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SUMMARY

This paper introduces tensorial calculus techniques in the framework of POD to reduce the computational
complexity of the reduced nonlinear terms. The resulting method, named tensorial POD, can be applied to
polynomial nonlinearities of any degree p. Such nonlinear terms have an online complexity of O.kpC1/,
where k is the dimension of POD basis and therefore is independent of full space dimension. However, it is
efficient only for quadratic nonlinear terms because for higher nonlinearities, POD model proves to be less
time consuming once the POD basis dimension k is increased. Numerical experiments are carried out with a
two-dimensional SWE test problem to compare the performance of tensorial POD, POD, and POD/discrete
empirical interpolation method (DEIM). Numerical results show that tensorial POD decreases by 76� the
computational cost of the online stage of POD model for configurations using more than 300,000 model
variables. The tensorial POD SWE model was only 2 to 8� slower than the POD/DEIM SWE model but the
implementation effort is considerably increased. Tensorial calculus was again employed to construct a new
algorithm allowing POD/DEIM SWE model to compute its offline stage faster than POD and tensorial POD
approaches. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modeling and simulation of multi-scale complex physical phenomena lead to large-scale systems
of coupled partial differential equations, ordinary differential equations, and differential algebraic
equations. The high dimensionality of these models poses important mathematical and compu-
tational challenges. A computationally feasible approach to simulate, control, and optimize such
systems is to simplify the models by retaining only those state variables that are consistent with a
particular phenomena of interest.

Reduced order modeling refers to the development of low-dimensional models that represent
important characteristics of a high-dimensional or infinite-dimensional dynamical system. The
reduced order methods can be casted into three broad categories: singular values decomposition
(SVD)-based methods, Krylov-based methods, and iterative methods combining aspects of both the
SVD and Krylov methods (see, e.g., [1]).

For linear models, methods such as balanced truncation [2–5] and moment matching [6–8]
have been proving successful in developing reduced order models (ROMs). However, balanced
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truncation does not extend easily for high-order systems, and several grammians approxima-
tions were proposed leading to methods such as approximate subspace iteration [9], least squares
approximation [10], Krylov subspace methods [11, 12], and balanced POD [13]. Among moment
matching methods, we mention partial realization [14, 15], Padé approximation [16–19], and
rational approximation [20].

Although for linear models we are able to produce input-independent highly accurate reduced
models, in the case of general nonlinear systems, the transfer function approach is not yet applica-
ble and input-specified semi-empirical methods are usually employed. Recently, some encouraging
research results using generalized transfer functions and generalized moment matching have been
obtained by [21] for nonlinear model order reduction but future investigations are required.

Proper orthogonal decomposition and its variants are also known as Karhunen-Loève expan-
sions [22, 23], principal component analysis [24], and empirical orthogonal functions [25] among
others. It is the most prevalent basis selection method for nonlinear problems and, among other
requirements, relies on the fact that the desired simulation is well simulated in the input collection.
Data analysis using POD is conducted to extract basis functions from experimental data or detailed
simulations of high-dimensional systems (method of snapshots introduced by [26–28]) for subse-
quent use in Galerkin projections that yield low-dimensional dynamical models. Unfortunately, the
POD Galerkin approach displays a major disadvantage because its nonlinear reduced terms still
have to be evaluated on the original state space making the simulation of the reduced order system
too expensive. There exist several ways to avoid this problem such as the empirical interpolation
method (EIM) [29] and its discrete variant discrete empirical interpolation method (DEIM) [30–32]
and the best points interpolation method [33]. Missing point estimation [34] and Gauss–Newton
with approximated tensors [35, 36] methods are relying upon the gappy POD technique [37]
and were developed for the same reason. Reduced basis methods have been recently developed
and utilize on greedy algorithms to efficiently compute numerical solutions for parametrized
applications [29, 38–41].

Dynamic mode decomposition is a relatively recent development in the field of modal decompo-
sition [42–44], which attempts to represent the data sequence by orthogonalizing it in time while the
POD approach employs a decomposition based on orthogonality in space [43]. Trajectory piecewise
linear method proposed in [45] follows a different strategy where the nonlinear system is repre-
sented by a piecewise linear system which can then be efficiently approached by the standard linear
reduction method.

Parameter model reduction has emerged recently as an important research direction and [46]
highlights the major contribution to the field.

This paper combines POD and tensor calculus techniques to reduce the online computational
complexity of the reduced nonlinear terms for an SWEs model. Tensor-based calculus was already
applied by [47] and [48] to represent quadratic nonlinearities of reduced order POD models.

We show that the tensorial POD (TPOD) approach can be applied to polynomial nonlinearities of
any degree p and its representation has a complexity of O.kpC1/, where k is the dimension of POD
subspace. This complexity is independent of the full space dimension.

For k between 10 and 50 and p D 2, the number of floating-point operations required to calculate
the tensorial POD quadratic terms is 10 to 40� lower than in the case of POD model and 10 to 20�
higher than for the POD/DEIM. However, CPU time for solving the TPOD SWE model (online
stage) is only 2 to 8 times slower than POD/DEIM SWE model for 103–105 grid points, k 6 50, and
the number of DEIM interpolation points m 6 180. For example, for an integration interval of 3 h,
105 mesh points, k D 50, and m D 70, tensorial POD, and POD/DEIM are 76� and 450� faster
than POD, but the implementation effort of POD/DEIM is considerably increased. Many useful
models are characterized by quadratic nonlinearities in both fluid dynamics and geophysical fluid
flows including SWE model. In the case of cubic or higher polynomial nonlinearities, the advantage
of tensorial POD is lost and its nonlinear computational complexity is similar or larger than the
computational complexity of the POD approach. This proves that for models depending only on
quadratic nonlinearities, the tensorial POD represents a solid alternative to POD/DEIM, where the
implementation effort is considerably larger. We also propose a fast algorithm to pre-compute the
reduced order coefficients for polynomial nonlinearities of order p, which allows the POD/DEIM
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SWE model to compute its offline stage faster than POD and tensorial POD approaches despite
additional SVD calculations and reduced coefficients computations.

The paper is organized as follows. Section 2 reviews the reduced order modeling methodolo-
gies used in this work: POD, tensorial POD, and POD/DEIM. Section 3 analyzes the computational
complexity of the reduced order polynomial nonlinearities for all three methods and introduces a
new DEIM-based algorithm to efficiently compute the coefficients needed for reduced Jacobians.
Section 4 discusses the SWEs model and its full implementation, and Section 5 describes the con-
struction of reduced models. Results of extensive illustrative numerical experiments are discussed
in Section 6, whereas conclusions are drawn in Section 7.

2. REDUCED ORDER MODELING

For highly efficient flows simulations, reduced order modeling is a powerful tool for represent-
ing the dynamics of large-scale dynamical systems using only a smaller number of variables and
reduced order basis functions. Three approaches will be considered in this study: POD, tensorial
POD (TPOD), and POD/DEIM (POD/DEIM). They are discussed in the following section.

The tensorial POD approach proposed herein is different from the method of [49], which makes
use of tensor decompositions for generating POD bases.

2.1. Proper orthogonal decomposition

Proper orthogonal decompositions has been used successfully in numerous applications such as
compressible flow [50], computational fluid dynamics [13, 51, 52], aerodynamics [53]. It can be
thought of as a Galerkin approximation in the spatial variable built from functions corresponding to
the solution of the physical system at specified time instances. Noack et al. [54] proposed a system
reduction strategy for Galerkin models of fluid flows leading to dynamic models of lower order
based on a partition in slow, dominant, and fast modes. San and Iliescu [55] investigate several
closure models for POD reduced order modeling of fluid flows and benchmarked against the fine
resolution numerical simulation.

In what follows, we will only work with discrete inner products (Euclidian dot product) though
continuous products may be employed too. Generally, an atmospheric or oceanic model is usually
governed by the following semi-discrete dynamical system

dx.t/
dt
D F.x; t /; x.0/ D x0 2 Rn: (1)

From the temporal–spatial flow x.t/ 2 Rn, we select an ensemble of Nt time instances
x1; :::; xNt 2 Rn; n being the total number of discrete model variables per time step and
Nt 2 N; Nt > 0. Let us define the centering trajectory, shift mode, or mean field correction
[56] Nx D 1

N t

PNt
iD1 xi . The method of POD consists in choosing a complete orthonormal basis

U D ¹uiº; i D 1; ::; kI k > 0I ui 2 RnI U 2 Rn�k such that the mean square error between
x.t/ and POD expansion xPOD.t/ D Nx C U Qx.t/; Qx.t/ 2 Rk is minimized on average. The POD
dimension k � n is appropriately chosen to capture the dynamics of the flow as described by
Algorithm 1.

Another way to compute the POD basis is to make use of SVD, which is less affected by numerical
errors than the eigenvalue decomposition. Moreover, the SVD-based POD basis construction is more
computationally efficient because it decomposes the snapshots matrix whose condition number is
the square root of the correlation matrix K used in Algorithm 1.

To obtain the reduced model of (1), we first employ a numerical scheme to solve the full model
for a set of snapshots and follow the aforementioned procedure, then use a Galerkin projection of
the full model equations onto the space X k spanned by the POD basis elements

d Qx.t/
dt
D U TF .NxC U Qx.t/; t/ ; Qx.0/ D U T .x.0/ � Nx/ : (2)
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R. ŞTEFĂNESCU, A. SANDU AND I. M. NAVON

Algorithm 1 POD basis construction

1: Calculate the mean Nx D 1
Nt

PNt
iD1 xi .

2: Set up the correlation matrix K D Œkij �i;jD1;::;n, where kij D hxi � Nx; xj � Nxi, and h�; �i being
the Euclidian dot product.

3: Compute the eigenvalues �1 > �2 > :::�n > 0 and the corresponding orthogonal eigenvectors
v1; v2; ::; vn 2 Rn of K.

4: Set ui D hvi ; xi � Nxi, i D 1; ::; n. Then, ui 2 Rn; i D 1; ::; n are normalized to obtain an
orthonormal basis.

5: Define I.m/ D
Pm
iD1 �iPn
iD1 �i

and choose k such that k D min¹I.m/ W I.m/ > �º, where 0 6
� 6 1 is the percentage of total information captured by the reduced space span¹u1; u2; :::;ukº.
Usually, � is taken 0.99.

The efficiency of the POD-Galerkin techniques is limited to linear or bilinear terms, because the
projected nonlinear term at every discrete time step still depends on the number of variables of the
full model

QN.Qx/ D U T„ƒ‚…
k�n

F.NxC U Qx.t//„ ƒ‚ …
n�1

:

To be precise, consider a steady polynomial nonlinearity xp . A POD expansion involving mean
Nx will unnecessarily complicate the description of tensorial POD representation of a pth-order poly-
nomial nonlinearity. Moreover, the terms depending on Nx are just a particular case of the term
depending only onU Qx because vector componentwise multiplication is distributive over vector addi-
tion. Consequently, the expansion Nx � U Qx will not decrease the generality of the reduced nonlinear
term. In the finite difference (FD) case, the POD Galerkin projection is described as follows.

QN.Qx/ D U T„ƒ‚…
k�n

.U Qx/p„ƒ‚…
n�1

; (3)

where vector powers are taken componentwise.
To mitigate this inefficiency, we will employ two approaches: .1/ tensorial POD and .2/ DEIM.

Tensorial POD for nonlinearities treatment was traditionally used in POD Galerkin by the fluid
mechanics community [28, 47, 48], and a matrix formulation named pre-computing technique was
introduced in [30] for calculation of quadratic nonlinearities. Reduced order treatment of cubic non-
linearities using tensorial POD has been considered in the structural mechanics community [57].
Here, we present the more general case where the POD Galerkin pth-order polynomial nonlinear-
ities are computed via tensorial-based calculus. Although tensorial POD is able to calculate the
reduced polynomial nonlinearities independent of n, POD/DEIM method can handle efficiently all
types of nonlinearities.

2.2. Tensorial POD

Tensorial POD technique employs the simple structure of the polynomial nonlinearities to remove
the dependence on the dimension of the original discretized system by manipulating the order
of computing. It can be successfully used in a POD framework for FD, finite element (FE), and
finite volume (FV) discretization methods and all other types of discretization methods that engage
in spectral expansions. Tensorial POD separates the full spatial variables from reduced variables
allowing fast nonlinear terms computations in the online stage. For time-dependent nonlineari-
ties, this implies separation of spatial variables from reduced time variables. Thus, the reduced
nonlinear term evaluation requires a tensorial Frobenius dot product computation between rank p
tensors, where p is the order of polynomial nonlinearity. The projected spatial variables are stored
into tensors and calculated offline. These are also used for reduced Jacobian computation in the
online stage.
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The tensorial POD representation of (3) is given by vector

M D
�
Mi

�
iD1;2;::;k

I Mi D
D
Mi ; QX

E
Frobenius

2 R; i D 1; 2; ::; kI M 2 Rk; (4)

where p�order tensors QX and Mi ; i D 1; 2; ::; k are defined as

QX D
h
QXi1i2::ip

i
i1;i2;::;ipD1;::;k

2 R

k � : : : � k„ ƒ‚ …
p times I QXi1i2::ip D Qxi1 Qxi2 : : : Qxip 2 RI

Mi D
�
Mi

i1i2::ip

�
i1;i2;::;ipD1;2;::k

; i D 1; 2; ::; kI Mi 2 R

k � : : : � k„ ƒ‚ …
p times I

Mi
i1i2::ip D

nX
lD1

UliUli1Uli2 : : : Ulip 2 R;

(5)

and Qxij ; Uli ; Ulij are just entries of POD reduced order solution Qx and POD trial functions basis
U . The tensorial Frobenius dot product is defined as

h�; �iFrobenius W R

k � : : : � k„ ƒ‚ …
p times �R

k � : : : � k„ ƒ‚ …
p times ! R;

hA;BiFrobenius D A W B D
kX

i1;i2;::;ipD1

Ai1i2::ipBi1i2;::ip 2 R:

We note that Mi ; i D 1; 2; ::; k are pth-order tensors computed in the offline computational stage
and their dimensions do not depend on the full space dimension. For FE and FV, the tensorial POD
representations are the same except for the type of products used in the computation of Mi

i1i2::ip
in

(5), which now are continuous and replace the sum of products used in the FD case.
Reduced nonlinearities depending on space derivatives are treated similarly as in Equations (3–5)

because POD expansion of xx (space derivative of x) is Ux Qx, where Ux 2 Rn�k contains the space
derivatives of POD basis functions ui ; i D 1; 2; ::; k, ui 2 Rn.

2.3. POD and discrete empirical interpolation method

The EIM and its discrete version (DEIM) were developed to approximate the nonlinear term allow-
ing an effectively affine offline–online computational decomposition. Both interpolation methods
provide an efficient way to approximate nonlinear functions. They were successfully used in POD
framework for FD, FE, and FV discretization methods. A description of EIM in connection with the
reduced basis framework and a posteriori error bounds can be found in [58, 59].

The DEIM implementation is based on a POD approach combined with a greedy algorithm,
whereas the EIM implementation relies on a greedy algorithm [29].

For m� n, the FD POD/DEIM nonlinear term approximation is

QN.Qx/ � U T V.P T V /�1„ ƒ‚ …
pre-computed k�m

F.P T .NxC U Qx//„ ƒ‚ …
m�1

;

where V 2 Rn�m gathers the first m POD basis modes of nonlinear function F, whereas P 2
Rn�m is the DEIM interpolation selection matrix. The core of DEIM procedure consists in a greedy
algorithm, which inductively constructs P from the linearly independent set V [32, s.3].

The POD/DEIM approximation of (3) is

QN.Qx/ � U T V.P T V /�1„ ƒ‚ …
pre-computed k�m

�
P TU Qx

�p
„ ƒ‚ …

m�1

; (6)
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where vector powers are taken componentwise and P T V 2 Rm�m, P TU 2 Rm�k . P TU is also
recommended for pre-computation in the offline stage. In order to select an appropriate number of
DEIM interpolation points, we seek guidance in the spectrum analysis of the nonlinear snapshots
correlation matrix. We are particularly interested in the eigenvalues rate of descent. Lemma (3.2)
in [32, s.3.2] provides an error bound for the DEIM approximation QN.Qx/ described by Equation 6,
which can be reasonably estimated by the largest POD eigenvalue of the snapshots correlation matrix
not taken into account by POD basis V .

Discrete empirical interpolation method has developed in several research directions, for exam-
ple, rigorous state space error bounds [31], a posteriori error estimation [60], 1D FitzHugh–Nagumo
model [32], 1D simulating neurons model [61], 1D nonlinear thermal model [62], 1D Burgers
equation [30, 63], two-dimensional (2D) nonlinear miscible viscous fingering in porous medium
[64], oil reservoirs models [65], and 2D SWE model [66].

We emphasize that only few POD/DEIM studies with FE and FV methods were performed, for
example, for electrical networks [67] and for a 2D ignition and detonation problem [68]. Flow
simulations past a cylinder using a hybrid-reduced approach combining the quadratic expansion
method and DEIM are available in [69].

3. COMPUTATIONAL COMPLEXITY OF THE REDUCED P TH -ORDER NONLINEAR
REPRESENTATIONS. ROMS OFFLINE STAGE DISCUSSION

We will focus on FD-reduced order pth-order polynomial nonlinearities formulas introduced in
Equations (3, 4, and 6). We begin with an important observation. For POD ROMs construction, the
usual approach is to store each of the state variables separately and to project every model equations
to a different POD basis corresponding to a state variable whose time derivative is present. This is
also the procedure we employed for this study. In this context, n does not denote the total number
of state variables but only the number of state variables of the same type, which most of the time is
equal with the number of mesh points. Consequently, from now on, we refer to n as the number of
spatial points.

Proper orthogonal decomposition representation is computed with a complexity of O.p�k�nC
.p � 1/ � n C k � n/ and the POD/DEIM term requires O.p � k � m C .p � 1/ � m C k � m/
basic operations in the online stage. Tensorial POD nonlinear term has a complexity of O.kpC1/.
Although POD computational complexity still depends on the full space dimension, the other two
tensorial POD and POD/DEIM are independent of n. Table I describes the number of operations
required to compute the projected pth-order polynomial nonlinearity for each of the three ROMs
approaches and various values of n; k;m; p.

Clearly, POD/DEIM provides the fastest nonlinear terms computations in the online stage. For
quadratic nonlinearities, that is, p D 2 and n D 105, POD/DEIM outperforms POD and POD ten-
sorial by 103� and 25�, respectively. But these performances are not necessarily translated into the

Table I. Number of floating-point operations in the online stage for different numbers of
spatial points n, POD modes k, DEIM points m, and polynomial orders p.

n k m p POD POD/DEIM Tensorial POD

103 10 10 2 31,000 310 2990
103 10 10 3 42,000 420 29,990
103 10 10 4 53,000 530 299,990
104 30 50 2 910,000 4550 80,970
104 30 50 3 1,220,000 6100 2,429,970
105 50 100 2 15,100,000 15,100 374,950
105 50 100 3 20,200,000 20,200 18,749,950
105 50 100 4 25,300,000 25,300 937,499,950

POD, proper orthogonal decomposition; DEIM, discrete empirical interpolation method.
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same CPU time rates for solving the ROMs solutions because other more time consuming calcula-
tions may be needed (reduced Jacobians computations and their LU decompositions). It was already
proven by [66] that for an SWE model, DEIM decreases the computational complexity of the POD
model by 60� for full space dimensions n > 60; 000 and leads to a CPU time reduction proportional
to n. CPU times and error magnitudes comparisons will be discussed in Section 6.

For cubic nonlinearities (p D 3), the computational complexities are almost similar for both
tensorial POD and POD, whereas for higher nonlinearities (e.g., p D 4), tensorial POD cost
becomes prohibitive.

In the context of reduced optimization, the offline stage computational complexity weights heav-
ily in the final CPU time costs because several POD bases updates and DEIM interpolation points
recalculations are needed during the minimization process. Because the proposed schemes are
implicit in time, we need to compute the reduced Jacobians as a part of a Newton-type solver. For
the current study, we choose to calculate the derivatives exactly for all three ROMs. Consequently,
some reduced coefficients such as tensors Mi defined in (5) must be calculated for all three reduced
approaches including POD/DEIM in the offline stage.

A simple evaluation suggests that POD/DEIM offline stage will be slower than the corresponding
tensorial POD and POD stages because more SVD computations are required in addition to par-
ticular POD/DEIM coefficients and DEIM index points calculations (see Table II). A more careful
examination reveals that we can exploit the structure of POD/DEIM nonlinear term (6) like in the
tensorial POD approach (4,5) and provide a fast calculation for Mi .

Thus, let us denote the pre-computed term and P TU in (6) by E D U T V.P T V /�1 2 Rk�m and
Um D P TU 2 Rm�k , where m is the number of DEIM points.
The p tensor Mi can be computed as follows:

Mi
i1i2::ip

D

mX
lD1

EilU
m
li1
Umli2 : : : U

m
lip
2 R; ; i; i1; i2; ::; ip D 1; 2; ::; k: (7)

Clearly, this estimation is less computationally expensive then (5) because the summation stops
at m� n.

Now, we are making an important observation. Formula (7) makes use of DEIM interpolation
points of the nonlinear term QN.Qx/ to produce fast computation of the tensors Mi ; i D 1; 2; ::; k. The
computational results for the SWE model showed that these surrogate tensors are not approximat-
ing well the ones defined by the tensorial POD formula (5). Because all the proposed ROMs require
Mi ; i D 1; 2; ::; k to compute their reduced derivatives (see Table II, line 6), it means that the cor-
responding reduced Jacobians are not necessarily the same. However, this does not heavily impact
the solution of the POD/DEIM SWE model as we will see in Section 6.

Table II. ROMs offline stage procedures—POD coefficients Mi
1
; Mi

2
are required for reduced Jacobian

calculation. Only tensorial POD uses them also for right-hand side terms computations during the quasi-
Newton iterations required by Gustafsson’s nonlinear ADI FD scheme.

POD Tensorial POD POD/DEIM

Generate snapshots Generate snapshots Generate snapshots
SVD for u; v; � SVD for u; v; � SVD for u; v; �
— — SVD for all nonlinear terms
— — DEIM index points for all

nonlinear terms
Calc. POD coefficients Mi

j (11) Calc. POD coefficients Mi
j (11), Calc. POD coefficients Mi

j (7),
(Reduced Jac. calc.) (Reduced Jac. and right-hand (Reduced Jac. calc.)

side terms calc.)
— — Calc. all POD/DEIM coef.

such as E11
ROM, reduced order model; ADI, alternating direction fully implicit; FD, finite difference; POD, proper
orthogonal decomposition; DEIM, discrete empirical interpolation method; SVD, singular values decomposition.
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4. THE SHALLOW WATER EQUATIONS

In meteorological and oceanographic problems, one is often not interested in small time steps
because the discretization error in time is small compared with the discretization error in space.
SWE can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes, and oceans
as well as gravity waves in a smaller domain. The alternating direction fully implicit (ADI)
scheme [70] considered in this paper is first-order in both time and space and it is stable for large
Courant–Friedrichs–Levy (CFL) condition numbers (we tested the stability of the scheme for a CFL
condition number equal up to 8.9301). It was also proved that the method is unconditionally stable
for the linearized version of the SWE model. Other research work on this topic includes efforts of
[71] and [72].

We are solving the SWE model using the ˇ-plane approximation on a rectangular domain [70].

@w

@t
D A.w/

@w

@x
C B.w/

@w

@y
C C.y/w; .x; y/ 2 Œ0; L� � Œ0;D�; t 2 .0; tf�; (8)

where w D .u; v; �/T is a vector function and u; v are the velocity components in the x-direction
and y-direction, respectively. Geopotential is computed using � D 2

p
gh, h being the depth of the

fluid and g the acceleration due to gravity.
The matrices A, B , and C are

A D �

0
@ u 0 �=2

0 u 0

�=2 0 u

1
A ; B D �

0
@ v 0 0

0 v �=2

0 �=2 v

1
A ; C D

0
@ 0 f 0

�f 0 0

0 0 0

1
A ;

where f is the Coriolis term

f D Of C ˇ.y �D=2/; ˇ D
@f

@y
; 8y;

with Of and ˇ constants.
We assume periodic solutions in the x-direction for all three state variables, whereas in the

y-direction,

v.x; 0; t/ D v.x;D; t/ D 0; x 2 Œ0; L�; t 2 .0; tf�

and Neumann boundary condition is considered for u and �.
Initially, w.x; y; 0/ D  .x; y/;  W R � R ! R; .x; y/ 2 Œ0; L� � Œ0;D�. Now, we introduce

a mesh of n D Nx � Ny equidistant points on Œ0; L� � Œ0;D�, with �x D L=.Nx � 1/; �y D
D=.Ny�1/. We also discretize the time interval Œ0; tf� usingNt equally distributed points and�t D
tf=.Nt � 1/. Next, we define vectors of unknown variables of dimension n containing approximate
solutions such as

w.tN / � Œw.xi ; yj ; tN /�iD1;2;::;Nx ; jD1;2;::;Ny 2 Rn; N D 1; 2; ::Nt :

The semi-discrete equations of SWE (8) are as follows:

u0 D �F11.u;�/ � F12.u; v/C Fˇ v;

v0 D �F21.u; v/ � F22.v;�/ � Fˇ u;

�0 D �F31.u;�/ � F32.v;�/;

where ˇ is the MATLAB componentwise multiplication operator, u0, v0, �0 denote semi-discrete
time derivatives, F D Œf; f; ::; f„ƒ‚…

Nx

� stores Coriolis components f D Œf .yj /�jD1;2;::;Ny , whereas the
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nonlinear terms Fi1 and Fi2, i D 1; 2; 3, involving derivatives in x and y directions, respectively,
are defined as follows:

Fi1; Fi2 W R
n �Rn ! Rn; i D 1; 2; 3; F11.u;�/ D uˇ AxuC

1

2
�ˇ Ax�;

F12.u; v/ D vˇ Ayu; F21.u; v/ D uˇ Axv; F22.v;�/ D vˇ Ayv

C
1

2
�ˇ Ay�;

F31.u;�/ D
1

2
�ˇ AxuC uˇ Ax�; F32.v;�/ D

1

2
�ˇ AyvC vˇ Ay�:

Here, Ax; Ay 2 Rn�n are constant coefficient matrices for discrete first-order and second-order
differential operators, which take into account the boundary conditions.

The numerical scheme was implemented in Fortran and uses a sparse matrix environment. For
operations with sparse matrices, we employed that SPARSEKIT library [73] and the sparse linear
systems obtained during the quasi-Newton iterations were solved using MGMRES library [74–76].
Here we did not decouple the model equations like in Stefanescu and Navon [66], where the Jacobian
is either block cyclic tridiagonal or block tridiagonal. We followed this approach because we plan to
implement a 4D Var data assimilation system based on ADI SWE, and the adjoints of the decoupled
systems cannot be solved with the same implicit scheme applied for solving the forward model.

5. REDUCED ORDER SHALLOW WATER EQUATION MODELS

Here, we will not describe the entire POD SWE, tensorial POD SWE, and POD/DEIM SWE dis-
crete models but only introduce the projected nonlinear term F11 for all three ROMs. ADI discrete
equations were projected onto reduced POD subspaces and a detailed description of the reduced
equations for POD and POD/DEIM is available in [66].

Depending on the type of reduced approaches, the Galerkin projected nonlinear term QF11 assumes
the following form

POD

QF11 D U
TF11 D U T„ƒ‚…

k�n

0
@.U Qu/ˇ .Ux Qu/„ ƒ‚ …

n�1

1
AC 1

2
U T„ƒ‚…
k�n

0
@.ˆ Q�/ˇ .ˆx Q�/„ ƒ‚ …

n�1

1
A ; (9)

where U and ˆ contains the POD bases corresponding to state variables u and � while the POD
basis derivatives are included in Ux D AxU 2 Rn�k and ˆx D Axˆ 2 Rn�k .

Tensorial POD

QF11 D U
TF11 2 RkI

�
QF11
�
i
D hMi

1;
QUiFrobenius C hMi

2;
Q̂ iFrobenius; i D 1; 2; ::; kI (10)

QUD
h
QUi;j

i
i;jD1;::;k

2 Rk�kI QUi;j D Qui Quj 2 R; Q̂ D
�
Q̂
i;j

�
i;jD1;::;k

2 Rk�kI Q̂ i;j D Q�i Q�j 2 R;

where Qu 2 Rk and Q� 2 Rk are reduced state variables.

Mi
1 D

�
Mi
1i1i2

�
i1;i2D1;::;k

2 Rk�kI Mi
1i1i2
D

nX
lD1

UliUli1Uxli2 2 R;

Mi
2 D

�
Mi
2i1i2

�
i1;i2D1;::;k

2 Rk�kI Mi
2i1i2
D

nX
lD1

Uliˆli1ˆxli2 2 R;

(11)

and Ux and ˆx were defined earlier.
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POD/DEIM

QF11 � U
T VF11.P

T
F11
VF11/

�1„ ƒ‚ …
pre-computed k�m

0
B@.P TF11U Qu/ˇ .P TF11Ux/ Qu„ ƒ‚ …

m�1

C .P TF11ˆ
Q�/ˇ .P TF11ˆx

Q�/„ ƒ‚ …
m�1

1
CA ; (12)

where VF11 2 Rn�m collects the first m POD basis modes of nonlinear function F11, whereas
PF11 2 Rn�m is the DEIM interpolation selection matrix. Let us denote the pre-computed term by
E11 D U

T VF11.P
T
F11
VF11/

�1.

Tensors as Mi
1 and Mi

2 (11) must also be computed in the case of POD and POD/DEIM because
the analytic form of reduced Jacobian was employed. This approach reduces the CPU time of POD
model because usually, the reduced Jacobians are obtained by projecting the full Jacobian at every
time step. A generalization of DEIM to approximate operators has not been yet developed but has the
ability to decrease more the computational complexity of POD/DEIM approach. Some related work
includes [77], who developed multi-component EIM for deriving affine approximations for continu-
ous vector valued functions. Wirtz et al. [60] introduced the matrix DEIM approach to approximate
the Jacobian of a nonlinear function. Chaturantabut [30] proposed a sampling strategy centered on
the trajectory of the nonlinear functions in order to approximate the reduced Jacobian. An extension
for nonlinear problems that do not have componentwise dependence on the state has been introduced
in [78].

Table II contains the procedure list required by all three algorithms in the offline stage. Mi
1, Mi

2,
and E11 are POD and POD/DEIM coefficients related to nonlinear term F11, similar coefficients
being required for computation of other reduced nonlinear terms.

6. NUMERICAL RESULTS

For all tests, we derived the initial conditions from the initial height condition no. 1 of [79], that is,

h.x; y; 0/ D H0 CH1 C tanh

�
9
D=2 � y

2D

�
CH2sech2

�
9
D=2 � y

2D

�
sin

�
2�x

L

�
:

The initial velocity fields are derived from the initial height field using the geostrophic
relationship

u D

�
�g

f

�
@h

@y
; v D

�
g

f

�
@h

@x
:

We use the following constants L D 6000km; D D 4400km; Of D 10�4s�1 ; ˇ D 1:5 �
10�11s�1m�1; g D 10ms�2; H0 D 2000m; H1 D 220m; H2 D 133m. Figure 1 depicts the
initial geopotential isolines and the geostrophic wind field.

Most of the depicted results are obtained in the case when the domain is discretized using a mesh
of 376� 276 D 103; 776 points, with�x D �y D 16 km. We select two integration time windows
of 24 and 3 h and we use 91 time steps (Nt D 91) with �t D 960 s and �t D 120 s.

Alternating direction fully implicit FD SWE scheme proposed by Gustafsson [70] is first
employed in order to obtain the numerical solution of the SWE model. The implicit scheme allows
us to integrate in time at the CFL condition of

p
gh.�t=�x/ < 8:9301.

The nonlinear algebraic systems of ADI FD SWE scheme is solved using quasi-Newton method,
and the LU decomposition is performed every six time steps.

We derive the ROMs by employing a Galerkin projection. The POD basis functions are con-
structed using 180 snapshots (91 time steps provide 180 state variables snapshots by taking into
account the intermediary solutions of the ADI scheme too) obtained from the numerical solution of
the full-order ADI FD SWE model at equally spaced time steps for each time interval Œ0; 24h� and
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Figure 1. Initial condition: geopotential height field for the Grammeltvedt initial condition and windfield
(the velocity unit is 1 km/s) calculated from the geopotential field using the geostrophic approximation.
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Figure 2. The decay around the singular values of the snapshots solutions for u, v, and � and nonlinear
terms for �t D 960 s and integration time window of 24 h.

Œ0; 3h�. Figures 2 and 3 show the decay around the eigenvalues of the snapshot solutions for u; v; �
and the nonlinear snapshots F11; F12, F21; F22, and F31; F32. These spectrums underline that
70 and 180 DEIM points are sufficient for generating accurate nonlinear DEIM approximations for
both the SWE terms and spatial configurations with errors of order of 10�6. We notice that the sin-
gular values decay much faster when the model is integrated for 3 h. Consequently, this translates in
a more accurate solution representations for all three ROM methods using the same number of POD
modes. For both time configurations and all tests in this study, the dimensions of the POD bases
for each variable are taken to be 50, capturing more than 99% of the system energy. The largest
neglected eigenvalues corresponding to state variables u, v, and � are 2.23, 1.16, and 2.39 for
tf D 24 h and 0:0016, 0:0063, and 0.0178 for tf D 3 h, respectively.

Next, we apply DEIM algorithm and calculate the interpolation points to improve the efficiency
of the POD Galerkin terms and to achieve a complexity reduction of the nonlinear terms with a com-
plexity proportional to the number of reduced variables, as in the case of tensorial POD. Figures 4
and 5 illustrate the distribution of the first 100 spatial points selected by the DEIM algorithm together
with the isolines of the nonlinear terms statistics. Each of these statistics contains the maximum val-
ues of the corresponding nonlinear term over time in every space location. Maximum is preferred
instead of time averaging because a better correlation between location of DEIM points and physical
structures was observed in the former case.
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Figure 3. The decay around the singular values of the snapshots solutions for u, v, � and nonlinear terms
for �t D 120 s and a time integration window of 3 h.
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Figure 4. The first 100 DEIM interpolation points corresponding to all nonlinear terms in the SWE model
for time integration window for 24 h. The background consists in isolines of the maximum values of the

nonlinear terms over time.

Another way to compute the interpolation points would be to apply the greedy algorithms simul-
taneously as in [80]. This approach will limit the number of selected DEIM points leading to faster
online surrogates.

However, in most cases, the spatial positions of the interpolation points do not follow the nonlin-
ear statistic structures. This is more visible in Figure 5 for tf D 3 h. This proves that DEIM algorithm
does not particularly take into account the physical structures of the nonlinear terms but searches
(in a greedy manner) to minimize the error (residual) between each column of the input basis (POD
basis of the nonlinear term snapshots) and its proposed low-rank approximations [66, p.16].

This can be clearly seen in Figure 6, where the isolines of both the absolute values of DEIM
residuals over time and the 9th residual absolute values are depicted. It is the case of the nonlinear
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Figure 5. A total of 100 DEIM interpolation points corresponding to all nonlinear terms in the SWE model
for time integration window of 3 h. The background consists in isolines of the maximum values of the
nonlinear terms over time. Most of the points are concentrated in the region with larger errors depicted in

Figure 8.
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Figure 6. The first 40 DEIM interpolation points corresponding to F32 in the SWE model for time integra-
tion window of 24 h (panel a). The background consists in isolines of the averaged values of the absolute

values of the DEIM residuals over time (panel a) and the 9th residual absolute values (panel b).

term F32 and its snapshots that were obtained after a 24-h time integration of the SWE model. The
white dots in Figure 6(a) are the first 40 DEIM points, whereas in Figure 6(b), the arrow points
out to the 9th DEIM interpolation point located outside the nonlinear statistics areas presented in
Figure 4(f).

Figures 7 and 8 depict the grid point absolute error of the POD, tensorial POD, and POD/DEIM
solutions with respect to the full solutions. For POD/DEIM ROM, we use 180 interpolation points.
The magnitude of the errors is similar for each of the method proposed in this study. Moreover,
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Figure 7. Absolute errors between POD, tensorial POD, and POD/DEIM solutions and the full trajectories
at t D 24 h (�t D 960 s). The number of DEIM points was taken 180.

we observed that error isolines distribution in Figure 8 is well correlated with the location of
interpolation points illustrated in Figure 5 underlying the empirical characteristics of DEIM.

In addition, we propose two metrics to quantify the accuracy levels of POD, tensorial POD, and
POD/DEIM approaches. First, we use the following norm

1

Nt

NtX
iD1

kwFULL.W; ti / � w
ROM.W; ti /k2

kwFULL.W; ti /k2
:

i D 1; 2; ::; tf and calculate the relative errors for all three variables of SWE model w D .u; v; �/.
The results are presented in Table III. We perform numerical experiments using two configurations
of the numbers of DEIM points depending on the SWE time integration window. For tf D 24 h,
we used m D 80 and 180 while for tf D 3 h, 70 and 180 DEIM points were considered.
For the 24-h tests, we notice that more than 70 number of DEIM points are needed for conver-
gence of quasi-Newton method for POD/DEIM SWE scheme explaining the choice of two DEIM
points configurations.

Root mean square error is also employed to compare the ROMs. Tables IV and V show the RMSE
for final times together with the CPU times of the online stage of ROMs.
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Figure 8. Absolute errors between POD, tensorial POD, and POD/DEIM solutions and the full trajectories
at t D 3 h (�t D 120 s). The number of DEIM points was taken 180.

Table III. Relative errors for each of the model variables
for tf D 24 h (left) and tf D 3 h (right). The POD
bases dimensions were taken 50. The results for various

numbers of DEIM points are shown.

Tensorial POD/DEIM POD/DEIM
POD POD m D 180 m D 80

u 1.276e-3 1.276e-3 1.622e-3 3.96e-3
v 3.426e-3 3.426e-3 4.639e-3 1.198e-2
� 2.110e-5 2.110e-5 2.489e-5 5.77e-5

Tensorial POD/DEIM POD/DEIM
POD POD m D 180 m D 70

u 7.711e-6 7.711e-6 7.965e-6 9.301e-6
v 1.665e-5 1.666e-5 1.73e-5 1.975e-5
� 1.389e-7 1.389e-7 1.426e-7 1.483e-7

POD, proper orthogonal decomposition; DEIM, discrete
empirical interpolation method.
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Table IV. CPU time gains and the root mean square errors for each of the model variables at tf D 24 h.
Number of POD modes was k D 50 and two tests with different numbers of DEIM points m D 70, 180

were simulated.

Full ADI SWE POD Tensorial POD POD/DEIM m D 180 POD/DEIM m D 80

CPU time 1813.992s 191.785 2.491 1.046 0.663
u — 9.095e-3 9.095e-3 1.555e-2 5.574e-2
v — 8.812e-3 8.812e-3 1.348e-2 4.907e-2
� — 6.987e-3e 6.987e-3 1.13e-2 5.288e-2

POD, proper orthogonal decomposition; DEIM, discrete empirical interpolation method; ADI, alternating
direction fully implicit; SWE, shallow water equation.

Table V. CPU time gains and the root mean square errors for each of the model variables at tf D 3 h for a
3-h time integration window. Number of POD modes was k D 50 and two tests with different numbers of

DEIM points m D 70, 180 were simulated.

Full ADI SWE POD Tensorial POD POD/DEIM m D 180 POD/DEIM m D 70

CPU time 950.0314s 161.907 2.125 0.642 0.359
u — 5.358e-5 5.358e-5 5.646e-5 7.453e-5
v — 2.728e-5 2.728e-5 3.418e-5 4.233e-5
� — 8.505e-5e 8.505e-5 8.762e-5 9.212e-5

POD, proper orthogonal decomposition; DEIM, discrete empirical interpolation method; ADI, alternating
direction fully implicit; SWE, shallow water equation.

Thus, for 103,776 spatial points, tensorial POD method reduces the computational complexity
of the nonlinear terms in comparison with the POD ADI SWE model and overall decreases the
computational time with a factor of 77� for 24 h time integration and 76� for a 3-h time win-
dow integration. POD/DEIM outperforms POD being 450� and 250� time faster for 70 and 180
DEIM interpolation points and a time integration window of 3 h. For tf D 24 h, POD/DEIM SWE
model is 183� and 289� time faster than POD SWE model for m D 80 and 180. In terms of CPU
time, tensor POD SWE model is only 3.75� and 2.38� slower than POD/DEIM SWE model for
configurations of 80 and 180 DEIM points and tf D 24 h, whereas for tf D 3 h, the new tenso-
rial POD scheme is 5.9� and 3.3� less efficient than POD/DEIM SWE model for m D 70 and
m D 180. This suggests that operations such as Jacobian computations and its LU decomposition
required by both reduced order approaches weight more in the overall CPU time cost because the
quadratic nonlinear complexity of the tensorial POD requires 374,950 floating-point operations and
POD/DEIM only 27,180 (m D 180, see Section 3). Given that the implementation effort is much
reduced, in the cases of models depending only on quadratic nonlinearities, the tensorial POD poses
the appropriate characteristics of a reduced order method and represent a solid alternative to the
POD/DEIM approach.

For cubical nonlinearities and larger, tensorial POD loses, its ability to deliver fast calculations
(see Table I), thus the POD/DEIM should be employed.

In our case, the Jacobians are calculated analytically and their computations depend only on the
reduced space dimension k. However, more gain can be obtained if DEIM would be applied to
approximate the reduced Jacobians but this is the subject of future research.

The computational savings and accuracy levels obtained by the ROMs studied in this paper
depend on the number of POD modes and number of DEIM points. These numbers may be large in
practice in order to capture well the full model dynamics. For example, in the case of a time win-
dow integration of 24 h, if someone would ask to increase the ROMs solutions accuracy with only
one order of magnitude, the POD basis dimension must be at least larger than 100 that will drasti-
cally compromise the time performances of ROMs methods. Elegant solutions to this problem were
proposed by Rapún and Vega [81] and Peherstorfer et al. [82], where local POD and local DEIM
versions were proposed. The idea of a local approach for nonlinear model reduction with local POD
and local GNAT was first proposed by Amsallem et al. [83]. Machine learning techniques such as
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K-means [84–86] can be used for both time and space partitioning. A recent study investigating
cluster-based reduced order modeling was proposed by [87].

Figure 9 depicts the efficiency of tensorial POD and POD/DEIM SWE schemes as a function
of spatial discretization points in the case of tf D 3 h. We compare the results obtained for eight
different mesh configurations n D 31 � 23; 61 � 45; 101 � 71; 121 � 89; 151 � 111; 241 �
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Figure 9. CPU time versus the number of spatial discretization points for tf D 3 h ; number of POD modes
= 50; two different numbers of DEIM points 70 and 180 have been employed.

Table VI. Relative errors for each of the model vari-
ables for tf D 24 h (left) and tf D 3 h (right) using
initial conditions different than the ones used to train
POD basis. The POD bases dimensions were taken 50.
The results for 180 numbers of DEIM points are shown.

Tensorial POD/DEIM
POD POD m D 180

u 9.383e-3 9.383e-3 2.068e-2
v 3.443e-2 3.443e-2 6.542e-2
� 7.627e-5 7.627e-5 2.148e-4

Tensorial POD/DEIM
POD POD m D 180

u 9.468e-3 9.468e-3 9.494e-3
v 2.413e-2 2.413e-2 2.59e-2
� 1.116e-5 1.116e-5 7.708e-5

POD, proper orthogonal decomposition; DEIM, discrete
empirical interpolation method.

Table VII. CPU time gains and the root mean square errors for each of the model
variables at tf D 24 h. Number of POD modes was k D 50 and two tests with different

number of DEIM points m D 180, 70 were simulated.

Full ADI SWE POD Tensorial POD POD/DEIM m D 180

CPU time 1813.992s 224.447 2.431 1.024
u — 4.73e-2 4.73e-2 2.08e-1
v — 5.69e-2 5.69e-2 1.17e-1
� — 3.93e-2 3.93e-2 1.15e-1

POD, proper orthogonal decomposition; DEIM, discrete empirical interpolation method;
ADI, alternating direction fully implicit; SWE, shallow water equation.
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177; 301 � 221; 376 � 276. CPU time performances of the offline and online stages of the ROMs
SWE schemes are compared because reduced order optimization algorithms include both phases.

For the online stage, once the number of spatial discretization points exceeds then 151 � 111
tensorial POD scheme is 10� faster than the POD scheme. The performances of POD/DEIM depend
on the number of DEIM points and the numerical results display a 10� time reduction of the CPU

Table VIII. CPU time gains and the root mean square errors for each of the model
variables at tf D 3 h for a 3 h time integration window. Number of POD modes was

k D 50 and one test with 180 number of DEIM points is presented.

Full ADI SWE POD Tensorial POD POD/DEIM m D 180

CPU time 950.0314s 174.52 1.8559 0.6399
u — 7.23e-2 7.23e-2 7.15e-2
v — 2.48e-2 2.48e-2 3.037e-2
� — 2.88e-2 2.88e-2 2.89e-2

POD, proper orthogonal decomposition; DEIM, discrete empirical interpolation method;
ADI, alternating direction fully implicit; SWE, shallow water equation.

Figure 10. Absolute errors between POD, tensorial POD, and POD/DEIM solutions and the full trajectories
at t D 24 h (�t D 960 s) using initial conditions different than the ones used for ROM training. The number

of DEIM points was taken 180.
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costs in comparison with the POD model outcome when n > 61� 45 and n > 101� 71 form D 70
and m D 180, respectively.

The new algorithm introduced in Section 3 relying on DEIM interpolation points delivers fast
tensorial calculations required for computing the reduced Jacobian in the online stage and thus
allowing POD/DEIM SWE scheme to have the fastest offline stage (Figure 9(b)). This gives a good
advantage of ROM optimization based on discrete empirical interpolation method supposing that
quality approximations of nonlinear terms and reduced Jacobians are delivered because during opti-
mization, input data are different than the ones used to generate the DEIM interpolation points.
DEIM was first employed by Baumann [88] to solve a reduced 4D Var data assimilation problem,
and good results were obtained for a 1D Burgers model. Extensions to 2D models are still not
available in the literature.

Next, we test the SWE ROMs for a set of initial conditions that differs from the ones employed
for POD bases construction. For SWE experiments in the context of parametric variation, we refer
to [66]. The experimental configuration consists in 376 � 276 space points, 91 time steps, and two
integration time windows with tf D 3 h and tf D 24 h. The model parameters defined at the
beginning of the section are kept the same. The [79] initial conditions are used to train the state

Figure 11. Absolute errors between POD, tensorial POD, and POD/DEIM solutions and the full trajectories
at t D 3 h (�t D 120 s) using initial conditions different than the ones used for ROM training. The number

of DEIM points was taken 180.
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variables and nonlinear terms-reduced bases. The DEIM points, tensors Mi , and all POD/DEIM
coefficients are also computed (for a comprehensive view of the offline calculations see table II).
Online reduced order simulations are then performed using perturbed initial conditions. Constant
noise in the form of state variables percentages is added as follows: 5% for zonal and meridional
winds and 2% for geopotential field. Table VI describes the relative errors of the proposed ROMs
solutions using 50 POD basis functions and 180 DEIM points. As we expected, the noise impacted
more the 3-h simulations leading to an accuracy loss of 2–3 orders of magnitude.

Tables VII and VIII show the RMSE for final times together with the CPU times of the online
stage of ROMs. More Newton iterations are required for convergence, and in terms of CPU time, it
affects more the ROMs employing the largest vectors. It is the case of POD model, which is now
92� and 94� slower than tensorial POD model and 219� and 273� less efficient than POD/DEIM
model for tf D 24 h and tf D 3 h, respectively.

Figures 10 and 11 present the grid point absolute errors of the ROMs solutions versus the full
model outputs. For 24-h tests, we notice that POD/DEIM model requires more than 180 DEIM
points to obtain the same level of accuracy as POD and TPOD solutions. For 3 h simulations, the
reduced order solutions have a much closer error isolines patterns.

It is obvious that the accuracy of the online predictions depends on the relevance of the online
problem training. To tackle this matter, several approaches have been proposed in the literature. A
priori adaptive methods were promoted in an attempt to reduce the ROM sizes while preserving or
even increasing accuracy leading to specific ROMs with respect to the input space [89–91], state
space [82], and time domain [92]. When ROM solution is detected to be less accurate, a posteriori
error estimation tools can enhance the ROM quality by either reverting to the high fidelity model
[93] or refine the reduced basis vectors without incurring large-scale operations [94].

7. CONCLUSIONS

It is well known that in POD Galerkin, the cost of evaluating nonlinear terms during the online stage
depends on the full space dimension, and this constitutes a major efficiency bottleneck. The present
manuscript applies tensorial calculus techniques, which allow fast computations of POD reduced
quadratic nonlinearities. We show that tensorial POD can be applied to all type of polynomial non-
linearities, and the resulting nonlinear terms have a complexity of O.kpC1/ operations, where k
is the dimension of POD subspace and p is the polynomial degree. Consequently, this approach
eliminates the dependency on the full space dimension, while yielding the same reduced solution
accuracy as POD. Despite being independent of the number of mesh points, tensorial POD is effi-
cient only for quadratic nonlinear terms because for higher nonlinearities, POD proves to be less
time consuming once the POD basis dimension k is increased.

The efficiency of tensorial POD is compared against that of POD and of POD/DEIM. We theoret-
ically analyze the number of floating-point operations required as a function of polynomial degree
p, the number of DOFs of the high fidelity model n, of POD modes k, and of DEIM interpola-
tion points m. For quadratic nonlinearities and k between 10 and 50 modes, the tensorial POD
needs 10 to 40� fewer operations than the POD approach and 10 to 20 � more operations than the
POD/DEIM withm D 100. But these performances are not translated into the same CPU time rates
for solving the ROMs solutions because other more time-consuming calculations are needed.

Numerical experiments are carried out using a 2D ADI SWE FD model. ROMs were developed
using each of the three ROM methods and Galerkin projection. The spectral analysis of snapshots
matrices reveals that local versions of ROMs lead to more accurate results. Consequently, we focus
on 3-h time integration windows. The tensorial POD SWE model becomes considerably faster than
POD model when the dimension of the full model increases. For example, for 100,000 spatial points,
the tensorial POD SWE model yields the same solutions accuracy as POD but is 76� faster. Numeri-
cal experiments of POD/DEIM SWE scheme revealed a considerable reduction of the computational
complexity. For a number of 70 DEIM points, POD/DEIM SWE model is 450� faster than POD,
but only 6� faster than tensorial POD.
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For implicit schemes depending only on quadratic nonlinearities, the tensorial POD represents a
solid alternative to POD/DEIM, where the implementation effort is considerably larger. This is due
to the simpler nonlinearities treatment utilized by tensorial POD surrogate models while POD/DEIM
reduced models require additional nonlinearities snapshots computations and their corresponding
POD basis calculations. However, for cubic and higher-order nonlinearities, tensorial POD loses its
ability to deliver fast calculations and the POD/DEIM approach should be employed.

We also propose a new DEIM-based algorithm that allows fast computations of the tensors needed
by reduced Jacobians calculations in the online stage. The resulting offline POD/DEIM stage is
the fastest among the ones considered here, even if additional SVD decompositions and low-rank
terms are computed. This is an important advantage in optimization problems based on POD/DEIM
surrogates where the reduced order bases need to be updated multiple times.

Ongoing work by the authors focuses on reduced order constrained optimization. The cur-
rent research represents an important step toward developing tensorial POD and POD/DEIM 4D
variational data assimilation systems, which are not available in the literature for complex models.

APPENDIX

Here, we describe the applications of POD, tensorial POD, and POD/DEIM for treatment of the
polynomial quadratic nonlinearity N.x/ D x2 in the framework of reduced order modeling. We
assume a Galerkin projection for constructing the surrogate models with U 2 Rn�k denoting the
POD basis. The dimension of the full space is n, whereas k represents the number of POD basis
functions. We assume a POD expansion of the state x � U Qx and obtain the reduced order quadratic
term QN.Qx/ � N.x/ for the proposed approaches.

POD

QN.Qx/ D U T„ƒ‚…
k�n

.U Qx/2„ƒ‚…
n�1

; QN.Qx/ 2 Rk; (A.1)

where vector powers are taken componentwise.

Tensorial POD

QN.Qx/ D
�
QNi
�
iD1;::;k

2 RkI QNi D

kX
jD1

kX
lD1

Ti;j;l Qxj Qxl ; (A.2)

where the rank-three tensor T is defined as

T D
�
Ti;j;l

�
i;j;lD1;::;k

2 Rk�k�k ; Ti;j;l D

nX
rD1

Ur;iUr;jUr;l :

POD/DEIM

QN.Qx/ � U T V.P T V /�1„ ƒ‚ …
k�m

�
P TU Qx

�2
„ ƒ‚ …

m�1

; (A.3)

where m is the number of interpolation points, V 2 Rn�m contains the first m POD basis modes
of the nonlinear term, whereas P 2 Rn�m is the DEIM interpolation selection matrix computed
by the greedy algorithm described in [32, s.3.1].
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