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SUMMARY

We propose an improved framework for dynamic mode decomposition of 2D flows, for problems originating
from meteorology, when a large time step acts like a filter in obtaining the significant Koopman modes,
therefore the classic dynamic mode decomposition method is not effective. This study is motivated by
the need to further clarify the connection between Koopman modes and POD dynamic modes. We apply
dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) to derive reduced-order
models of the shallow water equations (SWE). Key innovation for the DMD-based ROM introduced in this
paper are the use of the Moore-Penrose pseudo-inverse in the DMD computation that produced an accurate
result and a novel selection method for the DMD modes and associated amplitudes and Ritz values. A
quantitative comparison of the spatial modes computed from the two decompositions is performed and a
rigorous error analysis for the ROM models obtained is presented.
Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The modal decomposition of fluid dynamics is a frequently employed technique, capable of

providing tools for studying dominant and coherent structures in turbulent flows. The coherent

structures [1, 2, 3] represent spatially or temporally evolving vortical motions, either growing with

one rate, oscillating with one frequency or containing the largest possible kinetic energy. A complex
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turbulent flow often consists of a superposition of such coherent structures, whose development is

responsible for the bulk mass, energy transfer or hydrodynamic instability.

Among several snapshot-based model order reduction (MOR) modal decomposition methods,

Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) have been

widely applied to study the physics of the dynamics of the flows in different applications. The

model order reduction using the method of POD has been illustrated on a variety of examples

ranging from fluid mechanics (Luchtenburg and Rowley [4], Liberge and Hamdouni [5]), turbulent

flows and oceanography (Wang et al. [6], Abramov and Majda [7], Osth et al. [8]) or engineering

structures (Mariani and Dessi [9], Buljak and Maier [10]). More recently, the POD approach has

been incorporated for reduced order modeling purposes, within an unstructured mesh finite element

ocean model by Du et al. [11], Fang et al. [12], Stefanescu and Navon [13]. POD proved to be an

effective technique also in inverse problems, as demonstrated the work of Winton et al. [14], Chen

et al. [15, 16] and Cao et al. [17, 18].

Several types of global modes are considered. Linear global eigenmodes are small-amplitude

perturbations that grow or decay exponentially and pulsate with one frequency. They are used

in hydrodynamic stability analysis [19]. Balanced modes are used to construct low-dimensional

models of large-scale flow systems in order to capture the relation between input disturbances and

the output sensors used for flow measurements. Projecting the original linear system onto modes

results in a high-fidelity model that accurately reproduces the input-output dynamics of the model

[20, 21].

Koopman modes represent spatial flow structures with time-periodic motion which are optimal in

resolving oscillatory behavior. They have been increasingly used because they provide a powerful

way of analysing nonlinear flow dynamics using linear techniques (see e.g. the work of Bagheri

[22], Mezic [23], Rowley et al. [24]). The Dynamic Mode Decomposition generalizes the global

stability modes and approximates the eigenvalues of the Koopman operator [25]. The Koopman

modes are extracted from the data snapshots and a unique frequency is associated to each mode.

This is of major interest for fluid dynamics applications where phenomena occurring at different

frequencies must be individualized.

The application of proper orthogonal decomposition is primarily limited to flows whose coherent

structures can be hierarchically ranked in terms of their energy content. But there are situations when

the energy content is not a sufficient criterion to accurately describe the dynamical behavior of above

flows. Instead, dynamic mode decomposition links the dominant flow features by a representation

in the amplitudes-temporal dominant frequencies space.

A comparative analysis of proper orthogonal decomposition and dynamic mode decomposition

has been performed in the literature, to identify which of these decomposition techniques is more

efficient. Recent studies performed in various fields have demonstrated that these are complementary

methods contributing to the identification of systems in different ways. Simultaneous application

of the two methods provides an a priori knowledge of the dynamics of the system. For example,

Semeraro et al. [26] present a comparative analysis of POD-DMD computed from experimental

data of a turbulent jet. The extracted DMD modes exhibit many similarities with the POD modes

and the flapping mode was easily identified using both methods. The transition to unsteadiness

and the dynamics of weakly turbulent natural convection in a differentially heated 3D cavity was

successfully investigated by Soucasse et al. [27] by modal decomposition. In a novel approach

This article is protected by copyright. All rights reserved.
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manner, Frederich and Luchtenburg [28] consider the Proper Orthogonal Decomposition and

Dynamic Mode Decomposition. They show how the correlation matrix which is needed for POD can

be re-used in the computation of the DMD modes. In the field of aerodynamics, Muld [29] and his

coworkers applied Proper Orthogonal Decomposition and Dynamic Mode Decomposition to extract

the most dominant flow structures of a simulated flow in the wake of a high-speed train model. They

perform a comparison between the modes from the two different decomposition methods.

The present study is motivated by the need to further clarify the connection between Koopman

modes and POD dynamic modes, as well as address their physical significance, in modal

decomposition of flows with large time span. In general, for problems occurring in meteorology

[30, 31] or oceanography [32, 33], the use of large time-step for observables is justified. It was

realized that application of dynamic mode decomposition to large time steps observations, or to

small time steps observations when the increments are smaller then the experimental noise is subject

to several predicaments, therefore the classic dynamic mode decomposition method is not effective.

In this work, a new approach is proposed to derive an improved DMD based procedure that is able

to extract dynamically relevant flow features from time-resolved experimental or numerical data.

Our objective is to employ the improved DMD technique in parallel with the classic DMD method

and POD, in order to analyze which of these procedures better highlight the coherent structures

of the flow dynamics. The novelty introduced in this paper resides in application of the improved

DMD technique to problems originating from meteorology, when numerical or experimental data

snapshots are captured with large time steps. The modes selection, which is central in model

reduction, represents the subject that we aim to investigate in this paper. We propose a new criterion

of selecting the optimal Koopman modes. Additionally, we present a rigorous error analysis for

the ROM models obtained by POD and the improved DMD and we also compare the relative

computational efficiency of above-mentioned ROM methods.

The remainder of this article is organized as follows. The procedure of numerical data acquisition

is presented in Section 2. In Section 3 we recall the principles governing the Dynamic Mode

Decomposition and we give the description of the improved DMD algorithm. In particular, we

discuss the implementation of the proposed method for two dimensional flows and the criterion

for optimal selection of the Koopman modes. The principles governing the Proper Orthogonal

Decomposition are discussed in detail in Section 4 that includes also the algorithm of computing

the 2D proper orthogonal modes. These strategies are applied to the SWE model in Section 5 along

with a qualitative analysis of Koopman and POD modes, while the reduced order models obtained

by involving the DMD and POD expansion of the variables are discussed in detail in Section 6.

Summary and conclusions are drawn in the final section.

2. NUMERICAL DATA ACQUISITION

We consider a bounded open domain Ω ⊂ R3 and let L2 (Ω) be the Hilbert space of square integrable

vector functions over Ω, associated with the energy norm ‖w‖L2 = (w,w)
1/2
L2 and the standard inner

product (v, w)L2 =
∫
Ω

v · w dz. Let H∇ be the Hilbert space of divergence free functions given by

H∇ =
{
w ∈ L2 (Ω)

∣∣∣∇ · w = 0 in Ω, w · →n = 0 on ∂Ω
}
, (1)

This article is protected by copyright. All rights reserved.
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where
→
n is the outward normal to the boundary. We define Hd (Ω) ⊂ L2 (Ω) to be the Hilbert space

of functions w with d distributional derivatives ∇wi, 1 ≤ i ≤ d, that are all square integrable. Let V

be the Hilbert space

V =

{
w ∈ H∇

∣∣∣∣w ∈ H1 (Ω) , w = 0,
∂w

∂
→
n

= 0, on ∂Ω

}
, (2)

with norm ‖w‖
V
= (w,w)

1/2
V

and the inner product (v, w)
V
=

d∑
i=1

(∇vi,∇wi),

In the Cartesian coordinates formulation, we suppose there exists a time dependent flow w =

(u, v, h) (x, y, t) ∈ V and a given initial flow w (x, y, 0) = (u0, v0, h0) (x, y), that are solutions of

the Saint Venant equations, also called the Shallow Water Equations (SWE) [34],

ut + uux + vuy + ηx − fv = 0, (3)

vt + uvx + vvy + ηy + fu = 0, (4)

ηt + (ηu)x + (ηv)y = 0, (5)

where u (x, y, t) and v (x, y, t) are the velocity components in the x and y axis respectively,

η (x, y, t) = gh (x, y, t) is the geopotential height, h (x, y, t) represents the depth of the fluid, f

is the Coriolis factor and g is the acceleration of gravity. Subscripts represent the derivatives with

respect to time and the streamwise and spanwise coordinates.

We consider that the reference computational configuration is the rectangular 2D domain Ω =

[0, Lmax]× [0, Dmax]. The model (3)-(5) is considered here in a β-plane assumption [35], in which

the effect of the earth’s sphericity is modeled by a linear variation in the Coriolis factor

f = f̂ +
β

2
(2y −Dmax) , (6)

where f̂ and β are constants, Lmax and Dmax are the dimensions of the rectangular domain of

integration Ω.

The shallow-water equations have been used for a wide variety of hydrological and geophysical

fluid dynamics phenomena such as tide-currents [36], pollutant dispersion [37], storm-surges or

tsunami wave propagation [38].

The test problem used in this paper is consisting of the nonlinear shallow-water equations (3)-(5)

in a channel on the rotating earth, associated with periodic boundary conditions in the x-direction

and solid wall boundary condition in the y-direction:

w (0, y, t) = w (Lmax, y, t) , v (x, 0, t) = v (x,Dmax, t) = 0. (7)

The initial condition I1 introduced by Grammeltvedt [39] was adopted as the initial height field,

which has been tested by different researchers (Cullen and Morton [40], Navon [41], Stefanescu and

This article is protected by copyright. All rights reserved.
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Navon [13], Fang et al. [42]), i.e.

h0 (x, y) = H0 +H1 tanh

(
9(Dmax/2− y)

2Dmax

)
+H2 sin

(
2πx

Lmax

)
cosh−2

(
9(Dmax/2− y)

Dmax

)
,

(8)

which propagates the energy in wave number one, in the streamwise direction. Using the geostrophic

relationship, u = −hy (g/f), v = hx (g/f), the initial velocity fields are derived as:

u0 (x, y) = − g

f

9H1

2Dmax

(
tanh2

(
9Dmax/2− 9y

2Dmax

)
− 1

)
−

18g

f
H2 sinh

(
9Dmax/2− 9y

Dmax

) sin
(

2πx
Lmax

)
Dmaxcosh

3
(

9Dmax/2−9y
Dmax

) , (9)

v0 (x, y) = 2πH2
g

fLmax
cos

(
2πx

Lmax

)
cosh−2

(
9(Dmax/2− y)

Dmax

)
. (10)

In developing a higher order scheme for approximating the quadratically nonlinear terms that

appear in the equations of hydrological dynamics, we have followed the approach used by Navon

[35], which implements a two-stage finite-element Numerov-Galerkin method for integrating the

nonlinear shallow-water equations on a β-plane limited-area domain. In the aforementioned paper

a two-stage Galerkin method combined with a high-accuracy compact (Numerov) approximation

to the first derivative is presented. This method when applied to meteorological and oceanographic

problems gives an accurate phase propagation and also handles nonlinearities well. The accuracy of

temporal and spatial discretization scheme equals or exceeds O
(
k2, h4−8

)
. The use of numerical

integration methods to study the behavior of theoretical models in oceanography or to predict

the evolution of an actual state is subject to several predicaments, one of the major difficulties

being nonlinear computational instability of the finite difference analogues of the governing partial

differential equations. The approach adopted in the work noted above involves the use of a weighted

selective lumping scheme in the finite-element method, combined with a successive overrelaxation

(S.O.R.) iterative method for solving the resulting systems of linear equations. Determination at

each time-step of the values of the three integral invariants [43, 44] of the shallow-water equations,

i.e. the total mass, the total energy and the potential enstrophy, proved that the two stage Numerov-

Galerkin is attaining a consistently higher accuracy than the single-stage finite-element method (see

Navon (1983) [45]).

In several seminal papers, Arakawa [46, 47] indicated that the integral constraints on quadratic

quantities of physical importance, such as conservation of mean kinetic energy and mean square

vorticity, will not be maintained in finite difference analogues of the equation of motion for two-

dimensional incompressible flow, unless the finite difference Jacobian expression for the advection

term is restricted to a form which properly represents the interaction between grid points (i.e. use of

staggered C or D grids).

Thus the effect of conservation of integral invariants by finite-element discretization scheme of the

shallow-water equations (3)-(5) as a measure of the correct discretization of long-term integrations

has a pivotal importance. The numerical integration scheme is detailed in [35]. Using this program,

This article is protected by copyright. All rights reserved.
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we have captured the shallow-water dynamics over long-term numerical integrations (10-20 days).

We will further detail the results in the section dedicated to numerical experiments.

3. DYNAMIC MODAL DECOMPOSITION OF FLOW FIELDS

So far we have noticed two directions in dynamic mode decomposition technique. The straight-

forward approach is seeking a companion matrix that helps to construct in a least squares sense

the final data vector as a linear combination of all previous data vectors [24, 48, 49]. Because this

version may be ill-conditioned in practice, Schmid [50] recommends an alternate algorithm, based

on averaging the mapping from the snapshots to the new one, upon which the work within this

article is based.

The aim of this section is twofold: first we describe the classical analytical method for dynamic

mode decomposition. A DMD algorithm is then introduced as an improvement of the original

algorithm, together with a criterion of optimal selection of the Koopman modes.

3.1. The Koopman Operator and the General Description of DMD

Employing numerical simulations or experimental measurements techniques, different quantities

associated with the flow are measured and collected as observations at one or more time signals,

called observables. It turns out (see the survey of Bagheri [51]) that monitoring an observable over

a very long time interval allows the reconstruction of the phase space.

Considering a dynamical system evolving on a manifold M such that, for all wk ∈ M

wk+1 = f(wk), (11)

the Koopman operator, defined by Koopman [25] in 1931 maps any scalar-valued function g : M →
R into a new function Ug given by

Ug (w) = g (f (w)) . (12)

The Koopman operator is infinite-dimensional and it steps forward in time an observable. Related

with spectral properties of the Koopman linear operator, the reader is invited to refer to Rowley et al.

[24] for rigorous treatment on the subject. There is a unique expansion that expands each snapshot

in terms of vector coefficients φj which are called Koopman modes and mode amplitudes aj (w),

such that iterates of w0 are then given by

g (wk) =

∞∑
j=1

λk
j aj (w0)φj , λj = eσj+iωj , (13)

where λj are called the Ritz eigenvalues of the modal decomposition, that are complex-valued flow

structures associated with the growth rate σj and the frequency ωj .

Assuming that {w0, w1, ...wN} is a data sequence collected at a constant sampling time Δt, we

define the following matrices

V N−1
0 =

(
w0 w1 ... wN−1

)
, V N

1 =
(

w1 w2 ... wN

)
. (14)

This article is protected by copyright. All rights reserved.
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The DMD algorithm is based on the hypothesis that a Koopman operator A exists, that steps

forward in time the snapshots, such that

wi+1 = Awi, i = 0, ..., N − 1. (15)

Schmid [50] assumed that the Koopman operator A is linear, but it was shown that the linearity

assumption is not necessary in Rowley et al. [24]. It follows that the snapshots data set

V N−1
0 =

(
w0 Aw0 A2w0 ... AN−1w0

)
(16)

corresponds to the N th Krylov subspace generated by the Koopman operator from w0.

Since the eigenvalues of the unknown matrix operator A must be obtained, a Galerkin projection

of A onto the subspace spanned by the snapshots is performed. For a sufficiently long sequence

of the snapshots, we suppose that the last snapshot wN can be written as a linear combination of

previous N − 1 vectors, such that

wN = c0w0 + c1w1 + ...+ cN−1wN−1 +R, (17)

which can be written in matrix notation as

wN = V N−1
0 c +ReTN−1, (18)

in which cT =
(

c0 c1 ... cN−1

)
is a complex column vector and R is the residual vector.

We assemble the following relations

A{w0, w1, ...wN−1} = {w1, w2, ...wN} =
{
w1, w2, ...V

N−1
0 c

}
+ReTN−1 (19)

in the matrix notation form,

AV N−1
0 = V N

1 = V N−1
0 C +ReTN−1, C =

⎛⎜⎜⎜⎜⎝
0 ... 0 c0

1 0 c1
...

...
...

...

0 . . . 1 cN−1

⎞⎟⎟⎟⎟⎠ , (20)

where C is the companion matrix and eTj represents the jth Euclidean unitary vector of length N − 1.

A direct consequence of (20) is that decreasing the residual increases the overall convergence and

therefore the eigenvalues of the companion matrix C will converge toward some eigenvalues of the

Koopman operator A. Therefore, the way that we will monitor this convergence is by evaluating the

size of the residual during the modal decomposition and plotting its L2 -norm.

Several methods have been employed so far to compute the companion matrix. The last column

of the companion matrix may be found using the Moore-Penrose pseudo-inverse [52] of V N−1
0 , as

c =
(
V N−1
0

)+
wN =

((
V N−1
0

)∗
V N−1
0

)−1(
V N−1
0

)∗
wN .

A solution for the linear least-square problem obtained from (20) is given by the economy size

QR-decomposition of V N−1
0 , as it is discussed in [53].

This article is protected by copyright. All rights reserved.
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Instead of using QR-decomposition, SVD was also applied on V N−1
0 in order to find the singular

eigenvalues and vectors, this approach being helpful when the matrix V N−1
0 is rank deficient [50].

The eigenelements of the companion matrix span the original data and the decomposition (13) is

achieved.

An error analysis of Dynamic Mode Decomposition [54, 55] proved that the procedure described

above turns out to be ill-conditioned in practice. This may especially be the situation when modal

decomposition is applied to snapshots collected at large time steps, that behave like using noisy

experimental data, or for small time steps when the increments are smaller then the noise (aliasing).

In this situation, the modal decomposition is unable to find proper eigenelements of the Koopman

operator and the flow reconstruction is inaccurate. For these cases, we propose in the following an

improved dynamic mode decomposition algorithm.

3.2. Description of an Improved DMD Algorithm

In this section, we consider that dynamical system (11) represents an approximation of the SWE

model (3)-(5), discretized in both time and space, and the observable wi = w (ti), ti = iΔt,

i = 0, ..., N , consist of the time dependent variables w = {u, v, h} (x, y, t) in the spatial domain

Ω. The main objective is to find a representation of the flow field in the form

wDMD (x, y, t) = Wb +

r∑
j=1

aje
(σj+iωj)tφj (x, y), σj =

log (|λj |)
Δt

, ωj =
arg (|λj |)

Δt
, (21)

where φj ∈ C are the DMD modes, r is the number of the DMD modes kept for flow decomposition,

aj ∈ C are the amplitudes of the modes, λj ∈ C are the Ritz eigenvalues of the modal decomposition

associated with the growth rate σj and the frequency ωj and Wb is a constant offset that represents

the data mean, usually called the base flow in hydrodynamic stability analysis,

Wb (x, y) =
1

1 +N

N∑
i=0

wi (x, y). (22)

Theoretically, we apply the dynamic mode decomposition on the mean-subtracted data w
′

i =

wi −Wb, i = 0, ..., N . As noticed by Noack et al. [56], the use of the mean of a data set as the

base flow represents a common practice in application of modal decomposition like POD. Recently,

Chen, Tu and Rowley [57] pointed out that constructing the Koopman modes from base-flow-

subtracted data offers the advantage that the reduced order model will satisfy the same boundary

conditions employed for the full model, while computing DMD modes without first subtracting a

base flow results in the boundary conditions not being satisfied.

The quantitative capabilities of DMD have already been well demonstrated in the literature by the

efforts of Bagheri [22], Mezic [23], Rowley et al. [24], Belson et al. [61]. The method of snapshots

formulation is well-suited for large data, because the eigenvalue problem does not depend on the

dimension of the snapshot vector (see Holmes et al. [59]).

Here we apply the method of snapshots introduced by Sirovich [60] in 1987 and we solve the

resulting eigenvalue problem by a matrix multiplication method. We introduce in this paper a DMD

This article is protected by copyright. All rights reserved.
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based approach yielding a supplementary subroutine for extracting the optimal Koopman modes.

We summarize below the steps of the algorithm.

Algorithm 1: Improved DMD for 2D flows with selection of dominant modes

(i) Collect data wi (x, y) = w (x, y, ti), ti = iΔt, i = 0, ..., N from the flow field, equally

distributed in time.

(ii) Placing the columns one after another, transform snapshots wi into columns w̃i of the matrix

V =
[
w̃0 w̃1 ... w̃N

]
. (23)

(iii) Compute the mean column W b =
1

1+N

N∑
i=0

w̃i and the mean-subtracted snapshot matrix

V ′ = V −W b. Reshaping W b into the matrix form corresponds to the base flow Wb (x, y).

(iv) A matrix V N−1
0 is formed with the first N columns and the matrix V N

1 contains the last N

columns of V ′,

V0
N−1 =

[
w̃0 w̃1 ... w̃N−1

]
, (24)

V1
N =

[
w̃1 w̃2 ... w̃N

]
. (25)

Performing a Galerkin projection of the unknown Koopman operator A onto the subspace

spanned by the snapshots, we express the vectors of V N
1 as a linear combination of the

independent sequence V N−1
0 :

V N
1 = AV N−1

0 = V N−1
0 S +R, (26)

where R is the residual matrix and S approximates the eigenvalues of A when the norm

‖R‖2 → 0. The objective at this step is to solve the minimization problem

Minimize
S

R =
∥∥V N

1 − V N−1
0 S

∥∥ . (27)

(v) We identify a singular value decomposition of V N−1
0 :

V N−1
0 = UΣWH , (28)

where U contains the proper orthogonal modes of V N−1
0 , Σ is a square diagonal matrix

containing the singular values of V N−1
0 and WH is the conjugate transpose of W . It follows

from (26) that S can be obtained by multiplying V N
1 by the Moore-Penrose pseudoinverse of

V N−1
0 :

S =
(
V N−1
0

)+
V N
1 = WΣ+UHV N

1 = XΛX−1, (29)

where X and Λ represent the eigenvectors, respectively the eigenvalues of S, and Σ+ is

computed according to Moore-Penrose pseudoinverse definition of Golub and van Loan [52]:

Σ+ = diag

(
1

σ1
, · · · , 1

σr
, 0 · · · , 0

)
, r = rank

(
V N−1
0

)
. (30)

This article is protected by copyright. All rights reserved.
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(vi) Calculation of Koopman modes and amplitudes. After solving the eigenvalue problem

SX = XΛ, (31)

the diagonal entries of Λ represent the Ritz eigenvalues λ. The frequency and damping are

provided by these eigenvalues. The projection of V N
1 on the modes V N−1

0 X yields:

V N
1 =

(
V N−1
0 X

)
ΛX−1 = AV N−1

0 . (32)

From this expression, the contribution of each dynamic mode to the data sequence V N
1 is

obtained. Thus the Koopman modes are the columns of the matrix φ = V N−1
0 X . Reshape

these columns back into matrix form to obtain the dynamic modes φi (x, y) = φ (x, y, ti),

ti = iΔt, i = 0, ..., N − 1. The amplitudes are given by the norm of the corresponding column

vector of V N−1
0 X , as

aj =

∥∥V N−1
0 X (:, j)

∥∥
2∥∥V N−1

0 X
∥∥
2

, j = 1, ..., r, (33)

where r represents the number of the Koopman modes stored for modal decomposition.

A novel and efficient technique to select the dominant Koopman modes will be given in the

following.

3.3. Optimal Selection of the Dominant Koopman Modes

Selection of Koopman modes and amplitudes used for the flow reconstruction constitutes the

source of many discussions among modal decomposition practitioners. For instance, Jovanovic

et al. [62] introduced a low-rank DMD algorithm to identify an a priori specified number of

modes that provide optimal approximation of experimental or numerical snapshots at a certain time

interval. Consequently, the modes and frequencies that have strongest influence on the quality of

approximation have been selected. Chen et al. [57] introduced an optimized DMD, which tailors

the decomposition to an optimal number of modes. This method minimizes the total residual over

all data vectors and uses simulated annealing and quasi-Newton minimization iterative methods for

selecting the optimal frequencies.

The superposition of all Koopman modes, weighted by their amplitudes and complex frequencies,

approximates the entire data sequence, as relation (21) describes, but there are also modes that have

a weak contribution. We address in this section the problem of identification of an optimal truncated

representation of the flow field in order to capture the most important dynamic structures.

To this end, we seek for a number rDMD < r, which represents the optimal number of the selected

modes that must be identified such that the flow can be reconstructed using the first rDMD optimal

Koopman modes and associated amplitudes and Ritz eigenvalues as:

wDMD (x, y, t) = Wb (x, y) +

rDMD∑
j=1

ajλjφj (x, y). (34)
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In matrix formulation, relation (34) yields:

wDMD (x, y, t) = Wb +
(

a1 a2 . . . arDMD

)⎛⎜⎜⎝
λ1 . . . 0
...

...
...

0 . . . λrDMD

⎞⎟⎟⎠
⎛⎜⎜⎝

φ1 (x, y)
...

φrDMD
(x, y)

⎞⎟⎟⎠ .

(35)

In Proper Orthogonal Decomposition or POD Balanced Truncation Method [49], the flow field

is decomposed into orthogonal modes which are by construction ranked by energy level through

the POD or Hankel eigenvalues [51]. Thereafter, the order of the modes is in decreasing amount

of energy and the POD modes are designed to contain the largest amount of energy with any

given number of modes. In Dynamic Mode Decomposition, the modes are not orthogonal, but one

advantage of DMD compared to POD is that each DMD mode is associated with a pulsation, a

growth rate and each mode has a single distinct frequency. For this feature, DMD method was

originally used in non-linear dynamics, for instance Muld et al. [29] and was just recently introduced

in fluid mechanics [63, 28, 64].

A criterion of selecting the DMD modes can be their amplitude aj , or based on their

frequency/growth rate ωj/σj . As reported by Noack et al. [65], the amplitude criterion is not

sufficient since there exist modes which are very rapidly damped, having very high amplitudes. The

modal selection based on frequency/growth rate is not rigorous since it relies on a priori physical

knowledge of the flow. The frequencies resolved by the DMD are still subjected to the Nyquist

sampling theorem [66] and the researcher has to know in advance frequencies that are essential in

the flow physics to adjust the sampling interval Δt. On the other hand, the non-orthogonality of the

Koopman modes may raise the projection error while increasing the order of the DMD basis.

To avoid these difficulties, we introduce in the following a new method to optimize the selection of

the Koopman modes involved in the reconstruction of the flow. The DMD algorithm that we propose,

is based on the conservation of quadratic integral invariants by the finite-element discretization

scheme of the shallow-water model (3)-(5). We assume that the reduced order reconstructed flow

(34) also preserves the conservation of the total flow energy. In parallel, we aim to eliminate the

modes that contribute weakly to the data sequence. Let

E =
1

N + 1

N∑
i=0

∫ ∫
Ω

hi(x, y)
(
ui(x, y)

2
+ vi(x, y)

2
)
+ ghi(x, y)

2
dx dy, (36)

be the total energy of the high fidelity flow, defined also in [43], or in Hamiltonian form in [67] and

EDMD =
1

N + 1

N∑
i=0

∫ ∫
Ω

hi
DMD(x, y)

(
ui

DMD(x, y)
2
+ vi

DMD(x, y)
2
)
+ ghi

DMD(x, y)
2
dx dy,

(37)

be the total energy of the reduced order flow, where (hi, ui, vi) (x, y) and(
hi

DMD, ui
DMD, vi

DMD
)
(x, y), i = 0, ..., N represents the full rank flow, respectively the

Koopman decomposed flow at time i.
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We arrange the Koopman modes in descending order of the energy of the modes, weighted by the

inverse of the Strouhal number St = arg (λj) / (2πΔt):

eDMD
j =

1

St
·
‖φj (x, y)‖F

‖V‖F
, j = 1, ..., r. (38)

We denote by ‖ · ‖F the Frobenius matrix norm in the sense that for any matrix A ∈ Cm×n having

singular values σ1, ..., σn and SVD of the form A = UΣV H , then

‖A‖F =
∥∥UHAV

∥∥
F
= ‖Σ‖F =

√
σ1

2 + ...+ σn
2. (39)

Determination of the optimal vector of amplitudes and corresponding eigenvalues and Koopman

modes (aj , λj , φj (x, y)) , j = 1, ..., rDMD then amounts to finding the solution to the following

optimization problem ⎧⎨⎩ Minimize
rDMD

1
N+1

N∑
i=0

‖wi(x,y)−wi
DMD(x,y)‖

F

‖wi(x,y)‖F
,

Subject to
∣∣E − EDMD

∣∣ < ε,

(40)

where wi (x, y) and wi
DMD (x, y), i = 0, ..., N represents the full rank flow, respectively the

Koopman decomposed flow at time i and ε = 10−5 sets an upper bound on the relative error due to

rounding in floating point arithmetic.

We are interested in finding the Koopman modes that provide the maximum energy of the

fluctuations at distinct frequencies and we continue minimizing the residual under the linear

dynamics constraint and the flow energy conservation assumption.

4. DECOMPOSITION OF FLOW FIELDS BY PROPER ORTHOGONAL DECOMPOSITION

SUBJECT TO THE LINEAR DYNAMICS

Apart from Krylov subspace methods, the Proper Orthogonal Decomposition (POD), represents at

the moment state-of-the-art for many model reduction problems. The strong point of POD is that it

can be applied to non-linear partial differential equations, especially for smooth systems in which

the energetics can be characterized by the first few modes. The applicability of POD to complex

systems is limited mainly due to errors associated with the truncation of POD modes. The POD and

its variants are also known as Karhunen-Loeve expansions in feature selection and signal processing,

empirical orthogonal functions in atmospheric science or principal component analysis in statistics.

In weather and climate modeling [7, 12, 13, 33], as well as in other complex systems such as data

assimilation [15, 16], the development of accurate and reliable low dimensional models represents

an extremely important task.

The idea underlying this method is that the time response of a system given a certain input,

contains the essential behavior of the system. Therefore, the set of outputs serves as a starting-point

for POD. We consider that the observables wi = w (ti), ti = iΔt, i = 0, ..., N , consist of the time

dependent variables w = {u, v, h} (x, y, t) of the SWE model (3)-(5), discretized in both time and

space in the spatial domain Ω. The main objective in POD is to find a representation of the flow field
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of the form

wPOD (x, y, t) = Wb (x, y) +

rPOD∑
j=1

bj (t) Φj (x, y), (41)

where Wb (x, y) represents the data mean flow defined as in (22), rPOD represents the optimal

number of the POD selected modes that must be identified. The time dependent coefficients bj are

called Fourier coefficients. We are looking for an orthonormal basis {Φj (x, y)}, j = 1, ..., rPOD

such that the averages of the first few Fourier-coefficients represent 99% of the total energy of the

snapshots. This leads to the following POD algorithm:

Algorithm 2: POD Algorithm for 2D flows

(i) Collect data wi (x, y) = w (x, y, ti), ti = iΔt, i = 0, ..., N from the flow field, equally

distributed in time.

(ii) Placing the columns one after another, transform snapshots wi into columns w̃i of the matrix

V =
[
w̃0 w̃1 ... w̃N

]
. (42)

(iii) Compute the mean column W b =
1

N+1

N∑
i=0

w̃i and the mean-subtracted snapshot matrix

V ′ = V −W b. Reshaping W b into the matrix form corresponds to the base flow Wb (x, y).

(iv) Calculate the empirical correlation matrix

C =
1

N + 1
V ′V ′T , (43)

where N + 1 represents the number of snapshots and V ′T represents the transpose of the mean

subtracted snapshot matrix.

(v) Compute the singular eigenvalue decomposition

Cvj = λjvj , j = 1, ..., N + 1, vj ∈ R
N+1, (44)

where N + 1 represents the number of the total eigenvalues.

(vi) Find the number of POD basis vectors rPOD capturing 99.99% of the snapshots energy,

defined as

ePOD =

rPOD∑
j=1

λj

/
N+1∑
j=1

λj . (45)

(vii) We can choose the first orthonormal basis of eigenvectors {v1, ..., vrPOD
} and the

corresponding POD basis functions are given by

Φj =
1√
λj

V ′vj , j = 1, ..., rPOD. (46)

(viii) The temporal coefficients are stored in the matrix B, which is obtained by relation

B = ΦTV ′. (47)
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Hence, in each row we find the trajectories of the dynamical system at discrete time events.

(ix) The reconstruction of the flow fluctuating part is achieved as V ′
POD = ΦB, and the

reconstruction of the flow field is VPOD = V ′
POD +W b. Reshape the columns of VPOD back

into matrix form to obtain the POD representation of the flow wPOD (x, y, t).

5. ANALYSIS OF SWE COHERENT STRUCTURES BY KOOPMAN MODES AND POD

We perform the numerical experiments in a rectangular channel whose dimensions are Dmax =

4400km, Lmax = 6000km. The dimensional constants used for the model are

f̂ = 10−4s−1, β = 1.5× 10−11s−1m−1, g = 10ms−1,

H0 = 2000m, H1 = 220m, H2 = 133m. (48)

In this section, the application of POD and DMD is illustrated by comparing the evolution of

the flow field along the integration time window. There are several major differences between these

two decomposition methods. The spatial basis functions φj (x, y) and Φj (x, y), for DMD and POD

respectively, offer an insight of the coherent structures in the flow field. The differences between

φj (x, y) and Φj (x, y) occur due to the principles of the decomposition methods. The time evolution

of a DMD mode is influenced by the multiplication of the complex eigenvalue λj of the Koopman

operator weighted by the amplitude, while the time evolution of POD modes is described by the

functions bj (t). The POD modes are orthonormal in space with the energy inner product. In DMD,

each mode oscillates at a single frequency, hence the expression that the DMD modes are orthogonal

in time.

5.1. Numerical Results for the Improved DMD Algorithm

As an improvement of the classic algorithm of Schmid [50], we explore the subtraction of the data

mean of the flow when DMD algorithm is applied to large time step observation. Unlike the classic

algorithm, we arrange the Koopman modes in descending order of the energy of the DMD modes

weighted by the inverse of the Strouhal number, defined by relation (38). In addition, the novelty

introduced in this paper resides in the selection of the DMD modes and associated amplitudes and

Ritz values, as a solution of the constrained optimization problem (40).

In order to assess the performances of the method proposed, we have considered two numerical

experiments. In the first experiment, we record a number of 240 unsteady solutions of the two-

dimensional shallow water equations model (3)-(5), with time step Δt = 600s. Figure 1 presents the

error of the minimization problem (27), which confirms that the use of the Moore-Penrose inverse

in the DMD computation produces an accurate result.

The DMD spectra for the mean-subtracted fields (u, v, h) (x, y, t) are presented in Figure 2. The

improved DMD technique presented herein is fully capable of determining the modal growth rates

and the associated frequencies.

Figure 3a presents the normalized vector energy (38) versus the Strouhal number. The lighter

colored dots indicate the modes for which the corresponding amplitudes and Ritz eigenvalues are

kept in the flow reconstruction. Figure 3b shows that the higher amplitudes are associated to the
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most energetic Koopman modes selected for flow decomposition. This demonstrates that, in DMD

decomposition, the amplitudes are directly proportional to the energy in the coherent structures, as

defined by Equation (38), unlike the POD decomposition where the eigenvalues capturing most of

the snapshots energy indicate the corresponding POD basis functions.

A novel selection method for the DMD modes have been proposed in this paper, based on the

conservation of total flow energy by the finite-element discretization scheme of the shallow-water

model. We have computed the double integral representing the flow energy defined respectively

by Equations (36), (37) using Simpson’s 1/3 rule, considering DMD decomposition with an

incremental number of modes and we solved the constrained optimization problem (40) employing

the sequential quadratic programming (SQP) [69]. Solution of the constrained optimization problem

(40) leads to the number of rDMD = 13 Koopman modes and associated amplitudes and Ritz values

to be used in flow decomposition, in the case of the improved DMD algorithm, while a number of

rDMD = 23 dominant Koopman modes were detected in the case of the classic DMD algorithm.

The absolute error between the total energy of the high fidelity flow and the total energy of

the reduced order flow, i.e.
∣∣E − EDMD

∣∣, in case of application of the improved DMD algorithm

is represented in Figure 4a. The relative error of geopotential height field decomposition, defined

as
‖h(x,y)−hDMD(x,y)‖

F

‖h(x,y)‖F
, using rDMD = 13 modes is depicted in Figure 4b. The absolute error

between the total energy of the high fidelity flow and the total energy of the reduced order flow,

in case of application of the classic DMD algorithm is represented in Figure 5a. The relative error

of geopotential height field decomposition, using rDMD = 23 modes is depicted in Figure 5b. A

comparative analysis of the presented results indicates that the improved DMD algorithm is more

efficient in the flow reconstruction than the classic one.

A comparative representation of the energy of the modes versus the Strouhal number is presented

in Figure 6, where the classic DMD algorithm [50] and the improved DMD algorithm presented in

this paper have been applied for decomposition of the streamwise velocity field u. In the classic

DMD decomposition, the modal energy exhibits a divergent tendency as the Strouhal number

increases. In an opposite manner, in the improved DMD algorithm employed in the present research

the most energetic Koopman modes selected for flow decomposition correspond to low Strouhal

numbers.

A comparative analysis of the amplitudes selected in reconstruction of the geopotential height

field is illustrated in Figure 7a. It is obvious that decomposition computed with the classic DMD

algorithm exhibit a higher amplitude and a series of lower amplitudes. Instead, the improved DMD

algorithm generates a normal distribution of the amplitudes. We perform the reconstruction of the

geopotential height field at time T = 16.5h in Figure 8, employing both the classic DMD and the

improved DMD algorithm. Comparing the results with the finite-element solution depicted in Figure

7b, we conclude that the improved DMD algorithm leads to more accurate reconstruction than the

classic method.

In the second experiment, we record a number of 180 unsteady solutions of the two-dimensional

shallow water equations model (3)-(5) and we double the time step at Δt = 1200s. We perform

the geopotential height flow decomposition at time T = 49.6h. The DMD spectra for the mean-

subtracted fields (u, v, h) (x, y, t) are presented in Figure 9. It is easy to see that the Ritz values are

the roots of unity, in the case of geopotential field h and streamwise velocity u decompositions. This

occurs in the situations where the minimization problem (27) produces a nonsingular matrix S.
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Solution of the constrained optimization problem (40) leads to the number of rDMD = 21

Koopman modes in the case of the classic DMD algorithm, while a number of only rDMD = 4

Koopman modes are retained in the case of the improved DMD algorithm (the reader is referred to

Figure 10).

Geopotential height field reconstruction at time T = 49.6h is depicted in Figure 11, in

comparison.

Analyzing the numerical results, we are able to conclude that the improved DMD algorithm

presented herein is more efficient in the reconstruction of large time step observation, since an

accurate solution is achieved with a much smaller number of modes than in the case of employment

of classic DMD decomposition. In the next section a qualitative comparison between the DMD and

POD modes is given.

5.2. Numerical Results for POD Algorithm

Considering the set of 180 snapshot used also in the previous investigation, representing unsteady

solutions of the two-dimensional shallow water equations model (3)-(5) computed with the time

step Δt = 1200s, we employ the POD algorithm described in Section 4 to obtain the reconstruction

of the geopotential height field at time T = 49.6h. We plot in Figure 12 the singular values obtained

from POD decomposition. Most of the energy defined by Equation (45) is contained in the first few

modes. Specifically, the number of optimal POD basis functions is rPOD = 17, because the first 17

eigenvalues yield more than 99.99% of the snapshots energy (see Figure 13a). Representation of the

POD computed geopotential height field is presented in Figure 13b.

Comparing the flow decomposition by the improved DMD algorithm in Figure 11c with the

POD decomposition in Figure 13b, we conclude that the flow reconstruction using POD method is

more accurate than reconstruction by DMD method. Instead, DMD provides an acceptable reduced

analytical linear model of considered nonlinear dynamical system.

The first four Koopman modes computed with the improved DMD algorithm presented herein

are depicted in Figure 14 beside the first four POD basis functions, for modal decomposition of the

geopotential height field.

A quantitative comparison of the spatial modes computed from the two decompositions discussed

here can be obtained from the Modal Assurance Criterion (MAC), as recommended by Brown and

his coworkers [68]. The Modal Assurance Criterion is a measure of the degree of linearity between

two vectors. The MAC value for a pair of modes is defined as

MACij

(
φi

DMD,Φj
POD

)
=

(∥∥∥(φj
DMD

)H · Φj
POD

∥∥∥
F

)2
∥∥∥(φj

DMD
)H · φj

DMD
∥∥∥
F

∥∥∥(Φj
POD

)H · Φj
POD

∥∥∥
F

, (49)

where · represents the Hermitian inner product, H denotes the conjugate transpose and ‖ · ‖F is the

Frobenius matrix norm. The computed MACij

(
φi

DMD,Φj
POD

)
takes values in the interval [0, 1],

where 1 indicates identical modes and 0 indicates the orthogonality of the modes. In practice [70],

two vectors are considered correlated when the MAC value is greater than 0.9, which corresponds

to an angle lower than 18 degrees. The vectors are considered uncorrelated when the MAC value is

lower than 0.6, which means that they are separated by an angle greater than 39 degrees.
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In the following, we compare the computed DMD modes with the POD modes used as basis

functions in the two modal decomposition methods. The MAC values computed between the first

rDMD = 4 modes and the first rPOD = 17 orthogonal modes are represented in Figure 15.

As expected, the first mode corresponding to the mean flow is well captured by both methods,

with MAC
(
φ1

DMD,Φ1
POD

)
= 1. The fourth POD mode Φ4 exhibits a strong similarity with the

DMD modes, having an increased MAC value MAC41 = 0.89, MAC42 = 0.89, MAC43 = 0.96,

MAC44 = 0.96. Analyzing the modal assurance matrix, we conclude that only four POD modes are

correlated with the DMD modes, namely Φ1, Φ4, Φ6 and Φ16, exhibiting a MAC number greater

than 0.59. The other POD modes differ from the DMD modes, as with all they ensure the caption of

99.99% of the snapshots energy in the POD modal decomposition.

Unlike POD, it is evident that the first four optimal DMD modes are sufficient to describe the

flow field, as indicated the higher MAC values between the second, third and fourth DMD modes

and the first POD mode: MAC21 = 1, MAC31 = 0.99, MAC41 = 0.99. Hence the conclusion that,

for the problem investigated here, the DMD modal decomposition is more efficient than POD

decomposition, because the DMD modal decomposition is achieved with a smaller number of terms.

6. ANALYSIS OF OPTIMIZED DMD-ROM AND POD-ROM MODELS

The two-stage finite-element Numerov-Galerkin method for integrating the nonlinear shallow-water

equations on a β-plane limited-area domain proposed by Navon [35] was employed in order to

obtain the numerical solution of the SWE model (3)-(5). In Figure 16 the initial velocity fields are

presented. The solutions of geopotential height field and (u, v) field at T = 24h are illustrated in

Figure 17.

The DMD and POD computed geopotential height field and (u, v) field at T = 24h are depicted

in Figures 18 and 19, where a number of rDMD = 4 modes and rPOD = 17 modes were kept for

DMD and POD decompositions, respectively, using snapshots captured at Δt = 1200s.

These reconstructions, when plotted on the same length and time scales as the simulations of the

full system, exhibit strikingly similar features, both quantitatively and qualitatively. The validity of

the improved DMD approach and POD decomposition has been checked by comparing our results

with those obtained by Stefanescu and Navon [13], when an alternating direction fully implicit

(ADI) finite-difference scheme was used for discretization of 2-D shallow-water equations on a

β-plane. The flow reconstructions presented in Figure 18 and Figure 19 are very close to those

computed in [13] (see p. 103, Figure 2(a) indicates the results used in comparison).

The similarity between these characteristics of the geopotential height field and those obtained in

the previous investigation validates the method presented here and certifies that the improved DMD

can be applied successfully to 2D flows.

We focus in this section on employing tools of DMD, POD and Galerkin projection to provide a

consistent way for producing reduced-order models from data.

By collecting snapshots of the velocity and geopotential height field and applying the improved

DMD method, a reduced order model (denoted in the following as DMD-ROM) of the flow is
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constructed from the DMD basis by writing

w (x, y, t) ≈ wDMD (x, y, t) = Wb (x, y) +

rDMD∑
j=1

aj (t)λjφj (x, y), (50)

where Wb is the centering trajectory, rDMD is the number of DMD basis functions and λj , φj (x, y)

represent the Ritz eigenvalues of the Koopman operator and the DMD basis functions, respectively.

We now replace the velocity w with wDMD in the SWE model (3)-(5) associated with the initial

conditions (8), (9), (10), compactly written{
∂w
∂t (x, y, t) = f (t, w (x, y, t))

w (x, y, t0) = w0 (x, y)
(51)

and then project the resulting equations onto the subspace XDMD =

span {φ1(·), φ2(·), ..., φrDMD
(·)} spanned by the DMD basis to compute the following inner

products: 〈
φi (·) ,

rDMD∑
j=1

λjφj (·) ȧj (t)
〉

=

〈
φi (·) , f

(
t,

rDMD∑
j=1

λjφj (·) aj (t)
)〉

, (52)

〈
φi (·) ,

rDMD∑
j=1

λjφj (·) ȧj (t0)
〉

= 〈φi (·) , w0〉 , for i = 1..rDMD, (53)

where 〈f, g〉 =
∫
Ω
fg dΩ.

The Galerkin projection gives the DMD-ROM, i.e., a dynamical system for temporal coefficients

{aj (t)}j=1,...,rDMD
:

ȧi (t) =

〈
φi (·) , f

(
t,

rDMD∑
j=1

λjφj (·) aj (t)
)〉

, (54)

with the initial condition

ai (t0) = 〈φi (·) , w0〉 , for i = 1, ..., rDMD. (55)

To derive the reduced order model from the POD basis, denoted in the following as POD-ROM

model, we construct the flow by writing

w (x, y, t) ≈ wPOD (x, y, t) = Wb (x, y) +

rPOD∑
j=1

bj (t) Φj (x, y), (56)

where Wb is the centering trajectory, rPOD is the number of POD basis functions and Φj (x, y)

represents the POD basis functions. We seek for the coefficients bj projecting the SWE equations

(51) onto the subspace XPOD = span {Φ1(·),Φ2(·), ...,ΦrPOD
(·)} spanned by the POD basis:〈

Φi (·) ,
rPOD∑
j=1

Φj (·) ḃj (t)
〉

=

〈
Φi (·) , f

(
t,

rPOD∑
j=1

Φj (·) bj (t)
)〉

, (57)
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〈
Φi (·) ,

rPOD∑
j=1

Φj (·) ḃj (t0)
〉

= 〈Φi (·) , w0〉 . (58)

The POD-ROM given by the Galerkin projection reduces to the solution of the following system

of ODEs, for the temporal coefficients {bj (t)}j=1,...,rPOD
:

ḃi (t) =

〈
Φi (·) , f

(
t,

rPOD∑
j=1

Φj (·) bj (t)
)〉

, (59)

with the initial condition

bi (t0) = 〈Φi (·) , w0〉 , for i = 1, ..., rPOD. (60)

The resulting autonomous systems have linear and quadratic terms parameterized by cim, cimn,

dim, dimn respectively:

ȧi (t) =

rDMD∑
m=1

rDMD∑
n=1

cimnam (t) an (t) +

rDMD∑
m=1

cimam (t) , i = 1, ..., rDMD, (61)

ḃi (t) =

rPOD∑
m=1

rPOD∑
n=1

dimnbm (t) bn (t) +

rPOD∑
m=1

dimbm (t) , i = 1, ..., rPOD. (62)

In the following, we emphasize the performances of the reduced order DMD-ROM model and

POD-ROM model for 2D flows in comparison with the numerical solution of the full SWE model.

To judge the quality of the reduced order models developed here, an error estimate is provided. We

define the relative error as the L2-norm of the difference between the variables of the full SWE

model and approximate solutions over the exact one, that is,

errorDMD =

∥∥w (x, y)− wDMD−ROM (x, y)
∥∥
2

‖w (x, y)‖2
, (63)

errorPOD =

∥∥w (x, y)− wPOD−ROM (x, y)
∥∥
2

‖w (x, y)‖2
. (64)

The results are presented in Table I. The maximum error of numerical POD-ROM solutions is less

than the error of numerical DMD-ROM solutions, but the benefit of employing the improved DMD

prevails in the case of shallow water equations model reduction. Although the POD-ROM model

provides higher precision, the DMD-ROM model is less expensive with respect to the numerical

implementation costs, i.e. numerical results are obtained for a considerably smaller number of

expansion terms to derive the reduced order model.

The flow energy conservation is used as an additional metric to evaluate the quality of the two

reduced order models. Table II presents the absolute errors with respect to flow energy obtained

from the full model. The results indicate that both reduced order models will preserve the flow total

energy.

Figure 20 illustrates the temporal coefficients of the two reduced order models. In Figure 20a, the

coefficients of the DMD-ROM model, corresponding to the first four dominant Koopman modes
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are visualized. Figure 20b plots the coefficients corresponding to the first ten POD modes of the

POD-ROM model.

A comparison of the full solution of the geopotential height field and reduced order models

solutions is provided in Figure 21. The geopotential height field computed at time level T = 10h by

the two reduced order models exhibits an overall good agreement with that from the full model.

The local error between the full SWE solution and DMD-ROM, POD-ROM solutions,

respectively, at time T = 10h is presented in Figure 22.

The correlation coefficients defined below are used as additional metrics to validate the quality of

the two reduced order models:

Ci
DMD =

(∥∥wi (x, y) · wi
DMD−ROM (x, y)

∥∥
F

)2∥∥∥(wi (x, y))
H · wi (x, y)

∥∥∥
F

∥∥∥(wi
DMD−ROM (x, y))

H · wi
DMD−ROM (x, y)

∥∥∥
F

, (65)

i = 0, ..., N − 1,

Ci
POD =

(∥∥wi (x, y) · wi
POD−ROM (x, y)

∥∥
F

)2∥∥∥(wi (x, y))
H · wi (x, y)

∥∥∥
F

∥∥∥(wi
POD−ROM (x, y))

H · wi
POD−ROM (x, y)

∥∥∥
F

, (66)

i = 0, ..., N − 1,

where wi (x, y) means the solution of the full SWE model at time i, wi
DMD−ROM (x, y),

wi
POD−ROM (x, y, t) represent the computed solutions at time i by means of the reduced order

models, respectively, (·) represents the Hermitian inner product and H denotes the conjugate

transpose. A comparison of the correlation coefficient between the full and reduced order models

is provided in Figure 23. The values of the correlation coefficients are greater than 99%, 97%,

respectively and confirm the validity of the two reduced order models.

7. SUMMARY AND CONCLUSIONS

We have proposed a framework for dynamic mode decomposition of 2D flows, when numerical or

experimental data snapshots are captured with large time steps. Such problems originate for instance

from meteorology, when a large time step acts like a filter in obtaining the significant Koopman

modes, therefore the classic dynamic mode decomposition method is not effective. This study

was motivated by the need to further clarify the connection between Koopman modes and POD

dynamic modes. We have applied dynamic mode decomposition (DMD) and proper orthogonal

decomposition (POD) to derive reduced-order models of the shallow water equations.

Based on the DMD method introduced in [50], we proposed an improved DMD algorithm for

selecting the dominant Koopman modes of the flow field. Unlike the classic algorithm, we arrange

the Koopman modes in descending order of the energy of the DMD modes weighted by the inverse

of the Strouhal number. Key innovation for the DMD-based ROM introduced in this paper are

the use of the Moore-Penrose pseudo-inverse in the DMD computation that produced an accurate

result and a novel selection method for the DMD modes and associated amplitudes and Ritz values.

We eliminate the modes that contribute weakly to the data sequence based on the conservation of

quadratic integral invariants by the reduced order flow.
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In order to assess the performances of the proposed method, we have considered two numerical

experiments and we applied the improved DMD algorithm for different snapshots obtained by

sampling down the original solutions of the full SWE model with different time steps. We compared

the novel approach with the classic one in both cases. The improved DMD algorithm introduced in

this paper proved to be more efficient for model reduction than the classic DMD method. Solution

of the constrained optimization problem (40) leads to the number of rDMD = 23, rDMD = 21

Koopman modes in the case of the classic DMD algorithm, respectively, while a number of

rDMD = 13, rDMD = 4 Koopman modes, respectively, are kept in the case of the improved DMD

algorithm for flow modal decomposition in the two considered experiments.

We emphasized the excellent behavior of the improved DMD method compared to a POD-

based model results. Following the classic energetic criterion (45), the POD decomposition lead

to a number of rPOD = 17 selected modes. We perform a quantitative comparison of the spatial

modes computed from the two decompositions discussed here using the Modal Assurance Criterion

(MAC), as a measure of the degree of linearity between Koopman and POD modes. This evaluation

indicates that the DMD modal decomposition is more efficient than POD decomposition, because

the DMD modal decomposition is achieved with a smaller number of modes.

Additionally, we presented a rigorous error analysis for the ROM models obtained by POD and

the improved DMD and we compared the relative computational efficiency of above-mentioned

ROM methods.

We found a very close agreement between the flow reconstruction computed with the ROM

models and the solution provided by the high fidelity SWE model. But the benefit of employing

the improved DMD method prevails in the case of modal decomposition of 2D flows described by

shallow water equations. The similarity between the correlation coefficient between the full solution

and the reduced order solutions certifies that the improved DMD method can be applied successfully

in parallel with the POD decomposition to obtain reduced order models of potential relevance.

Finally, let us summarize the main features of the presented methods and potential applications

of the novel numerical method introduced in this paper:

(i) Improved DMD method introduced in the present research exhibits more efficiency in

reconstruction of flows described by shallow water equations model. For Δt = 1200s,

rDMD = 4 Koopman modes are selected for flow reconstruction, while rDMD = 21 Koopman

modes are retained in the case of the classic DMD algorithm and rPOD=17 modes are kept

for flow reconstruction in POD method.

(ii) By employing the DMD, the most energetic Koopman modes are associated to the the higher

amplitudes selected for flow decomposition. Instead, the eigenvalues capturing most of the

snapshots energy indicate the corresponding basis functions in POD decomposition.

(iii) DMD is useful when the main interest is to capture the dominant frequency of the

phenomenon. POD is useful when the main interest is to find coherent structures in the POD

modes which are energetically ranked. Further techniques for system identification or flow

optimization can be addressed based on both DMD method and POD method.

The question whether the proposed DMD methodology is a viable alternative to the linear

stability analysis available in the community, for hydrodynamic stability investigation is a subject

which will be addressed carefully in our future work. There are a number of interesting directions
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that arise from this work. First, it will be a natural extension to apply the proposed algorithm to

high-dimensional systems in fluid dynamics and to oceanographic/atmospheric measurements. The

methodology presented here offers the main advantage of deriving a reduced order model capable

to provide a variety of information describing the behavior of 2D flows. A future extension of this

research will address an efficient numerical approach for modal decomposition of swirling flows,

where the full mathematical model implies more sophisticated relations at domain boundaries that

must be satisfied by the reduced order model also.

Projection based methods presented in this paper lead to reduced order models with dramatically

reduced numbers of equations and unknowns. However, for parametrically varying problems or for

modeling problems with strong nonlinearities, the cost of evaluating the reduced order models still

depends on the size of the full order model and therefore is still expensive. The Discrete Empirical

Interpolation Method (DEIM) described in detail in [71] further approximates the nonlinearity in

the projection based reduced order strategies. The application of a DEIM-ROM strategy for FEM

models combined with the methods proposed in this paper represents a subject that we will further

address in our studies. The resulting DEIM-DMD-ROM and DEIM-POD-ROM will be evaluated

efficiently at a cost that is independent of the size of the original problem.
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Figure 1. The error of the minimization problem (27) in the computation of the geopotential height field.
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a. b.

c.

Figure 2. Spectrum of the Dynamic Mode Decomposition: a. Geopotential field h; b. Streamwise velocity
field u; c. Spanwise velocity field v, Δt = 600s.
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a. b.

Figure 3. Decomposition of geopotential height field h using the improved DMD algorithm: The lighter
colored dots indicate the modes for which the amplitude values and Ritz eigenvalues are kept in the flow
reconstruction. a. The normalized vector energy versus the Strouhal number; b. The amplitudes of the DMD

modes, sorted in descending order.
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a. b.

Figure 4. Improved DMD algorithm: a. Absolute error between the total energy of the high fidelity flow
and the total energy of the reduced order flow, as the number of the DMD modes; b. The relative error

‖h(x,y)−hDMD(x,y)‖
F

‖h(x,y)‖F
of geopotential height field decomposition, using rDMD = 13 modes.
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a. b.

Figure 5. Classic DMD algorithm: a. Absolute error between the total energy of the high fidelity flow
and the total energy of the reduced order flow, as the number of the DMD modes; b. The relative error

‖h(x,y)−hDMD(x,y)‖
F

‖h(x,y)‖F
of geopotential height field decomposition, using rDMD = 23 modes.
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a. b.

Figure 6. Decomposition of streamwise velocity field u-The normalized vector energy versus the Strouhal
number: a. Application of classic DMD algorithm [50]; b. Application of improved DMD algorithm - present
approach. The lighter colored dots indicate the amplitude values for which the corresponding modes and Ritz

eigenvalues are kept in the flow reconstruction.
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Figure 7. a. Comparative analysis of the amplitudes used in reconstruction of the geopotential height field;
b. Finite-element solution of the geopotential height field.
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Figure 8. a. Reconstruction of the geopotential height field at time T = 16.5h employing classic DMD
algorithm [50], rDMD = 23; b. Reconstruction of the geopotential height field at time T = 16.5h employing

improved DMD algorithm - present research, Δt = 600s, rDMD = 13.
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a. b.

c.

Figure 9. Spectrum of the Dynamic Mode Decomposition: a. Geopotential field h; b. Streamwise velocity
field u; c. Spanwise velocity field v, Δt = 1200s.
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a. b.

Figure 10. The normalized vector energy versus the Strouhal number: The lighter colored dots indicate the
modes for which the amplitude values and Ritz eigenvalues are retained in the flow decomposition. a. The

classic DMD algorithm; b. Improved DMD algorithm - present research, Δt = 1200s.
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a. b.
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Figure 11. a. Finite-element solution of the geopotential height field at time T = 49.6h. b. Reconstruction
of the geopotential height field at time T = 49.6h employing classic DMD algorithm [50], rDMD = 21; c.
Reconstruction of the geopotential height field at time T = 49.6h employing improved DMD algorithm -

present research, Δt = 1200s, rDMD = 4.
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Figure 12. a. POD eigenvalues; b. Based on an energetic criterion rPOD = 17 modes are kept for the POD
expansion.
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a. b.

Figure 13. a. The energy captured in the POD decomposition as the number of the POD modes; b. POD
reconstruction of geopotential height field at time T = 49.6h, using rPOD = 17 modes.
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Figure 14. Left column: first four Koopman modes retained in DMD decomposition. Right column: first four
POD basis functions.
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Figure 15. Modal Assurance Criterion - MAC Matrix between DMD and POD modes.
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Figure 16. Initial velocity fields: Geopotential height field for the Grammeltvedt initial condition h0,
streamwise and spanwise velocity fields (u0, v0) calculated from the geopotential field by using the

geostrophic approximation.
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Figure 17. a. Solution of geopotential height field at T = 24h; b. Solution of (u, v) field at T = 24h.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
42 D.A. BISTRIAN AND I.M. NAVON

a.

18000

18000

18000

1850018500

18500

19000
19000

19000

19500
19500

19500

20000
20000

20000

20500
20500

20500

2100021000

21000

2150021500

21500

22
00

0

22000

22000

x [km]

y 
[k

m
]

DMD computed geopotential height field at T=24h

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

3500

4000

b.
0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

x [km]

DMD computed (u,v) field at T=24h
y 

[k
m

]

Figure 18. a. DMD computed geopotential height field at T = 24h; b. DMD computed (u, v) field at
T = 24h.
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Figure 19. a. POD computed geopotential height field at T = 24h; b. POD computed (u, v) field at T = 24h.
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a. b.

Figure 20. a. DMD-ROM computed temporal coefficients; b. POD-ROM computed temporal coefficients.
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Figure 21. Comparison of the geopotential height field between full model and reduced order models: a.
Solution of geopotential height field computed at time T = 10h ; b. DMD-ROM solution of geopotential
height field computed at time T = 10h; c. POD-ROM solution of geopotential height field computed at time

T = 10h.
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Figure 22. Local errors between DMD-ROM, POD-ROM SWE solutions and the full SWE solution at time
T = 10h.
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a. b.

Figure 23. Correlation coefficients for the SWE variables: a. DMD-ROM model vs. full SWE model; b.
POD-ROM model vs. full SWE model.
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Table I. The average relative errors of reduced order models

DMD-ROM POD-ROM

errorDMD
h = 0.0119 errorPOD

h = 0.0042
errorDMD

u = 0.1770 errorPOD
u = 0.0929

errorDMD
v = 0.1534 errorPOD

v = 0.0456
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Table II. Energy conserving test

Absolute error of DMD reduced order model Absolute error of POD reduced order model
∣
∣E − EDMD

∣
∣ = 0.1956× 10−5

∣
∣E − EPOD

∣
∣ = 0.7436× 10−6
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