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1. Abstract

In this article, we describe a novel non-intrusive reduction model for three-dimensional
(3D) free surface flows. However, in this work we limit the vertical resolution to be a
single element. So, although it does resolve some non-hydrostatic effects, it does not
examine the application of reduced modelling to full 3D freesurface flows, but it is an
important step towards 3D modelling. A newly developed non-intrusive reduced order
model (NIROM) [1] has been used in this work. Rather than taking the standard POD
approach using the Galerkin projection, a Smolyak sparse grid interpolation method
is employed to generate the NIROM. A set of interpolation functions is constructed to
calculate the POD coefficients, where the POD coefficients at previous time steps are
the inputs of the interpolation function. Therefore, this model is non-intrusive and does
not require modifications to the code of the full system and iseasy to implement.

By using this new NIROM, we have developed a robust and efficient reduced or-
der model for free surface flows within a 3D unstructured meshfinite element ocean
model. What distinguishes the reduced order model developed here from other exist-
ing reduced order ocean models is (1) the inclusion of 3D dynamics with a free surface
(the 3D computational domain and meshes are changed with themovement of the free
surface); (2) the incorporation of wetting-drying; and (3)the first implementation of
non-intrusive reduced order method in ocean modelling. Most importantly, the change
of the computational domain with the free surface movement is taken into account
in reduced order modelling. The accuracy and predictive capability of the new non-
intrusive free surface flow ROM have been evaluated in Balzano and Okushiri tsunami
test cases. This is the first step towards 3D reduced order modelling in realistic ocean
cases. Results obtained show that the accuracy of free surface problems relative to the
high fidelity model is maintained in ROM whilst the CPU time isreduced by several
orders of magnitude.
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2. Introduction

The numerical simulation of ocean modelling is important toa wide range of ap-
plications such as atmosphere, sea ice, climate prediction, biospheric management and
especially natural disasters (for example, flood and tsunami). The natural disasters of-
ten cause big losses and tragic consequences. In order to reduce the losses, a real-time,
early-warning and rapid assessment model is required. In comparison to 2D modelling,
3D ocean modelling provides better understanding and much more information about
local flow structures, vertical inertia, water level changes, unsteady dynamic loads on
structure interacting with fluids, flow structures close to islands and dikes etc. How-
ever, the majority of existing 3D ocean models suffer from an intensive computational
cost and cannot respond rapidly for tsunami forecasting. Inthis case, model reduction
technology has been presented to mitigate the expensive CPUcomputational cost since
the model reduction technology offers the potential to simulate complex systems with
substantially increased computation efficiency.

Among existing model reduction techniques, the proper orthogonal decomposi-
tion (POD) method has proven to be an efficient means of deriving the reduced basis
functions for high-dimensional nonlinear flow systems. ThePOD method and its vari-
ants have been successfully applied to a number of research fields, for example, signal
analysis and pattern recognition [2], statistics [3], geophysical fluid dynamics and me-
teorology [4], ocean modelling [5, 6, 1, 7], large-scale dynamical systems [8], ecosys-
tem modelling [9], data assimilation of wave modelling [10, 11], ground-water flow
[12], air pollution modelling [13], shape optimisation [14], aerospace design [15, 16],
lithium-ion batteries convective Boussinesq flows [17], mesh optimisation model [18]
and also shallow water equations. This includes the work of Stefanescuet al. [19, 20],
Daescu and Navon [21, 22], Chenet al. [23, 24], Du et al. [25] as well as Fanget al.
[26, 27].

However, the standard reduced order modelling is usually generated through POD
and Galerkin projection method, which means it suffers from instability and non-
linearity efficiency problems. Various methods for improving numerical instability
have been developed such as regularisation method [28], Petrov−Galerkin [5, 26],
method of introducing a diffusion term [29, 30] and Fourier expansion [31]. For non-
linear efficiency problems, a number of methods have been proposed including em-
pirical interpolation method (EIM) [32] and discrete empirical interpolation method
(DEIM) [33], residual DEIM (RDEIM) [34], Gauss−Newton with approximated ten-
sors (GNAT) method [35], least squares Petrov−Galerkin projection method [29], and
quadratic expansion method [36, 27].

However, those methods are still dependent on the full modelsource codes. In
many contexts, the source codes governed by partial differential equations need to be
modified and maintained. Developing and maintaining these modifications are cum-
bersome [37]. To circumvent these shortcomings, non-intrusive approaches have been
introduced into ROMs. Chen presented a black-box stencil interpolation non-intrusive
method (BSIM) based on machine learning methods [37]. D. Wirtz et al. proposed the
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kernel methods where the learning methods are based on both support vector machines
and a vectorial kernel greedy algorithm [38, 39]. Audouzeet al. proposed a non-
intrusive reduced order modeling method for nonlinear parametrized time-dependent
PDEs using the radial basis function approach and POD [40, 41]. Klie used a three-
layer radial basis function neural network combined with POD/DEIM to predict the
production of petroleum reservoirs [42]. Walton et al. developed a NIROM for un-
steady fluid flows using the radial basis function (RBF) interpolation and POD [43].
Noori [44] and Noack [45] applied a neural network to construct the ROM. Xiaoet
al. presented a non-intrusive reduced order modelling method for Navier-Stokes equa-
tions based on POD and the RBF interpolation [7] and applied it successfully into
fluid-structure interaction problems [46, 47]. The CPU computational times are re-
duced by several orders of magnitude by using this POD-RBF method. Xiaoet al.
also introduced the Smolyak sparse grid interpolation method into model reduction to
construct the NIROM [1].

POD ROM approaches have been applied to ocean problems [48, 27, 49, 50]. Dao
et al introduced ROM into tsunami forecasting [49], and Zokagoa and Soulaimani [50]
used POD/ROM for Monte-Carlo-type applications. In their work, the POD-based
reduced-order models were constructed for the shallow water equations. In shallow
water modelling, however there are some errors in results when involving ocean prob-
lems like radical topography changes, short waves and localflows around the buildings
or mountains. The work of Fanget al [48, 27], Du et al [36], and Xiaoet al [5] in-
troduced POD ROM for 2D/3D Navier-Stokes unstructured mesh finite element fluid
modelling. However 3D free surface flow examples were not included in their work
due to the difficulty in implementation of intrusive POD-ROMs. The implementation
difficulty was caused by the change of both the computational domain and 3D unstruc-
tured meshes with free surface movement. However, NIROM is capable of handling
this issue easily.

This paper, for the first time, constructs a NIROM for free surface flows in the
framework of an unstructured mesh finite element ocean model. This is achieved by
using the Smolyak sparse grid interpolation method. The Smolyak sparse grid method
is a widely used interpolation method and is used to overcomethe curse of dimen-
sionality. It was also used for uncertainty quantification for electromagnetic devices
[51] where the Smolyak sparse grid was used to calculate statistically varying material
and geometric parameters which were the inputs of the ROM. Xiao et al. first used
Smolyak sparse grids to construct ROM [1] and it has been shown to be a promising
non-intrusive method for representing complex physical system using a set of hyper-
surface interpolating functions. The NIROM can be treated as a black box, which uses
a set of hypersurfaces constructed based on the Smolyak sparse grid collocation method
to replace the traditional reduced order model. The errors in the NIROMs come from:
the POD function truncation error (the ability of the basis functions to represent the
solution), the error associated with having just a certain number of solution snapshots
(rather than the solution at all time steps) and the error from the calculation of the
NIROM solution (for more details, please see [52]) using, for example, sparse grids or
Radial Basis Functions.

In this work, the newly presented NIROM method based on Smolyak sparse grids
is applied to complex ocean free surface flows. The capability of newly developed
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NIROM for 3D free surface flows are numerically tested and illustrated in Balzano and
Okushiri tsunami test cases. The main novelty of this work isthe inclusion of 3D flow
dynamics with a free surface and the wetting-drying front. The solutions from the full
fidelity ocean model are recorded as a sequence of snapshots,and from these snapshots
appropriate basis functions are generated that optimally represent the flow dynamics.
The Smolyak sparse grid interpolation method is then used toform a hyper-surface that
represents the ROM. Once the hyper-surface has been constructed, the POD coefficient
at current time step can be obtained by providing the POD coefficients at previous time
steps to this hyper-surface. Numerical comparisons between the high fidelity model
and this NIROM are made to investigate the accuracy of this novel NIROM for free
surface flows.

The structure of the paper is as follows. Section3 presents the governing equations
of free surface flows. Section4 presents the derivation of the POD model reduction
and re-formulation of the governing equations using the Smolyak sparse grid method.
Section5 illustrates the methodology derived above via two numerical examples. This
is based on two test problems where the Balzano test case and Okushiri tsunami test
case are numerically simulated. Finally in section6 conclusions are presented and the
novelty of the manuscript is fully summarized and illuminated.

3. Three dimensional governing equations for free surface flows

3.1. 3D Navier-Stokes equations

The three dimensional incompressible Navier-Stokes equations with Boussinesq ap-
proximation and the conservative equation of mass are used in this work:

∇ · ~u = 0, (1)
∂~u
∂t
+ ~u · ∇~u = −∇p+ ∇ · τ. (2)

where the terms~u ≡ (ux, uy, uz)T are the velocity vector,p the perturbation pressure
(p := p/ρ0, ρ0 is the constant reference density). The stress tensorτ represents the
viscous forces:

τi j = 2µi j Si j , Si j =
1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

−
1
3

3
∑

k=1

∂uk

∂xk
, i, j = {x, y, z}, (3)

whereµ denotes the kinematic viscosity. The no-normal flow boundary condition is
applied on the bottom and sides of the computational domain:

~u · ~n = 0, (4)

where~n denotes the unit normal vector on boundary surface.

3.2. Combining kinematic free surface condition

The kinematic free surface boundary condition is expressedas follows:

∂η

∂t
= − ~uH

∣

∣

∣

z=η
· ∇Hη + uz|z=η on ∂Ωs, (5)
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whereη is the free surface elevation,∂Ωs ⊂ ∂Ω is the free surface boundary,∇H ≡

(∂/∂x, ∂/∂y)T, and~uH is the horizontal component of~u. Using the fact that the normal

vector~n at the free surface is
(− ∂η

∂x ,−
∂η
∂y ,1)T

||(− ∂η
∂x ,−

∂η
∂y ,1)T ||

, equation (5) can be reformulated to

∂η

∂t
=
~u · ~n

~n · ~k
, (6)

where~k = (0, 0, 1) is the vertical standard basis vector. Note that in spherical geome-
tries~k is replaced with~r = (sinθ cosφ, sinθ sinφ, cosθ) whereφ andθ are the azimuthal
and co-latitudinal angles respectively.

Taking into accountp = ρ0gη on the free surface∂Ωs, gives the combining kine-
matic free surface boundary condition:

~n · ~k
1
ρ0g

∂p
∂t
= ~n · ~u. (7)

In a wetting and drying scheme, a threshold valued0 is introduced to define the wet
and dry areas/interface. In order to prevent a non-physical flow, a thin layer is kept
equal to the threshold valued0 in dry areas. In wetting and drying, different boundary
conditions are applied on the free surface. A no normal flow boundary condition is
applied on dry areas while a kinematic free surface boundarycondition is used on wet
areas.

4. POD/Smolyak non-intrusive reduced order formulation

In this section, the method of constructing the NIROM for free surface flow prob-
lems is described. The essence of this method lies in how to construct a set of inter-
polation functions or hyper surfaces that represent the reduced free surface problem
system using the Smolyak sparse grid method. Firstly, the solutions from the high fi-
delity ocean model are recorded as a number of snapshots where the details of 3D free
surface dynamics (wetting-drying front, free surface heights, waves etc) are included.
Secondly, from these snapshots a number of basis functions,that optimally represent
the free surface flow dynamics, are then generated. Thirdly,the Smolyak sparse grid
interpolation method is used to form a set of hyper-surfacesthat represent the reduced
system. Once the hyper-surfaces have been constructed, thesolution of the NIROM, at
the current time level, can be obtained from reduced solution at the previous time level
using the hyper-surface functions.

4.1. The Proper Orthogonal Decomposition method

In this section, the POD theory is briefly described. The objective of the POD
method presented here is to extract a set ofP optimal basis functions from the snap-
shots recorded solutions of velocity and pressure (free surface) at a number of different
time levels. In this work the snapshots are obtained by solving the discretised form
of equations (2), which considers the free surface boundary condition. Four separate
matricesUx,Uy,Uz andUp representing velocity from different coordinates directions
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and pressure (free surface) are formed from the snapshots. Each matrix will be treated
in an identical way, so for the sake of simplicity of presentation, a general matrixU
is used for representing the four matrices. The dimension ofthe matrixU is F × S,
whereF andS denote the number of nodes on the finite element mesh and the number
of snapshots respectively. The mean of the snapshots is defined as:

Ui =
1
S

S
∑

j=1

U j,i, i ∈ {1, 2, . . . , F}. (8)

Taking the mean from the matrixU yields a new matrix̃U j,i , which is used for perform-
ing Singular Value Decomposition (SVD):

Ũ j,i = U j,i − Ui , i ∈ {1, 2, . . . , F}, j ∈ {1, 2, . . . ,S}. (9)

Computing the SVD of the matrix̃U j,i has the form,

Ũ = UΣVT , (10)

where matrixU has a size ofF × F and it is constructed by the eigenvectorsŨŨ
T
.

Matrix V has a size ofS × S and it is constructed by the eigenvectorsŨ
T
Ũ. They are

unitary matrices and the matrixΣ is a diagonal matrix of sizeF × S. The non zero
values ofΣ are the singular values of matrix̃U and are listed in decreasing order. The
singular values provide a criteria (truncation point) for choosing the number of optimal
basis functionsP. A formulation is given to calculate the energy captured from the full
system:

E =

∑P
i=1 λi

∑S
i=1 λi

, (11)

whereE represents the energy of the snapshots captured by the firstP POD basis func-
tions. If the singular values decay fast, most of the ’energy’ in the original dynamic
system can be captured only by a small number of leading POD basis functions pro-
vided we satisfy the Kolmogorov n-width condition.

The POD basis functions can be defined as the column vectors ofthe matrixU [53]
:

Φ j = U:, j , for j ∈ {1, 2 . . .S}. (12)

(13)

These functions are optimal in the sense that no other rankP set of basis functions can
be closer to the matrix̃U in the Frobenius norm. That is, if the firstP basis functions are
used, the resulting matrix is the closest possible to the matrix Ũ in the relevant norm.
In addition, the POD basis functions are orthonormal since the matrixU is unitary.
After obtaining the POD basis functions, the solution of velocity u and pressure (free
surface)p can be represented by the expansion:

u = u +
P

∑

j

αu, jΦu, j, p = p +
P

∑

j

αp, jΦp, j , (14)

whereα denote the expansion coefficients.
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4.2. The Smolyak sparse grid interpolation algorithm

In this work, the Smolyak sparse grid interpolation method is used to construct a
set of hyper-surfaces representing the reduced fluid system. In this section, the sparse
grid interpolation presented by Smolyak [54] is described. The Smolyak sparse grid
interpolation algorithm is an efficient method that is used to approximate a high di-
mensional function. The advantage of using Smolyak sparse grid is that it selects only
a small number of nodes from the full tensor-product grid, thus resulting in compu-
tational efficiency. It uses a parameter, approximation levell to control number of
Smolyak sparse nodesR.

For one dimensional problems, a functionf can be approximated by the formulae,

(U l)( f ) =
Ol
∑

i=1

f (ξl
i ).(ω

l
i(ξ)), (15)

whereOl is the number of nodes at this dimension, superscriptl is the approximation
level, ω is a weighting coefficient and f (ξi) denotes the value of the functionf at
locationξi .

For d-dimensional problem, a functionf can be approximated using a full tensor
product, that is, has a form of,

(U l1 ⊗ · · · ⊗ U ld)( f ) =

Ol1
∑

i1=1

· · ·

Old
∑

id=1

f (ξl1
i1
, ..., ξld

id
).(ωl1

i1
⊗ · · · ⊗ ωld

id
), (16)

whereOl1,Ol2...Old are number of nodes used in dimension (1, 2...d) respectively,
f (ξl1

i1
, ..., ξld

id
) represents the function value at a point (ξl1

i1
, ..., ξld

id
) on the full tensor prod-

uct grid. The number ofOld can be determined by the Clenshaw-Curtis quadrature rule,
andOld = 2ld−1 + 1 [55]. However, the full tensor product interpolation suffers from
the problem of ’curse of dimensionality’, that is, the number of nodesOl1 × ... × Old
increases exponentially with the number of dimensionsd, thus resulting in an intensive
computational cost. The Smolyak sparse grid interpolationalgorithm is a method to
deal with the issue of ’curse of dimensionality’. The key idea of this method is that
it selects the important nodes rather than all the nodes on tensor product grid. The
interpolant has the following expression:

f̂ (d+ l, d) =
∑

max{d,l+1}≤|I |≤d+l

(−1)d+l−|I | ·

(

d− 1
d+ l − |I |

)

(U l1 ⊗ · · · ⊗ U ld), (17)

where|I | = I1 + · · · + Id, I is a point index on each dimension, and for eachI i , i ∈
{1, 2, . . .d}, it has a maximum value of number of nodes in this dimensioni, that is,
1 ≤ I i ≤ Ol i . The Smolyak interpolation uses the following formulationto choose
nodes [56],

d 6 I1 + I2 + · · · + Id > d + l. (18)

The number of the Smolyak sparse grid pointsR is determined by the approximation
level l and the dimension sized (for 2D examples, see Figure1) andR ≃ 2d

l! dl [57].
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(a) Smolyak grid, level=1 (b) Smolyak grid, level=2 (c) 2-D tensor product

Figure 1: The figure shows the 2-D smolyak sparse grid with level 1 (left), 2-D smolyak sparse grid with
level 2 (middle) and full tensor product grid (right).

The Smolyak formulation generates sparse grid points upon which the functionf is
evaluated on the Smolyak sparse points, thus increasing thecomputational efficiency
in comparison with the tensor product evaluations.

4.3. Constructing a NIROM for free surface flows using Smolyak sparse grid
This section describes the method for constructing a NIROM for free surface flows

using POD and Smolyak sparse grid interpolation method described in sections4.1and
4.2. The flow chart of constructing and solving the NIROM is graphically presented in
figure2. The process can be essentially divided into the steps below:

(1) Form a number of POD basis functions for velocity and pressure (free surface)
which are used to construct the reduced order spaces;

(2) Construct the NIROM where the Smolyak sparse grid interpolation method is used
to generate a set of hyper-surfaces;

(3) Solve the NIROM at each time step and project the POD coefficients onto the full
space, that is, the velocity, pressure and free surface height at each time step;

(4) Update 3D unstructured elements as the free surface moves at each time step.

The key of the NIROM lies in the second step, that is, constructing a set of Smolyak
interpolation functions (hyper-surfaces) (f̂ j , j ∈ {1, 2, . . .P}), which has the form of

αn+1
j = f̂ j(α

n
u,1, α

n
u,2, . . . , α

n
u,P, α

n
p,1, α

n
p,2, . . . , α

n
p,P), j ∈ {1, 2, . . .P}, (19)

where P is the number of POD bases. The input variables of the Smolyak interpolation
function f̂ j is complete set of POD coefficientsαn = (αn

u,1, α
n
u,2, . . . , α

n
u,P, α

n
p,1, α

n
p,2, . . . , α

n
p,P)

at the previous times stepn. The output of the Smolyak interpolation functionf̂ j is the
jth POD coefficientαn+1 at time stepn+ 1. A detailed algorithm describing the steps
of constructing the NIROM for free surface flows is outlined in algorithm1, where, the
interpolation function values need to be determined only atthe Smolyak sparse grid
nodes rather than on the full tensor product grid, thus resulting in an impressive com-
putational economy. The online algorithm2 presents the process of obtaining solutions
using NIROM. After obtaining the POD coefficients, the solutions can be obtained by
projecting back the POD coefficients on the full space. Then, the last step is to up-
date the free surface values at all finite element nodes and 3Dmesh locations, this is
achieved by keeping the coordinates of x and y of each node in mesh unchanged and
replacing the z-direction with the new free surface value ateach node.
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Algorithm 1 : POD-Smolyak NIROM algorithm for free surface flows

(1) Generate the snapshots for velocity and pressure (free surface) over the time
period [1− Nt] by running the full model;

(2) Obtain the POD bases for velocityΦv and pressure (free surface)Φp using the
POD method;

(3) Generate a set of Smolyak sparse nodesαr,0 = (αr,0
1 , α

r,0
2 , . . . , α

r,0
P ) (where

r ∈ {1, 2, . . . ,R}, R is the number of sparse points to be chosen) at the full tensor
product grid:
[Amin,Amax] = [α1,min, α1,max] · · · ⊗ [α j,min, α j,max] · · · ⊗ [αP,min, αP,max], whereα j,min

andα j,max are the minimum and maximum values of thejth POD coefficient;

(4) Obtain the function valuesαr,1
j = f j(αr,0) associated with the Smolyak sparse

nodes through running the full model one time step:

for n = 1 to Rdo

(i) Determine the initial conditionψr,0 for the full model by projectingαr,0 onto
the full space, whereψ denotes any variable in the full model, for example,
the velocity componentsux, uy anduz, and the pressure (free surface)p;

(ii) Determine the full solutionψr,1 by running the full model one time level;

(iii) Calculate the the function valueαr,1
j at sparse pointr by projectingψr,1 onto

the reduced order space;

end for

(5) Give a set ofαr,1
j , and then construct the interpolation functionf̂ j , j ∈ {1, 2, . . . ,P}

using (17);

(6) Initialize velocityαr,0
u and pressure (free surface)αr,0

p , and give them to the
interpolation functionf̂ j , j ∈ {1, 2, . . . ,P} to obtain solutions for current time step
using online algorithm (2).
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Figure 2: The flow chart of the NIROM.

Algorithm 2 : Online algorithm of NIROM for free surface flows

(1) Initialize velocityαu
r,0 and pressure (free surface)αp

r,0 ;

(2) Calculate solutions at current time step using following loop: ;

for n = 1 to Nt do
for j = 1 to Pdo

Calculate the solution(POD coefficients for velocityαn
u,r, j and pressure

(free surface)αn
p,r, j) at current time step by

αn
j = f̂ j(αn−1

u,1 , α
n−1
u,2 , . . . , α

n−1
u,P , α

n−1
p,1 , α

n−1
p,2 , . . . , α

n−1
p,P )

end for

(i) Calculation of velocity components and pressure (free surface)(un
x, un

y,
un

z andpn
x) by projectingαn

j onto the full space,
un

x = ux
+ Φxαx,n, un

y = uy
+ Φyαy,n, un

z = uz
+ Φzαz,n, pn = pp

+ Φpαp,n.

(ii) Updating of the free surface values at all nodes and 3D mesh locations
(keeping the coordinates of x and y unchanged, replace the z-direction with
the new free surface value at each node).

end for
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5. Numerical Examples

The capability of the new non-intrusive reduced order modelfor 3D free surface
flows is numerically illustrated in this section. This illustration is based on two nu-
merical test problems: a Balzano test case and a Okushiri tsunami test case [58]. A
pressure/free-surface kinematic boundary condition is enforced in the wetting zones
and a no-normal flow and positive water level boundary conditions are applied to the
drying zones. The free surface movement is represented by vertical mesh shifting.
Evaluation of accuracy of the NIROM for 3D free surface flows was carried out through
comparison of POD solutions with those obtained from the high fidelity model. The
high fidelity model solutions were obtained through the use of an unstructured mesh
finite element method ocean model (Fluidity, developed by the Applied Modelling and
Computation Group at Imperial College London [59]).

From these full model simulations the snapshots of the solution variables were
taken. Snapshots are recorded at certain time levels, for example, every five time levels
or every ten time levels. The larger the number of snapshots,the higher the accuracy
of the NIROM. In realistic applications, the use of too larger a number of snapshots
may result in a computationally unafordable method. This has motivated the opti-
mal selections of the time levels used as the snapshots, in for example Kunisch and
Volkwei[60, 61]. The optimal time levels are chosen in such a way that the error be-
tween the high fidelity model and NIROM is minimised. Throughthese snapshots, the
reduced order models were then formed and used to re-solve the problems.

5.1. Case 1: Balzano test cases

The first example used for validation of the new NIROM was the Balzano test
case (proposed by Balzano in 1998 [62] for benchmarking different wetting and drying
methods). S.W. Funkeet al. extended the benchmarks to a 3D problem to test a wetting
and drying algorithm using Fluidity [58]. In this work, a slope with a linear ascending
test case was chosen to show the capability of the NIROM developed here for free
surface flows. The geometry of the problem was first constructed with a 2D domain
consisting of a slope with size of 13.8 km and a depth of zero meter at one end and five
meters at the other end. In order to obtain a 3D domain, this 2Ddomain was extruded
to a width of 1km (see figure3).

A sinusoidal water level changes with a magnitude of two meters and 12 hours is
applied to the five meters end (deep end of the computational domain) to trigger the
flows. No normal flow boundary conditions are applied at both sides, the bottom and
the shallow end of the slope. A Manning−Strickler drag with n= 0.02sm

1
3 is applied

at the bottom. The gravity is 9.81ms−2.
The problem was simulated for a period of 50000 seconds, and atime step size of

∆t = 500swas used. From the full simulation by running Fluidity, withan unstructured
finite element mesh of 180 nodes and 354 elements, 100 snapshots were obtained at
equally spaced time intervals for each of theux, uy, uz andp solution variables during
the simulation period. AP1 − P1 finite element pair was used. The NIROM was
constructed from the 100 snapshots (taking a snapshot everytime step) and then used
to test the problem during the simulation period.
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Figure 3: Balzano case: The computational domain and mesh used in Balzano case.

Figure 4 shows the singular values in decreasing order. It can be seenthat the
singular eigenvalue curve decreases drastically between the first two leading POD basis
functions,i.e. satisfying Kolmogorov condition [63]. In this case, 98% of ’energy’
in the original flow dynamic system is captured with use of only three POD basis
functions with 100 snapshots . In this work, two and six POD basis functions were
chosen to generate the reduced order model using the Smolyaksparse grid method
described above.

Figure5 shows the solutions of pressure from the full model and NIROMusing
2 and 6 POD basis functions at time instances 10.2 s and 25s. A good agreement is
achieved between the high fidelity full solutions and reduced order results. To further
estimate the accuracy of NIROM, the pressure solutions at a particular location (x =
296.8m, y = 686.25m, z= 0) within the domain (black point in figure3) are plotted in
figure7. Again, it can be seen that the results of NIROM with both 2 and6 POD basis
functions are in agreement with those from the full model.

To evaluate the accuracy of NIROM solutions, figure6 shows the error of pressure
solutions between the full model and NIROM with 2 and 6 POD basis functions at
time instances 10.2 and 25 seconds. It is shown that the error of pressure solutions
from NIROM using 6 POD basis functions is smaller than that using 2 POD basis
functions. The error of pressure solutions at all nodes is further analysed by RMSE and
correlation coefficient. The RMSE and correlation coefficient of pressure solutions are
given in figures8 and9 respectively, which shows the accuracy of NIROM is improved
by increasing the number of POD basis functions. The RMSE line of NIROM using 6
POD basis functions in figure8 (a) looks like a straight line since the error is small. In
order to see it clearly, it has been zoomed in, as shown in figure 8 (b). It can be seen
in figure 9, the correlation coefficient line of NIROM with 6 POD basis functions is
more closer to 1 than that with 2 POD basis functions. The correlation coefficient is a
statistical number of the strength of a relationship between two variables. If it is close
to 1, it means that the two variables are strongly correlated.

To further demonstrate the predictive capability of NIROMs, the simulation period
is extended from 50000 seconds to 70000 seconds. In figure10, the pressure solutions
at a particular point (x = 2217.9m, y = 475.14m, z = 0), obtained from both the
high fidelity model and NIROM, are given during the period [0, 70000s]. It is shown
that the NIROM, built-up on the full solution during the training period [0, 50000s] is
able to provide promising results during the predictive period [50000s, 70000s]. More
recently, we have further extended the NIROMs proposed in this work to parameterized
physical problems [52]. In that work, we used another hyper-surface to represent the
varying parameter space. The NIROMs are then constructed atthe Smolyak sparse grid
points in the parameter space. The predictive capability has been assessed by varying
the boundary conditions and initial conditions, see [52].
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Figure 4: Balzano case: The graphs shows the singular valuesin order of decreasing magnitude.

(a) Full model,t = 10.2 (b) Full model,t = 25

(c) NIROM (2 POD bases),t = 10.2 (d) NIROM (2 POD bases),t = 25

(e) NIROM (6 POD bases),t = 10.2 (f) NIROM (6 POD bases),t = 25

Figure 5: Balzano case: The solutions of pressure from the full model and NIROM at time instances 10.2
(left panel) and 25 (right panel). Top panel: the full model;middle panel: NIROM using 2 POD bases; and
bottom panel: NIROM using 6 POD bases.

(a) error from 2 POD basest = 10.2 (b) error from 2 POD basest = 25

(c) error from 6 POD bases,t = 10.2 (d) error from 6 POD bases,t = 25

Figure 6: Balzano case: The difference of pressure solutions between the full model and NIROM, using 2
and 6 POD bases at time instances 10.2 s (left panel) and 25s (right panel).

13



0 20 40 60 80 100
−20

−10

0

10

20

Timestep

P
re
ss
u
re

full model

2 POD bases

6 POD bases

Figure 7: Balzano case: The pressure solutions from the fullmodel and NIROM at location: (x =
296.8m, y = 686.25m, z= 0).
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intrusive reduced order models.(b) is an enlargement of (a).
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Figure 9: Balzano case: The correlation coefficient of pressure solutions between the full and non-intrusive
reduced order models.
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5.2. Case 2: Okushiri tsunami test case

The second case is a Okushiri tsunami test case. In 1993, the Okushiri tsunami
struck Okushiri Island and generated huge run-up heights ofalmost 30 meters and
currents of order of approximate 10-18 meters per second in Okushiri, Japan, which
was a natural disaster. A 1/400 laboratory model of this area was constructed at Central
Research Institute for Electric Power Industry in Abiko, Japan [64]. The laboratory
data resembles closely the realistic bathymetry. S.W. Funke et al. used this laboratory
model as a benchmark to set up a model using Fluidity [58]. The computational domain
is 5.448m×3.402min horizontal and the free surface is extruded to the bathymetry and
coastal topography in vertical (see figure12). A water height representing a tsunami
wave is imposed to the left boundary and no normal flow boundary conditions are
enforced to the bottom and other sides resembling the solid boundaries. The tsunami
input wave boundary conditions were determined from a surface elevation profile, see
figure 11. The threshold value of wetting and drying (d0) is set to be 0.5mm in dry
area to prevent non-physical flows in numerical simulation.The isotropic kinematic
viscosity is set to be 0.0025m2s−1. The acceleration of gravity magnitude is 9.81ms−2.
A P1 − P1 finite element pair is used to solve the equations. In this work, the model
which is set up by Fluidity is used to evaluate the predictivecapability of the NIROM.

The tsunami problem was simulated using Fluidity for a period of 26 seconds,
and a time step size of∆t = 0.2 s was used. From the full model simulation, with a
unstructured finite element mesh of 6830 nodes and 20058 elements, 100 snapshots
were obtained at equal time intervals for each of theux, uy and p solution variables
between the simulation period. The NIROM was constructed from the 100 snapshots
(taking a snapshot every time step) within an time interval [0, 20] s, a part of the full
modelling run. In this test case, the main tasks were the evaluations of (1) the accuracy
of NIROM during the time period [0, 20] s; and (2) the predictive capability of NIROM
during the time period [20, 26] s.

Figure14 shows the front/interface of wetting and drying. It can be seen that the
shape of the computational domain is changing as the free surface keeps moving up
and down. Figure15 shows the solutions of pressure from the high fidelity model and
NIROM using 18 POD basis functions at time instancest = 10.2 andt = 15.2. The
difference between the high fidelity model and NIROM using 18 POD basis functions
is also given in this figure. To further evaluate the performance of NIROM, the absolute
error between the high fidelity model and NIROM using 6, 12 and18 POD basis func-
tions is given in figure16. Again, it is shown that the error of the NIROM decreases
as the number of POD basis functions used increases. Figure17 shows the solutions
of full model and the NIROM model using different number of POD basis functions at
the point (x = 0.6595m, y = 1.63m) in the domain (point id 688 in figure12). It can
be seen that the NIROM using more POD basis functions gets closer to the solution of
the full model.

The more POD basis functions are chosen, the more energy of the system will
be captured. The ratio of energy captured can be quantified byequation (11). This
can also be evaluated by figure13 which shows the singular values of tsunami case
in decreasing order of magnitude. The 6 POD basis functions capture 92.8% of the
energy and 12 POD basis functions capture almost 98% of the energy.
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In order to assess the prediction capabilities, the NIROM was built during the time
period [0, 20s] and it was run further to 26 seconds. Figure18 shows solutions of
pressure from the high fidelity model and NIROM at time instancest = 26s. The
comparison of pressure solutions at two particular points (x = 3.5696m, y= 1.6994m,
point id 760 in figure12) and (x = 4.9306m, y = 1.9685m, point id 2510 in figure12)
are presented in figure19. It can be seen that the results of NIROM are promising at
the point (x = 4.9306m, y = 1.9685m) during the predictive time period [20s, 26s]
although the error is slightly larger at (x = 3.5696m, y = 1.6994m). Figure20 shows
the velocity and pressure solutions at the point (x = 1.6892m, y = 2.1783m, point
id 596 in figure12). Again, the solutions from both the high fidelity and NIROM
solutions are in good agreement. The error in the predictivecapability has been further
analysised using the RMSE and correlation coefficient which consider all nodal values
on the computational mesh. The correlation coefficient of solutions between the high
fidelity full model and NIROM is computed for each time step, and is defined for given
expected valuesχn

full andχn
nirom and standard deviationsσχn

f ull
andσχn

nirom
,

corr(χn
full , χ

n
nirom)n =

cov(χn
full , χ

n
nirom)

σχn
f ull
σχn

nirom

=
E(χn

full − σχn
f ull

)(χn
nirom− σχn

nirom
)

σχn
f ull
σχn

nirom

. (20)

whereE denotes mathematical expectation,covdenotes covariance,σ denotes standard
deviation. The measured error is given by the root mean square error (RMSE) which is
calculated for each time stepn by,

RMS En =

√

∑N
i=1(χn

full,i − χ
n
nirom,i)

2

N
. (21)

In this expressionχn
full,i andχn

nirom,i denote the full and NIROM solutions at the nodei,
respectively, andN represents number of nodes on the full mesh.

The figure21shows the RMSE and correlation coefficient values between the high
fidelity full model and predicted NIROM. As shown in the figure, the error is acceptable
and the correlation coefficient is above 90% during the predictive period.

Table1 shows the online CPU cost required for simulating the high fidelity full
model and NIROM for each time step. It is worth noting that theonline CPU time
(seconds) required for running the NIROM during one time step is only 0.004, while
the full model for tsunami case and Balzano are 30.84992 and 0.7800 respectively. The
simulations were performed on 12 cores workstation of an Intel(R) Xeon(R) X5680
CPU processor with 3.3GHz and 48GB RAM. The two cases were runin serial, which
means only one core was used when running the test cases. The time used for the full
model roughly equals to the time of assembling and solving the discretised matrices in
equation (2). The CPU cost of the full model is dependent on the resolution of mesh,
which means the computation time increases when finer mesh isused.

The offline cost required includes the time for forming the POD basisfunctions and
the hypersurfaces. The time for the hypersurfaces can be ignored. The computational
cost for forming the basis functions is related to the numberof nodes, POD basis func-
tions and snapshots. Table2 lists the offline CPU cost required for forming the basis
functions using different numbers of POD basis functions.
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Figure 11: Okushiri tsunami case: Water level profile resembling the tsunami input wave.

Figure 12: Okushiri tsunami case: The computational domainand unstructured meshes used.
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Figure 13: Okushiri tsunami case: The graphs shows the singular values in order of decreasing magnitude.

Table 1: Comparison of the online CPU time (seconds) required for running the full model and NIROM
during one time step.

Cases Model assembling projection interpolation nonlinear total
and solving iteration times

Okushiri Full model 7.71248 0 0 4 30.84992
tsunami case NIROM 0 0.003 0.001 0 0.0040

Balzano Full model 0.0520 0 0 15 0.7800
case NIROM 0 0.003 0.001 0 0.0040

front front

(a) Full model,t = 15.60s (b) Full model,t = 18.75s

Front Front

(c) NIROM, t = 15.60s (d) NIROM, t = 18.75s

Figure 14: Okushiri tsunami case: Wetting and drying front (dark line) at time instances 15.60 (left panel)
and 18.75 (right panel) seconds.
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(a)Full modelt = 10.2 (b) Full modelt = 15.2

(c) NIROM 18 POD bases,t = 10.2 (d) NIROM 18 POD bases,t = 15.2

(e) Error of NIROM, t = 10.2 (f) Error of NIROM, t = 15.2

Figure 15: Okushiri tsunami case: The solutions and errors of pressure from the full model and NIROM at
time instances 10.2 (left panel) and 15.2 (right panel). Top panel: the full model; middle panel: theNIROM
using 18 POD basis functions; bottom panel: error between the full model and NIROM using 18 POD basis
functions.

Table 2: Offline computational cost (seconds) required for constructing POD basis functions using different
numbers of POD basis functions.

Number of POD bases 2 6 18 nodes snapshots
Balzano test case 0.143 0.144 0.152 180 100

Number of POD bases 6 12 18 nodes snapshots
tsunami test case 10.59 11.03 11.512 6830 100

20



(a) 6 POD bases,t = 10.2s (b) 6 POD bases,t = 15.2s

(c) 12 POD bases,t = 10.2s (d) 12 POD bases,t = 15.2s

(e) 18 POD bases,t = 10.2s (f) 18 POD bases,t = 15.2s

Figure 16: Okushiri tsunami case: The difference of pressure solutions between the full model and NIROM,
using 6, 12 and 18 POD basis at time instances 10.2 (left panel) and 15.2 (right panel) seconds.
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Figure 17: Okushiri tsunami case: The comparison of pressure solutions between the full model and NIROM
model at location (x = 0.6595, y = 1.63).

(a) Full model,t = 26 (b) Full model, profile in z direction

(c) NIROM constructed during [0,20]s,t = 26 (d) NIROM constructed during [0,20]s, profile in z direction

(e)NIROM constructed during [0,26s], t = 26s (f) NIROM constructed during [0,26s], profile in z direction

Figure 18: Okushiri tsunami case: The solutions of pressurefrom the full model (top) and NIROM con-
structed during time period [0, 20s] (middle) and [0, 26s] (bottom)at time instances 26s.
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Figure 19: Okushiri tsunami case: The comparison of pressure solutions between the full model, the NIROM
constructed during time period [0, 20 ] and [0, 26 ] at locations (x = 3.5696m, y = 1.6994m) and (x =
4.9306m, y = 1.9685m).
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Figure 20: Okushiri tsunami case: The comparison of velocity and pressure solutions between the full model,
the NIROM constructed during time period [0,20] s and [0,26]s at locations (x = 1.6892m, y = 2.1783m).
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Figure 21: Tsunami case: The RMSE errors of pressure solutions between the full high fidelity and non-
intrusive reduced order models. (b) Correlation coefficient.
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6. Conclusions

In this work a non-intrusive reduced order model, based on the Smolyak sparse
grid method has been, for the first time, developed for 3D freesurface flows and imple-
mented under the framework of advanced 3D unstructured meshfinite element ocean
model (Fluidity). The Smolyak sparse grid method is used to construct a set of inter-
polation functions representing the reduced system. The free surface flow NIROM is
generated from the POD bases derived from the snapshots. These snapshots are the
full solutions recorded at selected time levels where the details of ocean flow dynamics
(velocity, pressure, waves, eddies, wetting-drying frontetc.) are included. The per-
formance of the new POD-Smolyak 3D free surface flow NIROM is illustrated using
two numerical test cases: Balzano test case and Okushiri tsunami case. To estimate
the accuracy of the NIROM, the results obtained from the freesurface flow NIROM
have been compared against those from the high fidelity oceanmodel. It is shown that
the accuracy of solutions from free surface flow NIROM is maintained while the CPU
cost is reduced by several orders of magnitude. An error analysis has also been carried
out for the validation of the free surface flow NIROM through comparing the results
with results of high fidelity full model. The NIROM shows a good agreement with the
high fidelity full ocean model. It was also shown that the accuracy can be improved by
increasing the number of POD bases.

Importantly, the predictive ability of NIROM was tested, for test case 2, by pre-
dicting, with good accuracy, the dynamics of the final part ofthe time domain that
the NIROM had not seen before. This is a small step towards showing that NIROM
can have ’predictive skill’. Thus, the free surface NIROM may have a role to play in
applications to uncertainty analysis, optimisation and data assimilation where massive
numbers (e.g. hundreds or thousands) of runs of the ocean model are required. This
will be our focus in future work. More recently, parametric ROMs for various param-
eter inputs (e.g. boundary conditions) have been developed. A hyper-surface can also
be constructed for various parameter inputs using Smolyak sparse grids (for details,
see [52]). This work will be combined, in our future work, with the NIROM developed
here for 3D free surface flows.

Since NIROM works just from the snapshots of the forward solution it is ideally
placed to construct rapid surrogate models from complex modelling codes (e.g. multi-
physics codes) and commercial software where the source codes are unavailable or
difficult to modify. However, unlike many intrusive ROMs NIROMs may have diffi-
culty in achieving conservation as there is no underlying conservation equation - just an
approximation to it. In the longer term these conservation issues need to be addressed.
Future work will investigate the effects of applying this new NIROM to more com-
plex free surface flows (for example, urban flooding), varying parametric non-intrusive
cases and applications to uncertainty analysis, optimisation control and data assimila-
tion.
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