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SUMMARY

The approximation of reduced linear evolution operator (propagator) via dynamic mode decomposition
(DMD) is addressed for both linear and nonlinear events. The 2D unsteady supersonic underexpanded
jet, impinging the flat plate in nonlinear oscillating mode, is used as the first test problem for both modes.
Large memory savings for the propagator approximation are demonstrated. Corresponding prospects for
the estimation of receptivity and singular vectors are discussed. The shallow water equations are used as
the second large-scale test problem. Excellent results are obtained for the proposed optimized DMD method
of the shallow water equations when compared with recent POD-based/discrete empirical interpolation-
based model reduction results in the literature. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The dynamic mode decomposition (DMD) is a recently devised method for the search of a small
number of basis vectors (dynamic modes) able to describe the total fluid state [1–12]. It promises
certain advance in the retrieval of flow structures, which provide a low-dimensional approximation
of complex unsteady flowfields. DMD is based on an algorithm for numerical estimation of
eigenvalues Λ and right eigenvectors ΩR of an operator A determining the flow evolution (linear
propagator). The set of flow snapshots is used as the input data.
A powerful way of analyzing nonlinear flow dynamics using linear techniques is provided by the

use of dynamic modes (e.g., the work of Holmes et al. [7], Bagheri [8], and Mezic [9]). Among
several snapshot-based modal decomposition methods, DMD has been widely applied to study
the physics of the dynamics of the flows in different applications.
A related theoretical framework is proposed by Tu et al. [10], in which DMD is defined as the

eigendecomposition of an approximating linear operator. They demonstrate the utility of this
approach by presenting novel sampling strategies that increase computational efficiency and
mitigate the effects of noise. A new technique that allows dynamical information to be extracted
from large datasets and data streams is proposed by Hemati et al. [11]. Their low-storage method
for performing DMD can be updated inexpensively as new data become available. The problem of
modal decomposition of large and arbitrarily sampled systems is addressed by Guéniat et al. [4].
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Their method essentially formulates the problem in an optimization setting and decouples the
estimation of the temporal description from the spatial description.
In a bold manner, the problem of systems governed by nonlinear evolution laws is addressed

by Williams and his coworkers [12]. They demonstrate that the Koopman eigenfunctions and
eigenvalues define a set of intrinsic coordinates, which serve as a natural framework for fusing
measurements obtained from heterogeneous collections of sensors.
In the present paper, we denote the operator A as the Schmid operator (which acts on dynamic

variables) in order to distinguish it from the Koopman operator [2, 13, 14] (which acts on
observable variables).
The DMD approach enables one to obtain also a set of left eigenvectors ΩL. This set provides the

feasibility to approximate the reduced form Schmid operator as a product of the diagonal and two
rectangular matrices Ar=ΩRΛΩL. In this form, the approximation of the Schmid operator A may be
efficiently stored and used implicitly.
The matrix form of Schmid operator A is interesting for several important classes of problems.

For example, the adjoint propagator A* is used in receptivity problems [15]. The actions of the
operator A*A are used for the maximal eigenvalue estimation. The corresponding eigenvector
provides the most rapidly growing perturbations at a finite time interval (singular vectors [16]) that
are also of current interest.
Both the evaluation of receptivity and the estimation of the singular vectors are linear problems.

If flow dynamics are nonlinear, the linear approximation of the operator Amay be based on a linear-
tangent approximation that requires additional coding. However, because temporal steps of the
finite volume algorithm may be chosen as small as necessary, a linear-tangent approximation
may be avoided for a short-time interval (several temporal steps) between snapshots.
Dynamic mode decomposition also may be applied to essentially nonlinear problems [2]. The

physical meaning of the operator changes for longer time intervals (thus providing nonlinearity);
at some limit, the operator may become independent of the snapshots selection and may be
considered as a form of the Koopman operator.
The paper aims to investigate the properties and applications of the DMD in the form of reduced

Schmid operator. This form provides a high computational efficiency as well as a straightforward
adaptation to several important domains of application.
The remainder of this article is organized as follows. In Section 2, we present one of the main

versions of DMD in accordance with [1] along with some of its properties especially useful for
our purposes. Section 3 considers the construction of the Schmid operator as a product of rectangu-
lar matrices and the equivalence of DMD and Schmid operator. Section 4 analyzes the relations
between the Schmid operator and the propagator (flow evolution operator) in both linear and
nonlinear modes. Further, in Section 5, the numerical test results of the Schmid operator estimation
in linear and nonlinear modes are presented. A supersonic jet interaction with the flat surface is
considered as one of the illustrative test problems. The second test problem addresses flows
described by shallow water equations. Several problems, having applications for the Schmid operator
applications, are surveyed in Section 6. Conclusions are drawn and presented in Section 7.

2. DMD VERSION FOR NON-NORMALIZED MODES

There exist several approaches to DMD construction that include normalized dynamic modes [1],
non-normalized dynamic modes [2, 6], and optimization over eigenvalues [3, 4]. In the present
paper, it is more convenient from our purposes to use normalized modes. So, herein, we consider
the main features of DMD in accordance with [1] (the present section exposition is very close
to [1] because of need for further analysis lucidity).
Let us consider a set of N snapshots SnN1 ¼ u1;…; ; uNð Þ, which are discrete approximations of

the flow fields at consecutive time instances separated by an identical interval Δt. Each snapshot
ui is a vector of the dimension Nt. The linear operator A(Δt) (an unknown matrix of dimension
Nt×Nt) is assumed to exist and provide the transformation ui + 1=Aui. In this case, the snapshots
form a Krylov sequence SnN1 ¼ u1;Au1;A

2u1;…;AN�1u1
� �

.
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For a long enough snapshot set, the eigenvalues and right eigenvectors Avj= λjvj may be
calculated, and the snapshots may be written as

uk ¼ ∑
j
ajvjλ

k�1 ¼ ∑
j
ajvje

σjþiωjð Þ k�1ð ÞΔt; k ¼ 1;Nð Þ: (1)

Usually, the right eigenvectors vj∈C are denoted as dynamic (Koopman) modes, the eigenvalues
λj∈C are denoted as (Koopman) eigenvalues, and the coefficients ai∈C are denoted as amplitudes
(Koopman eigenfunctions).
The estimation of Koopman modes, eigenvalues, and amplitudes from the known set of snap-

shots SnN1 is the main computational problem from this viewpoint. The sets of shifted snapshots
SnN�1

1 ¼ u1;…; ; uN�1ð Þ ¼ u1;…;AN�2u1
� �

, SnN2 ¼ u2;…; ; uNð Þ ¼ ASnN�1
1 are used, herein,

according to [1]. The set SnN1 is assumed to capture the main physical features of a considered
process more precisely as the number of snapshots increases. If a certain critical number of
snapshots exceeded, the following snapshots should become linearly dependent on the previous
ones (similar to Krylov-type iteration processes). In this limit, the last snapshot uN may be
expressed via the previous snapshots with some error r:

uN ¼ c1u1 þ c2u2 þ…þcN�1uN�1 þ r: (2)

By substituting uN in SnN2 and using a companion matrix C, we obtain SnN2 ¼ SnN�1
1 �C þ r, where

C ¼

0 c1

1 0 c2

1 0

… …

1 cN�1

0
BBBBBB@

1
CCCCCCA
: (3)

The expression SnN2≈SnN�1
1 �C holds under the assumption of small r. Thus, it can be stated that

A�SnN�1
1 ¼ SnN2 ¼ SnN�1

1 �C: (4)

The set of snapshots may be presented using SVD [17] as follows:

SnN�1
1 ¼ UΣV�: (5)

Because the snapshot matrix is not invertible, the Moore–Penrose pseudoinverse matrix for
SnN�1

1 is used, which can be written as VΣ+U*. We denote here Σþ¼ diag σ�11 ;…; σ�1r ; 0;…; 0
� �

.
From the expression SnN2 ¼ SnN�1

1 C, one may obtain via the pseudoinverse matrix

C ¼ VΣþU�SnN2 : (6)

Let us change the companion matrix C by the transformation

C
e ¼ VΣþð Þ�1

C VΣþð Þ: (7)

Under this transformation, eigenvalues do not change, while the eigenvectors are rotated:

yC ¼ VΣþyCe ; yC
e ¼ ΣV�yC:

Further, the substitution of expression (6) into (7) yields

C
e ¼ U�SnN2 VΣ

þ: (8)
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From A�SnN�1
1 ¼ SnN�1

1 �C, one may obtain A �UΣV*=UΣV* �C, A �U=UΣV* �C � (ΣV*)� 1, and

A�U ¼ U Ce. Taking into account Ce ¼ WΛW�1 (W ¼ ΩCe
R ), we obtain the expression

A�UW ¼ UW�Λ: (9)

One can see from (9) that the eigenvalues Λ of the matrix Ce coincide with the eigenvalues of A.
The right eigenvector of A assumes the form:

ΩA
R ¼ UW ¼ UΩCe

R : (10)

Because the matrix C is not symmetric, the right eigenvectors do not form an orthogonal basis,
and the set of left eigenvectors (biorthogonal to right) is necessary. They may be obtained
from the expression A�SnN�1

1 ¼ SnN�1
1 �C via SVD decomposition of the snapshot set

A �UΣV*=UΣV* �C. Further, the chain of transformations VΣ+U* �A �UΣV*=C
VΣ+U* �A=C �VΣ+U* provides the expression U��A ¼ VΣþð Þ�1�C�VΣþU� ¼ CeU� . Taking into

account the Ce eigenvector decomposition, we get U* �A=WΛW� 1U* and obtain
W� 1U* �A=ΛW� 1U* that determines the left eigenvector of A:

ΩA
L ¼ W�1U� ¼ ΩCe

L U�: (11)

This enables an expansion in the series over the right eigenvectors (u1 =ajvj). The coefficients aj
may be calculated via the biorthogonality relation (li is the left eigenvector that belongs toΩA

L matrix)

vkl
�
i ¼ δik (12)

and has the form

ak ¼ l�ku
� �

: (13)

3. THE REDUCED FORM OF THE SCHMID OPERATOR

Thus, the eigenvalues and (right and left) eigenvectors of the Schmid operator A may be estimated

from the spectrum of the matrixCe ¼ U�SnN2 VΣ
þ. Then, the construction of the Schmid operator in

the following reduced form is feasible:

Ar ¼ ΩA
RΛΩ

A
L ; (14)

where ΩA
R;Ω

A
L are rectangular matrices and the matrix Λ is a diagonal one.

The explicit form of propagator matrix A requires very high memory of dimension about Nt×Nt
for CFD applications. Even for moderate grids (for example, about 100 nodes over a single spatial
coordinate) Nt~4×104 in the 2D case and Nt~5×106 in 3D case. The decomposition of A via a
product of reduced matrices requires the storage of only 2Nt×N+N numbers. In the 2D case for
Nt~4×104 and N~40, the memory saving is about three orders of magnitude. The CPU time
savings are close or more significant because of the nonlinear growth of the computer time
necessary for the spectrum estimation as the matrix order increases.

4. RELATIONS OF SCHMID OPERATOR AND PROPAGATOR

Let the dynamics of a system be described by the equation

du=dt ¼ Bu: (15)

This equation may be discretized by a finite volume method with a time step τ in the form
un + 1 = (E+Bτ) �un. In the analysis, we use M steps of evolution between consecutive snapshots
uk, uk + 1. Then, the time interval (sampling period) between snapshots is Mτ =Δt. The DMD
results are highly sensitive to the value of Δt.
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Herein. we consider two cases: the linear limit for small Δt that may be provided either by a
small M (or by decreasing τ if necessary) and the standard DMD with significantly greater
Δt (i.e., nonlinear limit). The validity of Δt selection in the linear limit may be easily checked,
while the optimal choice of Δt in nonlinear limit is rather nontransparent and requires laborious
analysis (for example, the method fails when Δt is close to the main period of oscillation).
Consider an approximation of the solution propagator and its relations with the Schmid operator

for both linear and nonlinear events.The linear caseIf an operator B does not depend on u, then the
propagator approximation may be written as a product of the single time step τ operators

L Δtð Þu1 ¼ e∑Bτu1 ¼ e∑BΔt=Mu1 ¼ eBΔtu1 ¼ A Δtð Þu1: (16)

So, in the linear case, the Schmid operator is equivalent to the approximation of the propagator
L(Δt) =A(Δt).The nonlinear caseIn general, an approximation of the nonlinear propagator assumes
the form

L Δtð Þu1 ¼ E þ B1τð Þ� E þ B2τð Þ… E þ BMτð Þu1 (17)

Here, un; u�2;…; u�M ; unþ1 are intermediate points between snapshots un and un + 1, Bi ¼ B u�i
� �

.
Expression (17) essentially depends on the set of points between snapshots and, thus, is not
invariant for different intervals. Under this situation, the propagator approximation L(Δt) does not
correspond to the Schmid operator properties.
However, if by some reason, L(Δt) is constant for all intervals between snapshots (for example,

there exists an averaged over B u�i
� �

operator L(Δt)), then the Schmid operator A may be considered
as a propagator approximation.
In this event, there exists a matrix function Ω(Δt), such that

L Δtð Þ ¼ eΩ Δtð Þ (18)

Because Ω(Δt) may be constructed as a Magnus seriesΩ Δtð Þ ¼ ∑
∞

1
Ωk Δtð Þ [18–20], the expression

Ω= lnAr may serve as a way for the numerical approximation of the Magnus series.
Hence, there are two cases: linear and nonlinear (‘averaged’), when such linear operator A may

exist.
In the linear event, the operator A is estimated in vicinity of a single point of the dynamic system

trajectory and implies a usual linearization.
For the nonlinear asymptotic, the operator A is defined on a large part of the system trajectory

and implies a ‘linearization in the large’ in terms of [14]. This ‘linearization’ is closely related
with the properties of the linear Koopman operator that is the adjoint of Perron–Frobenius operator
(the propagator for linear Liouville equation). This subject is far above the scope of the present
paper; the additional information may be found in [2, 9, 10, 14, 21].

5. NUMERICAL TESTS

Two large-scale problems are used for the demonstration of the aforementioned features of the
reduced form of the Schmid operator approximation. The first problem concerns an unsteady flow
of impinging jet described by the Euler equations. The second problem concerns flows described by
the shallow water equations. Some numerical results are provided in the succeeding discussion.

5.1.1. 2D jet impingement simulation. The subroutines DGESVD (LAPACK [22]) (Univ of Tennessee,
Knoxvlle, TN, USA) and SNAUPD, SNEUPD (ARPACK [23]) (Rice University,Houston, Texas, USA)
were used for SVD decomposition.
Subroutine DGEEV (LAPACK) (Univ of Tennessee, Knoxvlle, TN, USA) was used for the

calculation of complex eigenvalues, right and left eigenvectors of the non-symmetric companion
type matrices.
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The numerical tests were conducted both for the low-dimensional problems with a priori
known matrix operator A and for a large-scale problem for the Schmid operator computed from
N snapshots, obtained from the numerical solution of the 2D Euler equations.
The original operator A was estimated from the set of its actions for low-dimensional operators

(from 5×5 to 10×10). Results of numerical tests confirmed the correct reconstruction of the
original operator A.
For a large-scale problem, the Schmid operator was reconstructed via the product of the

rectangular matrices Nt×N, where Nt=36000 and N=10÷50.
At a normal impingement of supersonic underexpanded jet on a plate, the flow pattern depends

on parameters such as the Mach number Ma, pressure ratio n=pj/pa, and distance from nozzle exit
by the surface x/da. Within a rather narrow range of parameters, oscillating flow modes are known
to occur. In this mode, the shock wave structure causes peripheral pressure maximums, which may
lead to an unsteady separation. The results of computation of the oscillating flow seem to be appro-
priate as a test problem in order to test performance of DMD. Evidently, the influence of turbulence
is neglected. However, the shock-induced unsteady separation bubble may be successfully modeled
by an inviscid numerical method providing a good agreement with the experimental data [24]. So,
this model correctly represents a true nonlinear unsteady flow dynamics and is useful for DMD tests
because of its low computational cost requirements. The following 2D+1 Euler equations are used.

∂ρ
∂t

þ ∂ ρUkð Þ
∂xk

¼ 0; (19)

∂ ρUið Þ
∂t

þ ∂ ρUkUi þ Pδikð Þ
∂xk

¼ 0; (20)

∂ ρEð Þ
∂t

þ ∂ ρUkh0ð Þ
∂xk

¼ 0: (21)

Here, Ui= (U,V) are the velocity components, h0 = (U
2 +V2)/2 +h, h ¼ γ

γ�1
P
ρ ¼ γe, e ¼ RT

γ�1, and

E= (e+ (U2 +V2)/2) are enthalpies and energies (per unit volume), respectively, and P= ρRT is the
state equation.
The computations are performed in the spatial domain Ω= (0< x<Xmax, 0< y<Ymax) during the

time interval (0< t< tf) with the flow snapshot recorded at equally spaced time subintervals Δt.
At the boundary (x=0), we impose the supersonic inflow conditions, corresponding to a nozzle

exit section and the environment conditions (pressure, temperature and zero normal derivatives of
velocities) on another part of the boundary. At the right boundary, a no-penetration condition is
set. On the lateral boundaries (y=0, y=Ymax), we impose the outflow conditions in the supersonic
region and environment conditions at the subsonic part of the boundary.
The Euler equations were solved by a discretization method of second-order spatial accuracy [25]

with the numerical fluxes calculated via the method by Sun and Katayama [26] and a second-order
time discretization. The numerical results are obtained and used in further analysis in a dimension-
less form, using the jet parameters (ρj,Uj,Ej,da) for the non-dimensionalization.

5.1.2. The gas dynamics features of the flow. The periodic formation and disappearance of a sep-
aration bubble is specific for this mode. Figures 1 and 2 demonstrate the density fields for the
maximal and minimal (developed separation bubble) pressure and corresponding streamlines.
The flow of the jet is directed along X axis and is retarded at wall (right boundary) past the shock

wave. The density contours reflect the compression at the wall. Streamlines demonstrate the spread-
ing of jet in Figure 1 and significant separation bubbles in Figure 2. The switching between these
two modes is the reason for pressure oscillations.
Figure 3 provides the surface pressure variation in time at the axis of symmetry for the

transitional and following oscillation modes. The results correspond to the flow parameters
Ma= 4.0, γ=1.4, x/da=15, and n=4. The pressure is non-dimensionalized by the jet parameters

as p ¼ p�= ρj Uj

� �2
j

� �
, where asterisks denote a dimensional parameter.
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Figure 1. Density isolines and streamlines for the maximal pressure.

Figure 2. Density isolines and streamlines for the minimal pressure.
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5.1.3. DMD analysis for linear mode. The existence of a linear mode is expected for a small in-
terval Δt between the snapshots (several steps of the finite difference algorithm). The eigenvalues
for linear problems, usually, are not located on the unit circle. Figure 4 presents the complex eigen-
values (dependence λRe(λIm)) for the linear mode of evolution. The interval between snapshots is
Δt=5τ (τ is the step of finite-volume algorithm). The data are selected on the oscillations phase
of the flow. The small Δt is chosen to ensure the study of the linear mode, and 15 snapshots are
used.
Figures 5 and 6 illustrate the right real eigenvectors ΩR,1 (the component of density) for Δt= k � τ

(k=5 and 10 steps of finite volume CFD algorithm). One may see a relatively small variation of the
eigenvector structure at the time shift.
For Δt= k � τ (k=5, 10), Figures 7 and 8 depict amplitudes Amp(ΩR,4) (also density component)

for one of the right complex eigenvectors vk ¼ Ampke
iϕk .

The variation of some eigenvalues as a function of the distance between the snapshots (number of
time steps k) is provided in Figure 9. The eigenvalues are displayed for two real modes (lines 2 and 3).
The phase shift α4 is plotted for one of the complex modes (line 1). A linear dependence on k may be
observed. The spectrum structure for the linear event is found to be stable that raises some questions,
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Figure 3. The dimensionless pressure at the axis of symmetry as a function of dimensionless time.
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Figure 5. Isolines of right real eigenvector ΩR,1 for k= 5.

Figure 6. Isolines of right real eigenvector ΩR,1 for k= 10.
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Figure 7. Isolines of right complex eigenvector amplitude Amp(ΩR,4) for k= 5.

Figure 8. Isolines of right complex eigenvector amplitude Amp(ΩR,4) for k= 10.
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because the visible evolution of the flow implies a significant movement in the state space. The reason
may be the numerical error in eigenvalues that are close to the unit by module.
A comparison of the numerical results presented in Figures 5 to 8 demonstrates a relatively small

variation of right eigenvectors ΩR over k; a similar behavior is also specific for the left eigenvectors
ΩL. Thus, for the linear approach (at small distances Δt), the dynamics is determined by the varia-
tion of Λ(Δt) at constants ΩR and ΩL. The evolution of flow, in this event, is caused by the rotation
of constant eigenvectors in the complex plane.
At small intervals between snapshots (about single computation step), some ripples are visible in

ΩR and ΩL. For k≥5, these ripples are practically invisible.

5.1.4. DMD analysis for nonlinear mode. Herein, only the self-oscillating part of the flow history is
used for tests, because of its transparency. Figure 10 presents the dependence λRe(λIm) for time inter-
val Δt=500 steps, which far deviates from the oscillation period (Tosc≈780 steps). In this test, 40
snapshots are used. Eigenvalues are close to the unit circle that is common for nonlinear problems.
The spectrum structure for the nonlinear event seems visually to be stable that is quite natural for

the stable attractor in the state space visible in Figure 3. However, the modules of several modes are
slightly greater than the unit, a fact that may be caused by numerical errors.
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Figure 9. The real eigenvalues and the phase shift α4 as functions of the number of time steps k. The number
‘1’ is the phase shift α4; ‘2’ and ‘3’ are two real eigenvalues.
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Figure 11 shows the dependence of the amplitude on the frequency for 10 (line 1) and 40 (line 2)
snapshots. The maximal amplitude correlates with the main frequency of oscillating mode
(ω≈2.3). Thus, DMD in nonlinear mode enables the capture of the main features of flow with
highly nonlinear (because of shock waves) oscillations.
The quality of snapshot reconstruction may be estimated from Figures 12 and 13. Figure 12

represents one of the snapshots (density field at separation stage, k=800), and Figure 13 represents
the result of the reconstruction at k=800 performed using the rotation of eigenvectors obtained from
data at k=760.
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Figure 11. Amplitudes as a function of the optimal frequency estimations. The number ‘1’ corresponds to
10 snapshots; ‘2’ corresponds to 40 snapshots.

Figure 12. Density isolines for the snapshot that corresponds to the separation stage.
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It should be noted that the DMD results significantly depend on the number of snapshots.
Figure 14 reveals the dependence of the error norm ‖r‖ (Eq. (2)) on the number of snapshots
N in a logarithmic scale for nonlinear mode. A convergence with increasing number of snap-
shots N is observable; however, when N exceeds some number, the convergence deteriorates.
Table I presents the relative computer time for different numbers of snapshots. For Intel

Core2Duo CPU (3.0GHz, 4.0Gb), the necessary CPU time is small (~ 102 s). However, the full
scale problem (N=Nt, Nt~4 �104) seems quite unsolvable both from memory (~100Gb) and
computer time (~3months) considerations. In general, this result looks as very promising from
the viewpoint of reduced-order approximation.

Figure 13. Reconstructed density isolines for the snapshot from Figure 14.
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Figure 14. The logarithm of relative error norm Log10(‖r‖/‖r0‖) (Eq. (2)) as function of the number of
snapshots N.
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5.2. DMD analysis of 2D shallow water dynamics

The shallow water equations have been used for a wide variety of hydrological and geophysical
fluid dynamics phenomena such as tide currents [27], pollutant dispersion [28], storm surges, or
tsunami wave propagation [29]. Early work on numerical methods for solving the shallow water
equations is described in Navon (1979) [30]. The test problem used in this paper is consisting of
the nonlinear shallow water equations model (also called the Saint Venant Equations [31]) in a
channel on the rotating earth, associated with periodic boundary conditions in the ex-direction and
solid wall boundary condition in the ỹ-direction:

~ut̃ þ ~u~ux̃ þ ~vũ ỹþ geh� �
x̃
� ~f ṽ ¼ 0; (22)

evt̃ þ euev~x þev~vỹ þ geh� �
ỹ
þ f̃ ũ¼ 0; (23)

geh� �
t̃
þ geheu� �

x̃
þ g h̃ ṽð Þỹ ¼ 0; (24)

eu 0;ey;etð Þ ¼ eu Lmax;ey;etð Þ; ev ex; 0;etð Þ ¼ ev ex;Dmax;etð Þ ¼ 0; (25)

where ũ and ỹ are the velocity components in theex and axis directions, respectively,geh is the geopotential
height, eh represents the depth of the fluid, ef is the Coriolis factor, and g is the acceleration of gravity.
Subscripts represent the derivatives with respect to time, and the streamwise and spanwise coordinate.
We consider that the reference computational configuration is the rectangular 2D domain

Ω= [0,Lmax] × [0,Dmax]. We consider the model (22–25) in a β-plane assumption [32, 33], in
which the effect of the Earth’s sphericity is modeled by a linear variation in the Coriolis factor

ef ¼ f 0 þ
β
2

2ey� Dmaxð Þ; (26)

where f0 and β are constants and Lmax and Dmax are the dimensions of the rectangular domain of
integration. The initial condition I1 introduced by Grammeltvedt [34] was adopted as the initial
height field, which propagates the energy in wave number one, in the streamwise direction:

h0 ex;eyð Þ ¼ H0 þ H1tanh
9 Dmax=2�eyð Þ

2Dmax

� 	
þ H2sin

2πex
Lmax

� 	
cosh�2 9 Dmax=2�eyð Þ

Dmax

� 	
: (27)

Using the geostrophic relationship, eu ¼ �ehỹ g=ef� �
, ev ¼ ehx̃ g=ef� �

, the initial velocity fields are

derived as follows:

u0 ex;eyð Þ ¼ �gef 9H1

2Dmax
tanh2

9Dmax=2� 9ey
2Dmax

� 	
� 1

� 	

� 18gef H2sinh
9Dmax=2� 9ey

Dmax

� 	 sin 2πex
Lmax

� �
Dmaxcosh

3 9Dmax=2�9ey
Dmax

� � ; (28)

v0 ex;eyð Þ ¼ 2πH2
gef Lmax

cos
2πex
Lmax

� 	
cosh�2 9 Dmax=2�eyð Þ

Dmax

� 	
: (29)

Table I. The relative computer time as the number of snapshots.

N 10 20 30 40 50
t 1.0 2.71 3.47 4.73 5.76
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The dimensional constants used for the aforementioned model are

f 0 ¼ 10�4s�1; β ¼ 1:5�10�11s�1m�1; g ¼ 10ms�1; (30)

Dmax ¼ 44�105m; Lmax ¼ 6�106m; H0 ¼ 2�106m; H1 ¼ 220m; H2 ¼ 133m: (31)

We have followed the approach used by Navon [32, 33], which implements a two-stage finite-
element Numerov–Galerkin method for integrating the nonlinear shallow water equations on a β-plane
limited-area domain, for approximating the quadratic nonlinear terms that appear in the equations of
hydrological dynamics. We have captured a number of 240 unsteady solutions of the 2D shallow water
equations model (22–25), with the time step Δt=600s.
To measure the accuracy of the reduced shallow water model and to validate the numerical results

with existing results in the literature, we undertake a non-dimensional analysis of the shallow water
model. Following [35], reference quantities of the dependent and independent variables in the
shallow water model are considered, that is, the length scale Lref=Lmax and the reference units
for the height and velocity, respectively, are given by the initial conditions href=h0, uref=u0.
A typical time scale is also considered, assuming the form tref=Lref/uref. In order to make
the system of equations (22–25) non-dimensional, we define the non-dimensional variables

t; x; yð Þ ¼ et=tref ;ex=Lref ;ey=Lref� �
, h; u; vð Þ ¼ eh=href ;eu=uref ;ev=uref� �

. The numerical results are

obtained and used in further numerical experiments in dimensionless form.
In this section, the application of DMD based on the reduced Schmid operator [1] is illustrated

by comparing the evolution of the flow field along the integration time window in the cases of the
full model and the reduced-order model. The DMD spectra for the (h,u, v)(x, y, t) fields are presented
in Figure 15. The DMD technique presented herein is fully capable of determining the modal
growth rates and the associated frequencies, which are illustrated in Figure 16, for geopotential
height field h.
Figure 17 presents the isolines of first right eigenvector and isolines of the first left eigenvector

of the reduced Schmid operator, for the (h,u, v)(x, y, t) fields. We perform the reconstruction of the

Figure 15. Spectrum of dynamic mode decomposition λRe(λIm) for (a) geopotential height field h, (b)
streamwise velocity field u, and (c) spanwise velocity field v.
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Figure 16. Growth rates and associated frequencies (σ,ω) obtained by dynamic mode decomposition of the
geopotential height field h.

Figure 17. Isolines of the real left eigenvector (a, c, and e) and isolines of the real right eigenvector (b, d,
and f) of the reduced Schmid operator, obtained by dynamic mode decomposition of the h, u, and v fields,

respectively.
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(h,u, v)(x, y, t) fields after 200 steps, in Figure 18. We applied a normalization condition such that
the maximum amplitude of the physical components (h, u, v)(x, y, t) fields over the (x, y) stations is
unity.
In the case of DMD algorithm employed in [2, 6], the number of stored modes was 192, 180, and

151, respectively. The DMD algorithm based on the reduced Schmid operator leads to a number of
173 modes retained for the reconstruction of geopotential height field, 42 modes retained for the
reconstruction of the streamwise velocity field, and 40 modes retained for the reconstruction of
the spanwise velocity field; thus, a significant reduction in computational storage is achieved.
Selection of dynamic modes and amplitudes used for the flow reconstruction constitutes the

source of many discussions among modal decomposition practitioners [3, 6, 36]. The superposition
of all dynamic modes, weighted by their amplitudes and complex frequencies, approximates the
entire data sequence, but there are also modes that have a weak contribution. On the other hand,
the non-orthogonality of dynamic modes may raise the projection error while increasing the order
of the DMD basis.
To avoid these difficulties, we introduce in the following a numerical procedure to optimize the

selection of dynamic modes involved in developing of a reduced-order model of the flow. Assum-
ing that, for the problem investigated here, there are no modes that are very rapidly damped having
very high amplitudes, we explore the selection of the modes based on sorting them in decreasing

Figure 18. Full solution of h, u, and v fields (a, c, and e) versus reconstruction of h, u, and v fields, re-
spectively (b, d, and f), employing the dynamic mode decomposition based on reduced Schmid operator,

after 200 steps.
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order of their amplitudes. Based on the method of reduced Schmid operator presented herein, we
retain dynamic modes and associated frequencies in descending order of their amplitudes until a
minimum relative error of reconstruction is achieved.
We define the relative error as the L2-norm of the difference between the variables of the full

shallow water equation model and approximate DMD solutions over the exact one, that is,

ErDMD ¼ w x; yð Þ � wDMD x; yð Þk k2
w x; yð Þk k2

; (32)

where w(x, y)≡(h,u, v)(x, y) represent the full solution of the shallow water equation model and wDMD

(x, y)≡(hDMD,uDMD, vDMD)(x, y) represent the solution obtained by employing the optimized DMD
based on the reduced Schmid operator.
We defer to a future study the investigation of other different techniques for identification of an

optimal truncated representation of the flow field in order to capture the most important dynamic
structures. The amplitudes of the optimized DMD modes function of the estimated frequencies, for
h,u, and v fields, respectively, are illustrated in Figure 19, where diamonds represent the retained
modes, while circles represent discarded modes after DMD optimization. After the optimized DMD
is applied, the representation of the flow field is achieved, retaining 19 modes for geopotential height
field h, 28 modes for streamwise velocity field u, and 33 modes for spanwise velocity field v.
The relative error computed as the retained number of dynamic modes is depicted in Figure 20. A

comparison of the retained number of dynamic modes, in the case of classical DMD, DMD based
on the reduced Schmid operator proposed in this paper and the optimized number of retained modes
is presented in Table II. A significant reduction of a factor of 10 is achieved for the representation of

Figure 19. The amplitudes of the dynamic mode decomposition (DMD) modes as the estimated frequen-
cies, for h, u, and v fields, respectively, case of DMD based on the reduced Schmid operator. Diamonds

represent retained modes after DMD optimization, while circles represent discarded modes.
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geopotential height field, while the representation of the velocity field is improved by a factor of one
and a half in computational resources.
The improved DMD approach introduced in this paper has been validated by comparing our results

with those obtained by Stefanescu and Navon [37], when an alternating direction fully implicit finite-
difference scheme was used for discretization of 2D shallow water equations on a β-plane, and the proper
orthogonal decomposition (POD) coupled with discrete empirical interpolation was employed for the
model reduction. In [37], the dimensions of POD bases for each variable was taken to be 35, while in
the optimized DMD in the present approach, we involve a smaller number of dynamic modes (Table II).
The flow reconstructions presented in Figure 21 are very close to those computed in [37], comparing
the solution of flow field after 79 steps. The relative error obtained by employing the optimized DMD
based on the reduced Schmid operator in reconstruction of the flow fields is presented also in Table II.
The similarity between these characteristics of the flow field and those obtained in the previous

investigation validates the method presented here and certifies that the improved DMD method
can be applied successfully to model reduction of 2D flows.

6. SOME FEASIBLE APPLICATIONS OF THE SCHMID OPERATOR

The reduced form of the Schmid operator promises certain prospects in a set of additional
applications.

Figure 20. The relative error computed as the retained number of dynamic modes, in case of optimized
dynamic mode decomposition based on the reduced Schmid operator, for h, u, and v fields, respectively.

Table II. The number of retained modes and relative error obtained by employing the optimized DMD
based on the reduced Schmid operator.

Flow field DMD method [2, 6]
DMD based on reduced
Schmid operator [1]

Optimized DMD based
on reduced Schmid operator Relative error ErDMD

h(x, y) 192 173 19 0.0002683
u(x, y) 180 42 28 0.0016223
v(x, y) 151 40 33 0.0120628
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6.1. Singular vectors

Disturbances, maximally growing for certain time interval, may be related to the eigenvectors of the
operator composed of the product of forward and adjoint propagators [16].
The equation du/dt=Bu in the linear approach may be resolved by the operator

u Δtð Þ ¼ eBΔtu1 ¼ Lu1 (33)

The norm of the solution assumes the form

u Δtð Þk k ¼ Lu1; Lu1ð Þ ¼ u1; L
�Lu1ð Þ (34)

The search for maximally growing linear perturbations ‖u(Δt)‖/‖u1‖ at time interval Δt reduces to
the search of eigenvectors L*ELηmax ¼ σ2maxηmax with the maximum eigenvalue σ2max. The problem
may be resolved iteratively using the action of the operator A*A.
For a small enough time interval between snapshots, the Schmid operator is linear, which

provides an opportunity for the calculation of singular vectors.

Figure 21. Reconstruction of h, u, and v fields, respectively, employing the optimized dynamic mode
decomposition based on reduced Schmid operator, after 79 steps. A significant reduction in the number of

retained dynamic modes is achieved compared with numerical results in [37].
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Figure 22. Isolines of singular vector (density component) in linear mode.

Figure 23. Isolines of singular vector (density component) in nonlinear mode.
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Figure 22 presents the singular vector for the impinging jet linear mode (the distance between
snapshots (in steps) k=10, σmax=1.82); Figure 23 presents the similar vector for the nonlinear
mode (k=500, σmax=2.45).
Both the magnitude of eigenvalues and the shape of the eigenvectors (singular vectors) are quite

different in the cases of linear and nonlinear events, respectively.

6.2. Receptivity

Eigenvectors of forward Aji(Δt) and adjoint propagators A�
ij Δtð Þ (ΩR and ΩL, correspondently) are

biorthogonal, which is important for the estimation of the flow receptivity to perturbations. It is
known [15] that an initial disturbance should correspond to k-th mode of adjoint problem (ΩL) in
order to maximally excite the k-th mode of the forward problem. Thus, if right eigenvectors (dynamic
modes) are useful at the search of main flow features, the left eigenvectors determine a receptivity of the
flow to the external action.
The availability of left eigenvectors ΩL enables estimation of the flow receptivity to initial

field disturbances without applying an especial adjoint solver, such as those used in Refs [15]
and [16].

7. CONCLUSION

In this paper, we have proposed a new framework for DMD. The key innovation resides in
application of the reduced Schmid operator instead of the classic DMD approach.
We proved that the DMD is equivalent to the Schmid operator approximation by a product of

rectangular matrices of the right eigenvectors (dynamic modes), the left eigenvectors, and the
eigenvalue matrix. Instead of storing the total operator matrix, the proposed technique enables
storing only two rectangular matrices and one diagonal matrix, which ensures computer memory
and computing time (CPU) savings of about several orders of magnitude.
Extending the results from [1], the main findings of our investigation are summarized in the

following:

• the Schmid operator, on the same solution, may have either linear or nonlinear forms, in de-
pendence on the time interval between snapshots; and

• the Schmid operator in the linear limit may be of interest from the viewpoint of the estimation
of receptivity and singular vectors.

In order to assess the performances of the proposed method, we have considered two numerical
test experiments: the case of a 2D supersonic underexpanded jet on a plate and the problem of the
2D shallow water equations. We applied the proposed DMD algorithm based on the reduced
Schmid operator for different snapshots obtained by sampling down the original solutions of the
full model with different time steps. We compared the novel DMD approach with the classic
one in both cases.
Based on the DMD method introduced in [1], we proposed the optimization of DMD algorithm

for reducing the number of dynamic modes retained for reconstructing the flow field. We arrange
the modes in descending order of their amplitudes, and we retain only the number of modes neces-
sary for flow reconstruction with a minimum relative error. This procedure works well for models
without modes that are very rapidly damped, having very high amplitudes. In these cases, different
methods for retaining the modes shall be imposed, and we defer this discussion to a future study.
We emphasized the excellent behavior of the proposed optimized DMD method compared with

the POD-based model recent results existing in the literature [37]. Moreover, the model reduction
technique proposed in this paper leads to a significant reduction in the number of retained modes,
in comparison with the existing techniques. Additionally, we presented a rigorous error analysis
for the reduced-order models, and we compared the relative computational efficiency of the afore-
mentioned DMD technique.
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