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SUMMARY

Four-dimensional variational (4D-Var) data assimilation method is used to find the optimal initial condi-
tions by minimizing a cost function in which background information and observations are provided as the
input of the cost function. The optimized initial conditions based on background error covariance matrix and
observations improve the forecast. The targeted observations determined by using methods such as adjoint
sensitivity, observation sensitivity, or singular vectors may further improve the forecast. In this paper, we
are proposing a new technique—consisting of a penalized 4D-Var data assimilation method that is able to
reduce the forecast error significantly. This technique consists in penalizing the cost function by a forecast
aspect defined over the verification domain at the verification time. The results obtained using the penalized
4D-Var method show that the initial condition is optimally estimated, thus resulting in a better forecast by
significantly reducing the forecast error over the verification domain at verification time. Copyright © 2011
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical weather prediction is based on the integration of a dynamic system of partial differential
equations modeling the behavior of the atmosphere. Therefore, discrete initial conditions describing
the state of the atmosphere have to be provided prior to the integration because they, along with the
model equations and boundary conditions, control the evolution of the solution trajectory in space
and time. To find the best estimate for the initial condition, we use four-dimensional variational
(4D-Var) data assimilation (DA) techniques [1–4]. In this method, the initial condition is optimized
by minimizing the cost function defined as the combination of deviations of the desired analy-
sis from a forecast and observations weighted by the inverse of the corresponding forecast and
observation error covariance matrices.

Four-dimensional variational DA method uses a flow-dependent background error covariance
for estimating the atmospheric state and assimilates indirect observational data (such as satellite
radiance without transforming them) into analysis variables. The computational expense of the
variational assimilation can be reduced by using the adjoint of the numerical model to calculate
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all of the components of the gradient of the cost function with respect to the initial conditions in
one integration of the forward model followed by integration of the corresponding adjoint model.
The adjoint model arises from the theory of optimization and optimal control of partial differential
equations [5,6]. Its theoretical aspects were presented by LeDimet and Talagrand [1], Talagrand and
Courtier [4], and LeDimet et al. [7].

Results from 4D-Var experiments with a large scale numerical model were published in the
early 1990s [8–10]. Thepaut et al. [11] demonstrated the ability of 4D-Var method to generate
flow-dependent and baroclinic structure functions in meteorological analysis.

The forecast impact of targeting is determined by the distribution and types of routine and targeted
observations, the quality of the background or the first guess, and the ability of the DA procedure to
combine information from the background and observations. To deploy targeted observations, we
need to define a target area. Typically, an objective procedure (often based on adjoint or ensemble
techniques) is used a day or more in advance to identify a target region for the spatial observations.

It can also be determined on the basis of high probability for a large or a fast-growing initial
condition error based on searches for the directions where errors in the state vector at the targeting
time will propagate most at the verification time on the verification domain.

The goal of the adaptive observations is to add targeted observations inside the sensitive
regions to improve the initial conditions so that the forecast error can be reduced significantly.
Adjoint-based observation sensitivity techniques could be used to identify the adaptive observa-
tion space and time locations that are valuable for the assimilation procedure to conduct optimal
data thinning and to design the cost-effective field experiments for collecting adaptive observa-
tions. Langland [12] showed that a small number of additional observational resources can be
deployed to improve a specific forecast aspect. The design of cost-effective observation target-
ing strategies relies on the ability to a priori identification of optimal sites for collecting data of
large impact on reducing forecast errors. LeDimet et al. [7] presented the theoretical formula-
tion of the sensitivity analysis in variational DA in the context of optimal control. Daescu and
Navon [13] proposed a new adjoint sensitivity approach where the interaction between adaptive
observations and routine observations was studied. The singular vector (SV) approach provides
a possibility of searching for directions in phase space where the errors in the initial condi-
tion will increase rapidly. The specification of the initial and final norms plays a crucial role.
In the European Center for Medium-Range Weather Forecasts operational Ensemble Prediction
System, SVs are computed with the so-called total energy norm at initial and final times. It can
be shown that among simple norms, the total energy norm provides SVs that agree best with
analysis error statistics [14]. Barkmeijer et al. [15, 16] have shown that the Hessian of the cost
function in a variational DA scheme can be used to compute SVs that incorporate an estimate
of the full analysis error covariance at initial time and total energy norm at final time. This
type of SV is called Hessian SV. Ehrendorfer and Tribbia [17] stated that such an approach
to determine SVs provides an efficient way to describe the forecast error covariance matrix
when only a limited number of linear integrations are possible. Although finding the Hessian
matrix explicitly involves a computationally intensive effort, we can calculate the Hessian vec-
tor product by using the second-order adjoint [18]. This also requires an efficient generalized
eigenvalue problem solver to compute SVs. For advanced work on this topic, see Hodinez and
Daescu [19].

In this paper, we are proposing a new cost function, which can be minimized to find an optimal
estimate of the initial condition. This initial condition reduces the forecast error significantly over
the verification domain at the verification time. The new cost function is obtained by penalizing the
cost function with a term defined as being proportional to the square of the distance between analy-
sis and both background and observation, with the forecast aspect defined over verification domain
at verification time.

The structure of the paper is as follows. In Section 2, we present derivation of the equations and
the algorithm of penalized 4D-Var, whereas in Section 3, we describe the twin numerical exper-
iments implementing the algorithm. Numerical results are presented and discussed in Section 4
along with the pseudo-algorithm of the penalized 4D-Var approach. Section 5 is dedicated to the
summary and conclusions.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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2. DERIVATION OF THE EQUATIONS AND PENALIZED FOUR-DIMENSIONAL
VARIATIONAL ALGORITHM

In 4D-Var DA, an initial condition is sought such that the forecast best fits the observations within
an assimilation window Œt0, tf �. 4D-Var DA provides an optimal estimate xa0 2 Rn to the initial
condition of a nonlinear forecast model by minimizing the cost function defined as

J .x0/D
1

2
.x0 � xb/

TB�1.x0 � xb/

C
1

2

NX
iD0

.yi �Hixi /
TR�1i .yi �Hixi / (1)

xa0 D arg minJ ,

where x0 D x.t0/ denotes the initial state at the initial time t0, xb is a prior (background) estimate to
the initial state, yi 2 Rki , i D 0, 1, 2, : : : ,N is the set of observations available at time ti 2 Œt0, tf �
and xi D M0,i .x0/ is the nonlinear model forecast state at time ti , and Hi W Rn ! Rki is the
observation operator that maps the state space into the observation space at time ti . B is the back-
ground error covariance matrix, and Ri is the observational error covariance matrix at time ti . We
assume that background and observation errors are uncorrelated with each other. In our case, we
take the error covariance matrices B and Ri to be diagonal. The control variable or the variable to
be optimized is the initial state of the model x0. The model M is assumed to be perfect by imposing
the model equations as the strong constraint.

To minimize the cost function in Equation (1) with respect to x0, we need to calculate the gradient
of the cost function with respect to the control variable, that is, rx0J . The adjoint method provides
an efficient approach to calculate the gradient of the cost function with respect to control variables.
The gradient of the cost functional (1) is

rx0J D B�1.x � x0/�
NX
iD0

MT
0,iR

�1
i .yi �Hixi /

D B�1.x � x0/�R�10 .y0 �H0x0/

�MT
0,taR�1ta .yta �Htaxta/

�MT
0,trR�1tr .ytr �Htrxtr / , (2)

where the linear operator M0,i D M.t0, ti / is called tangent linear model and its transpose MT
0,i

is the adjoint model. Routine observations are available at t D tr , tr being the time for routine
observations, whereas adaptive observations are available at t D ta, ta for adaptive observations.

The background error covariance is estimated by using the well-known National Meteorological
Center (NMC) method [20]. In this process, the background errors are assumed to be well approxi-
mated by an averaged forecast difference (e.g., month-long series of 24-h to 12-h forecasts valid at
the same time) statistics:

B D �T
b
�b D

�
xb � x

t
0

�T
.xb � x

t
0/

� .xt0C24 � xt0C12/
T
�
xt0C24 � xt0C12

�
, (3)

where xt0 is the true atmospheric state and xb is the background error. The bar denotes an average
over time and/or space.

2.1. The adjoint sensitivity approach

The first approach to identify the adaptive observations locations is the adjoint sensitivity method.
In practice, it is of interest to assess the observation impact on the forecast measure Jv over the ver-
ification domain at the verification time tv . The verification domain, denoted by Dv , is the domain
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where the forecast error is significant. The functional Jv is defined as a scalar measure of the forecast
error over Dv

Jv D
1

2

�
xfv � x

t
v

�T
P TEP

�
xfv � x

t
v

�
, (4)

where xfv is the model forecast at the verification time initialized from xa0 and xtv is the verification
state at tv initialized from xt0 that serves as a proxy to the true atmospheric state. P is a projection
operator on Dv satisfying P �P D P 2 D P , and E is a diagonal matrix of the total energy norm
[13].

For the adaptive observations locations to be selected, the gradient of cost functional Jv defined
in Equation (4) is used. The gradient of the function (4) at ti is defined as

rxiJv DMT
i ,vP

TEP
�
xfv � x

t
v

�
, (5)

where xi D x.ti /.

2.1.1. Location of adaptive observations by adjoint sensitivity. We use the gradient of the function
defined in Equation (5) to evaluate the sensitivity of the forecast error with respect to the model state
at each targeting instant ti . A large sensitivity value indicates that small variations in the model state
xi will have a significant impact on the forecast at the verification time. The adjoint sensitivity field
with respect to the total energy metric is defined as

Fv.�, �/D jjrxiJvjjE , (6)

where E is the total energy metric, and a weighted norm is defined as

jjxjjE D
1

2
.u2C v2/C

h2

h0
, (7)

where u and v are the zonal and meridional wind components, respectively, h is the geopotential
height of the atmosphere, and h0 is the mean geopotential height of the reference data at the initial
time. The adaptive observations at the target instant ti are deployed at the first ni locations .�, �/,
where Fv.�, �/ attains largest values. Here, � and � mean latitude and longitude coordinates of a
point, respectively.

2.2. Penalized four-dimensional variational method

The fundamental idea of the penalty method is to replace a constrained optimization problem by
a series of unconstrained problems whose solutions ideally converge to the solution of the original
constrained problem. The general form of constrained minimization is

min
x

J .x/

subject to c.x/6 0,

where x is an n-dimensional vector and c.x/ is an m-dimensional vector. The unconstrained prob-
lems are formed on the basis of two methods: (i) quadratic penalty method; and (ii) augmented
Lagrangian method. The outlines of the methods are given in the following text.

2.2.1. Quadratic penalty method. Instead of solving the constrained optimization problem, we can
solve an unconstrained minimization problem by defining the quadratic penalty function,

Q.xI r/D J .x/C 1

2
r jc.x/j2

for any scalar r > 0 known as penalty parameter. We seek the approximate minimizer xk of the
function Q.xI r/ as rk!1 when k!1.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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In this work, we penalize the cost functional J .x/ defined in Equation (1) by adding a penalty
term

rJv (8)

to the cost function to reduce the forecast error over the verification domain at the verification time.
Jv is the forecast aspect defined in Equation (4). In this work, we employ the penalty method in a
weak sense that we try to find the minimizer by reducing the forecast aspect Jv until it reaches a
prescribed small value ı instead of attaining a perfect steady state where the forecast error is abso-
lutely zero, that is, Jv D 0. That is, we are looking for the optimal initial condition so that the cost
function is minimized subject to the constraint that the forecast error is very small. In this case, the
penalty parameter is sufficiently large but does not tend to infinity, which is equivalent to imposing
an inequality constraint of the form

Jv 6 ı (9)

With this, we choose the inequality constraint

c.x/D
p
Jv � �, (10)

where � D
p
ı.

The modified cost function is

Q.xI r/D J .x/C 1

2
r jc.x/j2. (11)

That is,

QD
1

2
.x0 � xb/

TB�1.x0 � xb/

C
1

2

NX
iD0

.yi �Hixi /
TR�1i .yi �Hixi /

C
r

2

�p
Jv � �

�2
(12)

x
p
0 D arg minQ,

where xfv D M0,v.x0/. The minimizer of the cost function (11) is obtained by using an uncon-
strained minimization routine that requires the gradient of the cost function (11). The gradient of
the penalized cost function is obtained by using the following formula:

rx0QDrx0J C
r

2

�
1�

�
p
Jv

�
rx0Jv . (13)

The algorithm of quadratic penalty method (because it uses a sequence of infeasible points and
feasibility is obtained only at the optimum) can be summarized as follows:

1. Start with an initial point x0 and an initial value of parameter r0 > 0. Set k D 0.
2. Minimize Q.xI r/ with xk by using an unconstrained minimization method and obtain x�

k
.

3. Test whether x�
k

is a solution of the problem, that is, satisfying the constraints c.x/6 0 within
some prescribed accuracy criteria. If this is true, the process is terminated; otherwise, rk is
updated on the basis of the value of Jv (details in Algorithm 2).

4. Set k D kC 1, use as a new starting point xk D x�k , and go to step 2.

The method depends for its success on sequentially increasing the penalty parameter r to high
values. The approximate minimizer becomes increasingly more accurate as r gets higher.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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2.2.2. Augmented Lagrangian method. We again consider the same constrained minimization
problem

min
x

J .x/ (14)

subject to c.x/6 0, (15)

where x is an n-dimensional vector and c.x/ is an m-dimensional vector. We can define the
augmented Lagrangian as

L.xI�, r/D J .x/C r

2

mX
iD1

�
ci .x/C

�i

r

�2

for any scalar r > 0 and � D �i , i D 1, : : : ,m, � 2 Rm. We seek the approximate minimizer xk of
the function L.xI�, r/ as rk ! 1 when k ! 1. In this paper, we minimize the cost functional
J .x/ defined in Equation (1) with respect to x subject to c.x/ 6 0 where c.x/D

p
Jv � � defined

as Equation (10).
The augmented Lagrangian function for unconstrained minimization problem is

L.xI�, r/D J .x/C r

2

�
c.x/C

�

r

�2

L.xI�, r/D J .x/C r

2

�p
Jv � �C

�

r

�2
, (16)

and the gradient of this function is

rL.xI�, r/DrJ .x/C r

2

 
1�

� � �
rp

Jv

!
rxJv . (17)

The algorithm of augmented Lagrangian method proceeds as follows:

1. Start with an initial point x0; an initial value of parameter r0 > 0 and initial multiplier �0 can
be selected on the basis of either prior knowledge or start with a zero. Set k D 0.

2. Minimize L.xI�, r/ with xk by using an unconstrained minimization method and obtain x�
k

.
3. Test whether x�

k
is a solution of the problem, that is, satisfying the constraints within some

prescribed accuracy criteria. If this is true, terminate the process; otherwise, rk is updated
on the basis of the value of Jv (details in Algorithm 3), whereas �k is updated by �kC1 D
�k C rk � c.xk/.

4. Set k D kC 1, use as a new starting point xk D x�k , and go to step 2.

3. DESCRIPTION OF TWIN NUMERICAL EXPERIMENTS

3.1. Experimental setup

The numerical experiments were performed in the twin experiment framework using a finite vol-
ume global two-dimensional shallow water (SW) equations model adapted as in [21] that has been
widely used as an essential tool for testing promising numerical methods for solving geophys-
ical science problems. The SW equations, a first prototype of the partial differential equations,
describe the horizontal dynamics of the atmosphere. The SW equations in spherical coordinates are
written as

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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@h

@t
C

1

a cos �

�
@

@�
.hu/C

@

@�
.hv cos �/

	
D 0 (18)

@u

@t
C

1

a cos �

�
u
@u

@�
C v cos �

@u

@�

	

�
�
f C

u

a
tan �

�
vC

g

a cos �

@h

@�
D 0 (19)

@v

@t
C

1

a cos �

�
u
@v

@�
C v cos �

@v

@�

	

C
�
f C

u

a
tan �

�
uC

g

a

@h

@�
D 0, (20)

where f D 2� sin � is the Coriolis parameter,� is the angular speed of the rotation of the earth, h is
the height of the homogeneous atmosphere, u and v are the zonal and meridional wind components,
respectively, � and � are the latitudinal and longitudinal directions, respectively, a is the radius of
the earth, and g is the gravitational constant.

We consider a spatial discretization on a 72� 37 grid (5ı � 5ı resolution). As a result of this, the
dimension of the discrete state vector x D .h,u, v/ is 7992D 3�72�37. For numerical stability, we
choose the integration time step,�t D 900s. For our numerical experiment, we consider the 500 mb
European Center for Medium-Range Weather Forecasts ERA-40 data valid for March 15, 2002 00 h
as a true (reference) atmospheric state xt0. The model states at the initial time and after 30-h integra-
tion are displayed in Figures 1 and 2, respectively. The background field xb is obtained from a 6-h
integration of SW model initialized at t0 � 6 h with xt0. Observational data for the DA procedure is
generated from the SW model trajectory initialized with xt0 and corrupted with the random errors
from a normal distribution N.0, �2/. We choose the standard deviation �h D 5 for the height and
�u D �v D 0.5 for the velocities. The background error covariance matrix is calculated by using the
NMC method as described previously. We assumed that the background and observation errors are
uncorrelated. Therefore, the error covariance matrices are diagonal.

Four-dimensional variational DA is carried out in the assimilation window Œt0, t0 C 6 h�. The
routine observation for our experiment is available at t0 and t0 C 6 h only on a coarse 10° � 10°
mesh grid, and the total number of observation locations are 648. So, the observation operator is
thus a 3 � 648 � 2664 matrix with entries of 0 and 1 only. At the verification time tv D t0 C 30 h,
the forecast error is calculated by using reference state, xtv D M0,v.x

t
0/, and the forecast from

Figure 1. Graph of the geopotential height at the initial time t D 0 h (left) and at verification time
t D 30 h (right).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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Figure 2. Graph of the velocities at the initial time t D 0 h (left) and at verification time t D 30 h (right).

Figure 3. Graph of the forecast error at the verification time with the background estimate.

background xfv D M0,v.xb/. The forecast error displayed in Figure 3 is calculated by using
jjM0,v.xb/ �M0,v.x

t
0/jjE at tv , where the background estimate is used as the initial conditions.

We have found that the forecast error is large over the domain Dv D Œ65ıS, 35ıS�� Œ100ıW, 65ıW�,
which is considered as the verification domain for our experiment.

4. RESULTS

In our twin experiment, we first minimize the cost function without adding the penalty term to the
cost function. The minimization process using the Limited Memory Broyden-Fletcher-Goldfarb-
Shanno Quasi-Newton (L-BFGS Q-N) method terminates successfully after 16 iterations and 21
function evaluations. The cost function is decreased by 10 orders of magnitude, whereas the norm of
the gradient is decreased by four orders of magnitude. We use the resulting optimal initial condition
to compute the forecast error jjM0,v.x

a
0 /�M0,v.x

t
0/jjE at tv . The result is shown in Figure 4.

We then estimate the optimal initial condition by taking some adaptive observations with the rou-
tine observations by using the adjoint sensitivity method. The result shows that adaptive observation
added to the routine observations based on adjoint sensitivity improves the forecast only slightly. To
compute the adjoint sensitivity, we used Algorithm 1. The adjoint sensitivity and adaptive observa-
tion locations are displayed in Figures 5(a)–(f). The forecast error over Dv at tv obtained by using
the initial condition xa0 optimized by assimilating routine and adaptive observations is displayed in
Figure 6. The algorithm to compute the adjoint sensitivity is provided as follows:

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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Figure 4. Graph of the forecast error t D 30 h from the optimal analysis obtained by using only
routine observations.

Algorithm 1

1. Calculate model solution xtv at tv with initial condition (true atmospheric state) xt0 by

xtv DM0,v.x
t
0/ (21)

2. Obtain optimal initial condition xa0 by minimizing the cost functional J defined in (1) with
only routine observations. Calculate model forecast

xfv DM0,v.x
a
0 / (22)

3. Compute rxvJv D P TEP
�
x
f
v � x

t
v

�
and use it as initial condition for adjoint model.

4. Integrate adjoint model backward from tv to ti : rxiJv DMT
i ,vrxvJv

We then carry out several sequential minimizations of the penalized cost function defined in
Equations (11) and (16) aiming at reducing the forecast error to certain minimum level. The min-
imum forecast error can be attained when a large value of the penalty parameter r is employed.
The value of the penalty parameter and Lagrange multiplier � are adaptively increased on the basis
of the value of the cost function Jv over the verification domain. In our experiment, the initial
values for both the penalty parameter and multiplier are r0 D 1 and �0 D 0, respectively. The
values are sequentially increased on the basis of the values of the Jv.k/ for each call of the uncon-
strained minimization routine. We have also set the upper bound for Jv as ı D 10�4. Therefore,
� D
p
ı D 10�2.

Algorithms 2 and 3 are used to find the optimal minimizer xp0 of the penalized cost function
defined by using quadratic penalty and augmented Lagrangian method. We have found that the min-
imization routine performed well for a smaller value of the penalty parameter (r < 105/. For the
large value of r , that is, r > 105, the minimization fails to converge. However, in our experiment, we
have found that the forecast error was reduced significantly, which means that the initial condition
is estimated optimally by adding the penalty term to the cost function. The forecast error computed
with the optimal initial condition xp0 is displayed in Figure 7.

Algorithm 2 (Quadratic penalty)

1. Initialization: r0 D 1, ˇ0 D 6
2. Calculation of Jv.0/ with the starting point x0.
3. Do loop k D 1, 2, : : :
4. Forward integration of the forecast model

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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Figure 5. Time evolution of the sensitivity field corresponding to adjoint sensitivity method. The location of
the adaptive observation at target instant ti over assimilation window is marked with ‘�’.

5. Calculation of Jv.k/ by using x�
k

6. Calculation of ˇk D
Jv.0/
Jv.k/

7. If ˇk > 1 then rkC1 D ˇkrk else rkC1 D 6rk
8. Find new initial condition x�

k
by an unconstrained minimization routine implementing a

limited memory quasi-Newton technique
9. End do loop

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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Figure 6. Graph of the forecast error t D 30 h from the optimal analysis obtained by using routine plus
adaptive observations.

Figure 7. Graph of the forecast error t D 30 h with the optimal analysis xp
0

obtained by using quadratic
penalty (left) and augmented Lagrangian (right) methods. In the figure, we see that forecast error over the
verification domain is very small (less than 10�3) if the optimal analysis xp

0
is used as initial condition for

the forecast model.

Algorithm 3 (Augmented Lagrangian method)

1. Initialization: r0 D 1, ˇ0 D 6, �0 D 0
2. Calculation of Jv.0/ with the starting point x0.
3. Do loop k D 1, 2, : : :
4. Forward integration of the forecast model
5. Calculation of Jv.k/ by using x�

k

6. Calculation of ˇk D
Jv.0/
Jv.k/

7. If ˇk > 1 then rkC1 D ˇkrk else rkC1 D 6rk
8. �k is updated by �kC1 D �k C rk � .

p
Jv � �/.

9. Find new initial condition x�
k

by an unconstrained minimization routine implementing a
limited memory quasi-Newton technique

10. End do loop

It is well known that the performance of minimization routine is very sensitive to the large values
of penalty parameter. The reason is that the condition number of the Hessian matrix of the cost with

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
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respect to the control variables evaluated at the minimum increases as r is getting larger. More-
over, if the initial value of penalty parameter r is too large, it is very difficult to find the minima
for any robust unconstrained minimization routine because of the slow convergence induced by the
increasingly larger condition number of the Hessian of the penalized cost function. For this rea-
son, we solved the problem of the quadratic penalty function as well as augmented Lagrangian
function sequentially by using the unconstrained minimization routine M1QN3 [22] equivalent to
L-BFGS routine [23] while moderately increasing values of the penalty parameter. We have found
that both the methods perform very well if the penalty parameter is chosen by using a cost function
Jv that is decreasing slowly and, consequently, the value of penalty parameter is increasing slowly.
In our experiment, each successive x�

k
is used as the new starting point for solving an unconstrained

minimization problem with the next increased value of the penalty parameter until an acceptable
convergence criterion is attained.

5. SUMMARY AND CONCLUSIONS

In numerical weather prediction, we can reduce the forecast error by optimizing the initial con-
dition. To obtain the optimal initial condition, we need to minimize the cost function defined by
Equation (1), which depends on background information and observations. Studies show that only
a few adaptive observations included along with the existing routine observations can improve the
weather forecast. Several targeting methods have already been developed. In this paper, we use the
newly proposed method, that is, the penalized 4D-Var DA and compare it with the adjoint sensitivity
method. The approach proposed in this paper is found to be able to estimate the initial condition opti-
mally by minimizing the penalized cost function defined in Equations (11) and (16). The evolution of
the cost function and penalized cost function as well as their corresponding gradients are displayed
in the Figure 8. We also display the evolution of the forecast error and the gradient of the cost func-
tion Jv obtained by using the aforementioned outlined different approaches in Figure 9. We have
found that the forecast error is reduced significantly by using the new approach employing either the
quadratic penalty method or the augmented Lagrangian method. We have found that the augmented
Lagrangian method performs slightly better than the quadratic penalty method as expected from
optimization theory. From the results obtained, we conclude that the proposed penalized 4D-Var
approach (for both cases) performs better than the adaptive observations method. But the limitation
of the proposed method is to the need to know the true model, xt0. However, in many cases, we can
find a proxy that constitutes an approximation to the true model. Therefore, the penalized 4D-Var
method enables us to obtain an optimal initial condition that may provide a better forecast than the
aforementioned methods, for instance, adjoint sensitivity method without requiring us to provide
additional observations to the existing routine network observations.
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Figure 8. The normalized value of the cost function (left) and gradient of the cost function (right).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
DOI: 10.1002/fld



A PENALIZED 4-D VAR DATA ASSIMILATION METHOD 1219

0 20 40 60 80 100 120
10−5

10−4

10−3

10−2

10−1

100

10−4

10−3

10−2

10−1

100

Evolution of cost function over verification
domain at verification time 

iteration

C
os

t f
un

ct
io

n,
 J

v
DA with robs
DA AS
DA AL
DA QP

0 20 40 60 80 100 120

Evolution of gradient of the cost function
Jv over verification domain at tv

iteration

G
ra

di
en

t

DA with robs
DA AS
DA AL
DA QP

Figure 9. The normalized value of the cost function (left) and gradient of the cost function (right).

The proposed method is computationally more expensive in CPU time as several computational
steps need to be carried out. We have found that the proposed method requires 15.045E C 02 s,
whereas the adjoint method requires only 3.012EC 02 s. That is, the proposed method is five times
slower than the adjoint method. The CPU time depends on the value of ı, that is, the expectation of
the accuracy. For the proposed method, we use a larger value for the precision of stopping criterion
(10�2), whereas for adjoint sensitivity method, we use a smaller precision value (10�5); otherwise,
the minimization routine for the proposed method would require a large number of minimization
iterations to attain the optimal value for each step.

ACKNOWLEDGEMENTS

This research was funded by the National Aeronautics and Space Administration (NASA) (grant no.
NNG06GC67G). The first author would like to thank Professor A. A. Z. Ahmad for his critical reading
and for making suggestions to correct the manuscript.

REFERENCES

1. LeDimet FX, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations:
theoretical aspects. Tellus 1986; 38 A:97–110.

2. Derber J. Variational four-dimensional analysis using quasi-geostrophic constraints. Monthly Weather Review 1987;
115:998–1008.

3. Lewis JM, Derber JC. The use of adjoint equations to solve a variational adjustment problem with advective
constraints. Tellus 1985; 37 A:309–322.

4. Talagrand O, Courtier P. Variational assimilation of meteorological observations with the adjoint vorticity equation.
Part I: theory. Quarterly Journal of the Royal Meteorological Society 1987; 113:1311–1328.

5. Lions JL. Optimal Control of Systems Governed by Partial Differential Equations. Springer–Verlag: Berlin
Heidelberg New York, 1971.

6. Glowinski R. Numerical Methods for Nonlinear Variational Problems. Springer–Verlag: New York, 1984.
7. LeDimet FX, Ngodock HE, Luong B, Verron J. Sensitivity analysis in data assimilation. Journal of the Meteorologi-

cal Society of Japan 1997; 75:245–255.
8. Thepaut JN, Courtier P. Four-dimensional variational assimilation using the adjoint of a multilevel primitive-equation

model. Quarterly Journal of the Royal Meteorological Society 1991; 117:1225–1254.
9. Navon IM, Zou X, Derber J, Sela J. Variational data assimilation with an adiabatic version of the NMC spectral

model. Monthly Weather Review 1992; 120:1433–1446.
10. Zupanski M. Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment.

Monthly Weather Review 1993; 121:2396–2408.
11. Thepaut JN, Hoffman RN, Courtier P. Interactions of dynamics and observations in a four-dimensional variational

assimilation. Monthly Weather Review 1993; 121:3393–3414.
12. Langland RH. Issues in targeted observing. Quarterly Journal of the Royal Meteorological Society 2005;

131:3409–3425.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 70:1207–1220
DOI: 10.1002/fld



1220 M. J. HOSSEN, I. M. NAVON AND F. FANG

13. Daescu DN, Navon IM. Adaptive observations in the context of 4D-Var data assimilation. Meteorology and
Atmospheric Physics 2004; 85:205–226.

14. Palmer TN, Gelaro R, Barkmeijer J, Buizza R. Singular vectors, metrics, and adaptive observations. Journal of the
Atmospheric Sciences 1998; 55:633–653.

15. Barkmeijer J, Van Gijzen M, Bouttier F. Singular vectors and estimates of the analysis-error covariance metric.
Quarterly Journal of the Royal Meteorological Society 1998; 124:1695–1713.

16. Barkmeijer J, Buizza R, Palmer TN. 3D-Var Hessian singular vectors and their potential use in the ECMWF ensemble
prediction system. Quarterly Journal of the Royal Meteorological Society 1999; 125:2333–2351.

17. Ehrendorfer M, Tribbia JJ. Optimal prediction of forecast error covariances through singular vectors. Journal of the
Atmospheric Sciences 1997; 54:286–313.

18. LeDimet FX, Navon IM, Daescu DN. Second order information in data assimilation. Monthly Weather Review 2002;
130(3):629–648.

19. Godinez HC, Daescu DN. Observation targeting with a second-order adjoint method for increased predictability.
Computational Geosciences 2011; 15:477–488.

20. Parrish DF, Derber JD. The national meteorological center spectral statistical interpolation analysis system. Monthly
Weather Review 1992; 120:1747–1763.

21. Akella S, Navon IM. Different approaches to model error formulation in 4D-Var: a study with high resolution
advection schemes. Tellus A 2009; 61 A:112–128.
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