Section5 illustrates the methodology derived above via two numéggamples. This
is based on two test problems where the Balzano test case larshi@ tsunami test
case are numerically simulated. Finally in sectoeonclusions are presented and the
novelty of the manuscript is fully summarized and illumiggt

3. Three dimensional governing equations for free surfacedlws

3.1. 3D Navier-Stokes equations

The three dimensional incompressible Navier-Stokes @&ngsivith Boussinesq ap-
proximation and the conservative equation of mass are usiisi work:

v-d = 0, 1)
od
E+U-VU = -Vp+V-t (2
where the termsi = (uy, Uy, U,)" are the velocity vectorp the perturbation pressure
(p := p/po, po is the constant reference density). The stress tensepresents the
viscous forces:

Tij = 2uijSij,  Sij = > -3 24 % Lj={xy.2, 3)

1(ouw duj) 1 3 duy
oxj 0%

whereu denotes the kinematic viscosity. The no-normal flow boupdandition is
applied on the bottom and sides of the computational domain:

d-n=0, 4)
wherefi denotes the unit normal vector on boundary surface.

3.2. Combining kinematic free surface condition
The kinematic free surface boundary condition is expreasddllows:

on
J-- uH|Z=n Vi + U, on 89, (5)
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wheren is the free surface elevatiofiQQs c dQ is the free surface boundaryy =
(8/0x%,/9y)", andly is the horizontal component af Using the fact that the normal

(- .
vectorn at the free surface |”( o 1;T||’ equation §) can be reformulated to
7@»75,,
0 d-n
= (6)
ot g.K

wherek = (0,0,1) is the vertical standard basis vector. Note that in sphkgeome-
trieskis replaced with” = (sind cosg, sind sing, cosd) whereg andd are the azimuthal
and co-latitudinal angles respectively.

Taking into accounp = pogn on the free surfacéQs, gives the combining kine-
matic free surface boundary condition:

> 1 0p
i kpog 5t - @)

In a wetting and drying scheme, a threshold valyés introduced to define the wet
and dry aregsterface. In order to prevent a non-physical flow, a thinelaig kept
equal to the threshold valudg in dry areas. In wetting and drying,fikrent boundary
conditions are applied on the free surface. A no normal flowndary condition is
applied on dry areas while a kinematic free surface bounclamdition is used on wet
areas.

4. PODSmolyak non-intrusive reduced order formulation

In this section, the method of constructing the NIROM foeferface flow prob-
lems is described. The essence of this method lies in howristagct a set of inter-
polation functions or hyper surfaces that represent theoed free surface problem
system using the Smolyak sparse grid method. Firstly, theisos from the high fi-
delity ocean model are recorded as a number of snapshots Wieedetails of 3D free
surface dynamics (wetting-drying front, free surface h&sgwaves etc) are included.
Secondly, from these snapshots a number of basis functiwaitspptimally represent
the free surface flow dynamics, are then generated. ThitttlySmolyak sparse grid
interpolation method is used to form a set of hyper-surfttatsrepresent the reduced
system. Once the hyper-surfaces have been constructesithion of the NIROM, at
the current time level, can be obtained from reduced salw@#tdhe previous time level
using the hyper-surface functions.

4.1. The Proper Orthogonal Decomposition method

In this section, the POD theory is briefly described. The cbje of the POD
method presented here is to extract a seP @iptimal basis functions from the snap-
shots recorded solutions of velocity and pressure (frefase)y at a number of fferent
time levels. In this work the snapshots are obtained by sgltihe discretised form
of equations ?), which considers the free surface boundary condition.r Beparate
matricesU*, UY, U* andUP representing velocity from fierent coordinates directions



and pressure (free surface) are formed from the snapshatb. reatrix will be treated
in an identical way, so for the sake of simplicity of preséiot® a general matrixJ
is used for representing the four matrices. The dimensich®imatrixU is F x S,
whereF andS denote the number of nodes on the finite element mesh and thiearu
of snapshots respectively. The mean of the snapshots isdefm

= .
ui=§;uu, ie{l2...,F). 8)

Taking the mean from the matriXyields a new matriXNJj,i, which is used for perform-
ing Singular Value Decomposition (SVD):

Uji=U;i-U, ie{l,2....F}, je{l,2,...,S). (9)
Computing the SVD of the matritfdjj has the form,
U=uzVv', (10)

where matrixU has a size of x F and it is constructed by the eigenvectﬁr@T.
Matrix V has a size 08 x S and it is constructed by the eigenvectﬁrTsJJ. They are
unitary matrices and the matri is a diagonal matrix of siz& x S. The non zero
values off are the singular values of mattixand are listed in decreasing order. The
singular values provide a criteria (truncation point) fooosing the number of optimal
basis function®. A formulation is given to calculate the energy capturedfitbe full
system:

_ 2:::1 /li
iS:l A’
whereE represents the energy of the snapshots captured by thie @D basis func-
tions. If the singular values decay fast, most of the 'eneirgyhe original dynamic
system can be captured only by a small number of leading PQI3 hanctions pro-
vided we satisfy the Kolmogorov n-width condition.
The POD basis functions can be defined as the column vectts afatrixU [53]

(11)

D =U.;, forje{l,2...S}. (12)

(13)
These functions are optimal in the sense that no otherPas#t of basis functions can
be closer to the matrill in the Frobenius norm. Thatis, if the fif8tasis functions are
used, the resulting matrix is the closest possible to theixétin the relevant norm.

In addition, the POD basis functions are orthonormal sitgerhatrixU is unitary.

After obtaining the POD basis functions, the solution ofoedtly u and pressure (free
surface) can be represented by the expansion:

P P
U=U+Za’u,j®u,j, p:ﬁ-’-zap’j@p’j’ (14)
j j

wherea denote the expansion déieients.



4.2. The Smolyak sparse grid interpolation algorithm

In this work, the Smolyak sparse grid interpolation meth®dsed to construct a
set of hyper-surfaces representing the reduced fluid sydtethis section, the sparse
grid interpolation presented by Smolya#4] is described. The Smolyak sparse grid
interpolation algorithm is anficient method that is used to approximate a high di-
mensional function. The advantage of using Smolyak spardésgthat it selects only
a small number of nodes from the full tensor-product gridisthesulting in compu-
tational eficiency. It uses a parameter, approximation ldved control number of
Smolyak sparse nod&s

For one dimensional problems, a functibean be approximated by the formulae,

O

UD(F) = " 1(€).(](©), (15)

i=1

whereQ; is the number of nodes at this dimension, superstigpthe approximation
level, w is a weighting cofficient andf (&) denotes the value of the functidnat
locationg;.

For d-dimensional problem, a functidncan be approximated using a full tensor
product, that is, has a form of,

O, Oy
Uhe--aUl)(f)=) - f(@, .40 e 0w, (16)
i1=1 ig=1

whereQy,, O,...0;, are number of nodes used in dimensioy2(1d) respectively,

f(fi'i, g—‘l'j) represents the function value at a poifi\lt,(...,fi'j) on the full tensor prod-

uct grid. The number d,, can be determined by the Clenshaw-Curtis quadrature rule,
andOy, = 291 + 1 [55]. However, the full tensor product interpolationfiars from

the problem of "curse of dimensionality’, that is, the numb&nodesO;;, x ... x O,
increases exponentially with the number of dimensihrtbus resulting in an intensive
computational cost. The Smolyak sparse grid interpolagigorithm is a method to
deal with the issue of 'curse of dimensionality’. The keydds this method is that

it selects the important nodes rather than all the nodes msoteproduct grid. The
interpolant has the following expression:

A _ d-1
fdvta= > ™ ”'( d+1-I| )(Uh@m@Uld)’ 4
maxd, +1j<|l|<d+!

wherel|l| = 11 + --- + Ig, | is a point index on each dimension, and for eéch e
{1,2,...d}, it has a maximum value of number of nodes in this dimensjdhat is,
1 < I; £ Q. The Smolyak interpolation uses the following formulationchoose
nodes 56|,

d<li+l+--+lg=>d+1. (18)

The number of the Smolyak sparse grid poiRtis determined by the approximation
levell and the dimension sizeé (for 2D examples, see Figufy andR =~ f—fd' [57].
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(a) Smolyak grid, levetl  (b) Smolyak grid, levet2  (c) 2-D tensor product

Figure 1: The figure shows the 2-D smolyak sparse grid witkllév(left), 2-D smolyak sparse grid with
level 2 (middle) and full tensor product grid (right).

The Smolyak formulation generates sparse grid points uptohathe functionf is
evaluated on the Smolyak sparse points, thus increasingotingutational ficiency
in comparison with the tensor product evaluations.

4.3. Constructing a NIROM for free surface flows using Sniosgarse grid

This section describes the method for constructing a NIROMree surface flows
using POD and Smolyak sparse grid interpolation methodrdestin sectiong.land
4.2 The flow chart of constructing and solving the NIROM is griaphy presented in
figure2. The process can be essentially divided into the steps below

(1) Form a number of POD basis functions for velocity and sues (free surface)
which are used to construct the reduced order spaces;

(2) Construct the NIROM where the Smolyak sparse grid irtiatpon method is used
to generate a set of hyper-surfaces;

(3) Solve the NIROM at each time step and project the PODhodents onto the full
space, that is, the velocity, pressure and free surfacétaigach time step;

(4) Update 3D unstructured elements as the free surfaceswabeach time step.

The key of the NIROM lies in the second step, that is, consitiga set of Smolyak
interpolation functions (hyper-surfaces),(j € {1,2,...P}), which has the form of

n+l _
i =

where P is the number of POD bases. The input variables ofrtiadyak interpolation
functioanj is complete set of POD cfiicientsa” = (aﬂyl, aﬂyz, . aﬂvp, “8,1’ agyz, . agyp)
at the previous times step The output of the Smolyak interpolation functicf;jnis the

j'" POD codficiente™? at time stemn + 1. A detailed algorithm describing the steps
of constructing the NIROM for free surface flows is outlinagilgorithml, where, the
interpolation function values need to be determined onlthatSmolyak sparse grid
nodes rather than on the full tensor product grid, thus tieguin an impressive com-
putational economy. The online algoritlthpresents the process of obtaining solutions
using NIROM. After obtaining the POD céiients, the solutions can be obtained by
projecting back the POD cfients on the full space. Then, the last step is to up-
date the free surface values at all finite element nodes aneh@sh locations, this is
achieved by keeping the coordinates of x and y of each nodeeshranchanged and
replacing the z-direction with the new free surface valuesat node.

c.on n n n n n ;
a filay 1, @y @y ps @y 1 Ao, s ap’P), je{l2,...P}, (29)



Algorithm 1: POD-Smolyak NIROM algorithm for free surface flows

(1) Generate the snapshots for velocity and pressure (firégcg) over the time
period [1- N¢] by running the full model;

(2) Obtain the POD bases for velocily, and pressure (free surfacg) using the

POD method,;

(3) Generate a set of Smolyak sparse nadés= (a}°, a}°, ..., a}°) (where
re{l,2,...,R}, Risthe number of sparse points to be chosen) at the fulbtens
product grid:

[Amin, Amad = [@1min @1mad - -+ ® [a'j,min, afj,ma)& - ® [apmin, @Pmax Wherea’j,min
andajmaxare the minimum and maximum values of §f#&POD codficient;

(4) Obtain the function values;! = fj(a"°) associated with the Smolyak sparse
nodes through running the full model one time step:
for n=1to Rdo

(i) Determine the initial conditiog"° for the full model by projecting"° onto

the full space, wherg denotes any variable in the full model, for example,
the velocity components,, uy andu,, and the pressure (free surfage)

(i) Determine the full solutiony™! by running the full model one time level;

(iii) Calculate the the function vaIUrerj’l at sparse point by projectings"! onto
the reduced order space;

end for
(5) Give a set oty’j’l, and then construct the interpolation functif;nj €{1,2,...,P}
using (L7);

(6) Initialize velocitya!;° and pressure (free surfaaﬁ',)o, and give them to the
interpolation functiorf;, j € {1,2,..., P} to obtain solutions for current time step
using online algorithm3).
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Figure 2: The flow chart of the NIROM.

Algorithm 2 : Online algorithm of NIROM for free surface flows

(1) Initialize velocitya,"? and pressure (free surfacgy? ;

(2) Calculate solutions at current time step using follaylivop: ;

forn=1to N do

for j=1toPdo
Calculate the solution(POD cfieients for veIocityaﬂm and pressure
(free surface)xgyry j) at current time step by

n-1

n-1 _n-1 n-1 _n-1 n-1
,1’auz""’amP’apl’apz""’apP

a] = fi(e]

end for

(i) Calculation of velocity components and pressure (free suaite)(ug, u)’,‘,
uz andpy) by projectinga] onto the full space,
uf = T + @%*", W) =T + ®¥a¥", U) =T + 0%, p" =p° + DPaP".
(ii) Updating of the free surface values at all nodes and 3D meshdations

(keeping the coordinates of x and y unchanged, replace tliegtion with
the new free surface value at each node).

end for
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5. Numerical Examples

The capability of the new non-intrusive reduced order mddeBD free surface
flows is numerically illustrated in this section. This ilttegtion is based on two nu-
merical test problems: a Balzano test case and a Okushiratsiutest case5g]. A
pressurdree-surface kinematic boundary condition is enforcedhim wetting zones
and a no-normal flow and positive water level boundary coomktare applied to the
drying zones. The free surface movement is represented tigalemesh shifting.
Evaluation of accuracy of the NIROM for 3D free surface flovaswarried out through
comparison of POD solutions with those obtained from thdn Hidelity model. The
high fidelity model solutions were obtained through the usarounstructured mesh
finite element method ocean model (Fluidity, developed kyApplied Modelling and
Computation Group at Imperial College Londcé®]).

From these full model simulations the snapshots of the iemlutariables were
taken. Snapshots are recorded at certain time levels, &nple, every five time levels
or every ten time levels. The larger the number of snapstwshigher the accuracy
of the NIROM. In realistic applications, the use of too largenumber of snapshots
may result in a computationally unafordable method. This mtivated the opti-
mal selections of the time levels used as the snapshotsr iexEomple Kunisch and
Volkwei[60, 61]. The optimal time levels are chosen in such a way that ther -
tween the high fidelity model and NIROM is minimised. Throubese snapshots, the
reduced order models were then formed and used to re-s@\vmdiblems.

5.1. Case 1: Balzano test cases

The first example used for validation of the new NIROM was tla@zBno test
case (proposed by Balzano in 1982][for benchmarking dferent wetting and drying
methods). S.W. Funket al. extended the benchmarks to a 3D problem to test a wetting
and drying algorithm using Fluidityg]. In this work, a slope with a linear ascending
test case was chosen to show the capability of the NIROM dpeel here for free
surface flows. The geometry of the problem was first consttetith a 2D domain
consisting of a slope with size of 13.8 km and a depth of zer@nat one end and five
meters at the other end. In order to obtain a 3D domain, thid@Dain was extruded
to a width of 1km (see figurs).

A sinusoidal water level changes with a magnitude of two msed@d 12 hours is
applied to the five meters end (deep end of the computatiamahh) to trigger the
flows. No normal flow boundary conditions are applied at badkes the bottom and
the shallow end of the slope. A Mannin§trickler drag with & 0.02snE is applied
at the bottom. The gravity is 9.81s2.

The problem was simulated for a period of 50000 seconds, dintksstep size of
At = 500swas used. From the full simulation by running Fluidity, wéth unstructured
finite element mesh of 180 nodes and 354 elements, 100 sriapgére obtained at
equally spaced time intervals for each of theuy, u, andp solution variables during
the simulation period. AP; — P; finite element pair was used. The NIROM was
constructed from the 100 snapshots (taking a snapshot txerystep) and then used
to test the problem during the simulation period.
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Figure 3: Balzano case: The computational domain and meshind8alzano case.

Figure 4 shows the singular values in decreasing order. It can be thetrihe
singular eigenvalue curve decreases drastically betviesfirst two leading POD basis
functions,i.e. satisfying Kolmogorov conditiond3]. In this case, 98% of 'energy’
in the original flow dynamic system is captured with use ofyothiree POD basis
functions with 100 snapshots . In this work, two and six POBid&unctions were
chosen to generate the reduced order model using the Smepgake grid method
described above.

Figure5 shows the solutions of pressure from the full model and NIRGghg
2 and 6 POD basis functions at time instance? $@&nd 25s. A good agreement is
achieved between the high fidelity full solutions and reduasder results. To further
estimate the accuracy of NIROM, the pressure solutions airticplar location X =
2968 m,y = 686.25m, z = 0) within the domain (black point in figur® are plotted in
figure7. Again, it can be seen that the results of NIROM with both 2 @&RDD basis
functions are in agreement with those from the full model.

To evaluate the accuracy of NIROM solutions, figBrehows the error of pressure
solutions between the full model and NIROM with 2 and 6 PODib&sctions at
time instances 1@ and 25 seconds. It is shown that the error of pressure spfuti
from NIROM using 6 POD basis functions is smaller than thabhgi® POD basis
functions. The error of pressure solutions at all nodesrihién analysed by RMSE and
correlation cofficient. The RMSE and correlation d@ieient of pressure solutions are
given in figures8 and9 respectively, which shows the accuracy of NIROM is improved
by increasing the number of POD basis functions. The RMS&difNIROM using 6
POD basis functions in figuri@(a) looks like a straight line since the error is small. In
order to see it clearly, it has been zoomed in, as shown indigb). It can be seen
in figure 9, the correlation caécient line of NIROM with 6 POD basis functions is
more closer to 1 than that with 2 POD basis functions. Theetation codficient is a
statistical number of the strength of a relationship betwta® variables. If it is close
to 1, it means that the two variables are strongly correlated

To further demonstrate the predictive capability of NIRQR;M® simulation period
is extended from 50000 seconds to 70000 seconds. In figlitbe pressure solutions
at a particular point = 22179m,y = 47514m,z = 0), obtained from both the
high fidelity model and NIROM, are given during the period{0000sg]. It is shown
that the NIROM, built-up on the full solution during the tnaig period [Q50000g] is
able to provide promising results during the predictiveqef50000s, 70000s]. More
recently, we have further extended the NIROMs proposedsmbrk to parameterized
physical problemsH2]. In that work, we used another hyper-surface to repregent t
varying parameter space. The NIROMs are then constructed &molyak sparse grid
points in the parameter space. The predictive capabilitybieeen assessed by varying
the boundary conditions and initial conditions, s&# [
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(left panel) and 25 (right panel). Top panel: the full modeiddle panel: NIROM using 2 POD bases; and
bottom panel: NIROM using 6 POD bases.
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5.2. Case 2: Okushiri tsunami test case

The second case is a Okushiri tsunami test case. In 1993, kheh@®i tsunami
struck Okushiri Island and generated huge run-up heightdrobst 30 meters and
currents of order of approximate 10-18 meters per secondirsri, Japan, which
was a natural disaster. A400 laboratory model of this area was constructed at Central
Research Institute for Electric Power Industry in Abikopda [64]. The laboratory
data resembles closely the realistic bathymetry. S.W. Ew@tlal. used this laboratory
model as a benchmarkto set up a model using Fluii. [The computational domain
is 5.448mx 3.402min horizontal and the free surface is extruded to the bathmynaad
coastal topography in vertical (see figur®. A water height representing a tsunami
wave is imposed to the left boundary and no normal flow boundanditions are
enforced to the bottom and other sides resembling the solidhdbaries. The tsunami
input wave boundary conditions were determined from a seréevation profile, see
figure 11. The threshold value of wetting and dryingy) is set to be Gmmin dry
area to prevent non-physical flows in numerical simulati®he isotropic kinematic
viscosity is set to be 0.002%¢s 1. The acceleration of gravity magnitude is 9ra%>.

A P; — P4 finite element pair is used to solve the equations. In thiskwibre model
which is set up by Fluidity is used to evaluate the prediat&pability of the NIROM.

The tsunami problem was simulated using Fluidity for a pad 26 seconds,
and a time step size dft = 0.2swas used. From the full model simulation, with a
unstructured finite element mesh of 6830 nodes and 20058alsm100 snapshots
were obtained at equal time intervals for each of heuy, and p solution variables
between the simulation period. The NIROM was constructethfthe 100 snapshots
(taking a snapshot every time step) within an time inter@a2] s, a part of the full
modelling run. In this test case, the main tasks were theiatiahs of (1) the accuracy
of NIROM during the time period [®0] s; and (2) the predictive capability of NIROM
during the time period [2@26] s.

Figure 14 shows the froninterface of wetting and drying. It can be seen that the
shape of the computational domain is changing as the frdacgukeeps moving up
and down. Figuré.5 shows the solutions of pressure from the high fidelity model a
NIROM using 18 POD basis functions at time instantes 10.2 andt = 152. The
difference between the high fidelity model and NIROM using 18 P@sidfunctions
is also given in this figure. To further evaluate the perfanoesof NIROM, the absolute
error between the high fidelity model and NIROM using 6, 12 48dPOD basis func-
tions is given in figurel6. Again, it is shown that the error of the NIROM decreases
as the number of POD basis functions used increases. Flgiskows the solutions
of full model and the NIROM model usingfiiérent number of POD basis functions at
the point k = 0.6595m,y = 1.63m) in the domain (point id 688 in figur&?). It can
be seen that the NIROM using more POD basis functions gesecto the solution of
the full model.

The more POD basis functions are chosen, the more energyedyitem will
be captured. The ratio of energy captured can be quantifieehjbgtion {1). This
can also be evaluated by figut® which shows the singular values of tsunami case
in decreasing order of magnitude. The 6 POD basis functiapsuce 92.8% of the
energy and 12 POD basis functions capture almost 98% of #wggn
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In order to assess the prediction capabilities, the NIROM lalt during the time
period [Q 20s] and it was run further to 26 seconds. Figurgshows solutions of
pressure from the high fidelity model and NIROM at time insst = 26s. The
comparison of pressure solutions at two particular poixts 8.5696m,y = 1.6994m,
pointid 760 in figurel?) and & = 4.9306m,y = 1.9685m, point id 2510 in figurel2)
are presented in figurE. It can be seen that the results of NIROM are promising at
the point ¢ = 4.9306m,y = 1.9685m) during the predictive time period [2)26 9]
although the error is slightly larger at € 3.5696m,y = 1.6994m). Figure20 shows
the velocity and pressure solutions at the point< 1.6892m,y = 2.1783m, point
id 596 in figurel?2). Again, the solutions from both the high fidelity and NIROM
solutions are in good agreement. The error in the predictyability has been further
analysised using the RMSE and correlationfiognt which consider all nodal values
on the computational mesh. The correlationfio&nt of solutions between the high
fidelity full model and NIROM is computed for each time stepdas defined for given
expected valuesg} , andyp; ., and standard deviations; , ando,n
COrr (N o) = COMMX 11> X nirom) _ EQctun - O-X?u”)(XrQirom - O-)(ﬂimm). (20)

n n n n
O—Xfu\l O-Xnirom O-Xfull O—erom

whereE denotes mathematical expectatiooydenotes covariance,denotes standard
deviation. The measured error is given by the root mean saqranr (RMSE) which is
calculated for each time steyby,

RMSE — \/Zi'\il(xrf]ull,i'\l_/\/ﬂiromi)zl 1)

In this expressio}, ; andxy;.,; denote the full and NIROM solutions at the ndde
respectively, and represents number of nodes on the full mesh.

The figure21 shows the RMSE and correlation ¢heient values between the high
fidelity full model and predicted NIROM. As shown in the figutiee error is acceptable
and the correlation cdiécient is above 90% during the predictive period.

Table 1 shows the online CPU cost required for simulating the highlifig full
model and NIROM for each time step. It is worth noting that tiidine CPU time
(seconds) required for running the NIROM during one time $seonly 0.004, while
the full model for tsunami case and Balzano are 30.84992 at8D0 respectively. The
simulations were performed on 12 cores workstation of ael(R) Xeon(R) X5680
CPU processor with 3.3GHz and 48GB RAM. The two cases wera&rsarial, which
means only one core was used when running the test casesmiheaded for the full
model roughly equals to the time of assembling and solvieglibcretised matrices in
equation ). The CPU cost of the full model is dependent on the resaiutfomesh,
which means the computation time increases when finer mesteds

The diline cost required includes the time for forming the POD basistions and
the hypersurfaces. The time for the hypersurfaces can lmeagn The computational
cost for forming the basis functions is related to the nunadf@odes, POD basis func-
tions and snapshots. Tali¥dists the diline CPU cost required for forming the basis
functions using dtferent numbers of POD basis functions.
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Figure 11: Okushiri tsunami case: Water level profile redemglthe tsunami input wave.

Figure 12: Okushiri tsunami case: The computational doraathunstructured meshes used.
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Table 1: Comparison of the online CPU time (seconds) reduive running the full model and NIROM
during one time step.

Cases Model assembling| projection | interpolation nonlinear total
and solving iteration times
Okushiri Fullmodel | 7.71248 0 0 4 30.84992
tsunami case NIROM 0 0.003 0.001 0 0.0040
Balzano | Full model 0.0520 0 0 15 0.7800
case NIROM 0 0.003 0.001 0 0.0040
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Figure 14: Okushiri tsunami case: Wetting and drying frafark line) at time instances B® (left panel)
and 1875 (right panel) seconds.
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Figure 15: Okushiri tsunami case: The solutions and errbpsassure from the full model and NIROM at
time instances 10 (left panel) and 12 (right panel). Top panel: the full model; middle panel: KI&ROM
using 18 POD basis functions; bottom panel: error betweerfuthmodel and NIROM using 18 POD basis
functions.

Table 2: Giline computational cost (seconds) required for constrgdd®D basis functions usingftérent
numbers of POD basis functions.
Number of POD bases 2 6 18 nodes| snapshotsg

Balzano test case | 0.143| 0.144| 0.152 | 180 100
Number of POD bases 6 12 18 nodes| snapshotsg
tsunamitestcase | 10.59| 11.03| 11.512| 6830 100
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Figure 16: Okushiri tsunami case: Théfdience of pressure solutions between the full model and MIRO
using 6, 12 and 18 POD basis at time instance {l6ft panel) and 12 (right panel) seconds.
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Figure 17: Okushiri tsunami case: The comparison of pressuiutions between the full model and NIROM
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Figure 18: Okushiri tsunami case: The solutions of preséara the full model (top) and NIROM con-
structed during time period [@0s] (middle) and [026 5] (bottom)at time instances 26
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Figure 19: Okushiri tsunami case: The comparison of pressalutions between the full model, the NIROM
constructed during time period,[20] and [Q26] at locations X = 3.5696m,y = 1.6994m) and k =
4.9306m,y = 1.9685m).
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Figure 20: Okushiri tsunami case: The comparison of velanid pressure solutions between the full model,
the NIROM constructed during time period [0,20] s and [0,26} locationsX = 1.6892m,y = 2.1783m).
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6. Conclusions

In this work a non-intrusive reduced order model, based enSimolyak sparse
grid method has been, for the first time, developed for 3D $teéace flows and imple-
mented under the framework of advanced 3D unstructured firghelement ocean
model (Fluidity). The Smolyak sparse grid method is usedoiastruct a set of inter-
polation functions representing the reduced system. Tdedurface flow NIROM is
generated from the POD bases derived from the snapshotse Bnapshots are the
full solutions recorded at selected time levels where theaildeof ocean flow dynamics
(velocity, pressure, waves, eddies, wetting-drying fretat) are included. The per-
formance of the new POD-Smolyak 3D free surface flow NIROMlissirated using
two numerical test cases: Balzano test case and Okushiditsiucase. To estimate
the accuracy of the NIROM, the results obtained from the fnadace flow NIROM
have been compared against those from the high fidelity oueaiel. It is shown that
the accuracy of solutions from free surface flow NIROM is naiimed while the CPU
cost is reduced by several orders of magnitude. An erroyaisahas also been carried
out for the validation of the free surface flow NIROM througingparing the results
with results of high fidelity full model. The NIROM shows a gbagreement with the
high fidelity full ocean model. It was also shown that the alacy can be improved by
increasing the number of POD bases.

Importantly, the predictive ability of NIROM was tested [ fiest case 2, by pre-
dicting, with good accuracy, the dynamics of the final parthef time domain that
the NIROM had not seen before. This is a small step towardwisigathat NIROM
can have 'predictive skill'. Thus, the free surface NIROMyntwave a role to play in
applications to uncertainty analysis, optimisation anh@asimilation where massive
numbers €.g. hundreds or thousands) of runs of the ocean model are relquiitas
will be our focus in future work. More recently, parametri©Rs for various param-
eter inputs (e.g. boundary conditions) have been developdyper-surface can also
be constructed for various parameter inputs using Smolpakse grids (for details,
see b2)). This work will be combined, in our future work, with the ROM developed
here for 3D free surface flows.

Since NIROM works just from the snapshots of the forward tofuit is ideally
placed to construct rapid surrogate models from complexattiad codes (e.g. multi-
physics codes) and commercial software where the sourcescax@ unavailable or
difficult to modify. However, unlike many intrusive ROMs NIROMsaynhave difi-
culty in achieving conservation as there is no underlyingseovation equation - just an
approximation to it. In the longer term these conservatsaés need to be addressed.
Future work will investigate thefiects of applying this new NIROM to more com-
plex free surface flows (for example, urban flooding), vagysarametric non-intrusive
cases and applications to uncertainty analysis, optifoisabntrol and data assimila-
tion.
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