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SUMMARY

An optimizing reduced implicit difference scheme (IDS) based on singular value decomposition (SVD)
and proper orthogonal decomposition (POD) for the two-dimensional unsaturated soil water flow equation
is presented. An ensemble of snapshots is compiled from the transient solutions derived from the usual
IDS for a two-dimensional unsaturated flow equation. Then, optimal orthogonal bases are reconstructed by
implementing SVD and POD techniques for the ensemble of snapshots. Combining POD with a Galerkin
projection approach, a new lower dimensional and highly accurate IDS for the two-dimensional unsaturated
flow equation is obtained. Error estimates between the true solution, the usual IDS solution, and the reduced
IDS solution based on POD basis are derived. Finally, it is shown by means of a numerical example using the
technology of local refined grids that the computational load is greatly diminished by using the reduced IDS.
Also, the error between the POD approximate solution and the usual IDS solution is proved to be consistent
with the derived theoretical results. Thus, both feasibility and efficiency of the POD method are validated.
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1. INTRODUCTION

Unsaturated soil water flow is the flow in the portion of the Earth between the land surface and
the phreatic zone or zone of saturation, which is an important form of flow in porous media. The
unsaturated flow problem is described by a nonlinear partial differential equation (PDE) based on
Darcy’s law, and numerical discretization methods are the most effective tools to solve this nonlin-
ear PDE. Several studies of soil water flow problem have been presented. For example, Xie et al. [1]
developed an unsaturated soil water flow numerical model based on a mass-lumped finite element
method. Luo et al. [2] presented another numerical model to compute soil moisture and water flow
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flux together by means of a mixed finite element method. In these studies, one-dimensional unsatu-
rated flow equation was employed; thus, there are fewer degrees of freedom, and the computational
load is low. Lei et al. [3] applied an alternating direction implicit difference scheme (IDS) to solve
the two-dimensional unsaturated flow equation for soil moisture content. However, the IDS for the
two-dimensional unsaturated flow equation involves a large number of degrees of freedom. So, an
important related problem is how to alleviate the computational load and reduce the time required
for calculations and memory resource demands in the actual computational process in a way that
guarantees sufficient accuracy in the numerical solution.

Proper orthogonal decomposition (POD) is an effective method for approximating a large amount
of data. The method essentially finds a group of orthogonal bases from the given data to approx-
imately represent them in a least squares optimal sense. In addition, as the POD is optimal in the
least squares sense, it has the property that the model decomposition is completely dependent on
the given data and does not require assuming any prior knowledge of the process. Combined with
a Galerkin projection procedure, POD provides a powerful method for deriving lower dimensional
models of dynamical systems from a high or even infinite dimensional phase space. A dynamic
system is generally governed by related structures or the ensemble formed by a large number of
different instantaneous solutions, and the POD method can capture the temporal and spatial struc-
tures of dynamic system by applying a statistical analysis to the ensemble of data. POD provides an
adequate approximation for a large amount of data with a reduced number of degrees of freedom;
it alleviates the computational load and provides substantial savings in memory requirements. POD
has found widespread application in a variety of fields such as signal analysis and pattern recognition
[4, 5], fluid dynamics and coherent structures [6–8], and optimal flow control problems [9, 10]. In
fluid dynamics, Lumley first applied the POD method to capture the large eddy coherent structures
in a turbulent boundary layer [11]. This method was further applied to study the relation between
the turbulent structure and a chaotic dynamic system [12]. Sirovich introduced the method of snap-
shots and applied it to reduce the order of POD eigenvalue problem [13]. Kunisch and Volkwein
presented Galerkin POD methods for parabolic problems and a general equation in fluid dynam-
ics [14, 15]. More recently, a finite difference scheme (FDS) and a mixed finite element (MFE)
formulation for the non-stationary Navier–Stokes equation based on POD were derived [16, 17],
respectively. Finite element formulation based on POD was also applied for parabolic equations and
the Burgers equation [18,19]. In other physical applications, an effective use of POD for a chemical
vapor deposition reactor was demonstrated, and some reduced order FDS and MFE for the upper
tropical Pacific Ocean model based on POD were presented [20–24]. An optimizing reduced FDS
based on POD for the chemical vapor deposit (CVD) equations was also presented in [25]. Except
for POD, the empirical orthogonal function (EOF) analysis is another effective method to extract
information from large datasets in time and space [26, 27]. However, to the best of our knowledge,
there are no published results addressing the POD approximated solution of IDS (i.e., reduced IDS
solution) for the two-dimensional unsaturated soil flow equation and the error estimates between the
true solution, the usual IDS solution, and the reduced IDS solution based on POD basis.

In this paper, POD is used to reduce the IDS for the two-dimensional unsaturated soil water flow
equation, and the error estimates between the true solution, the usual IDS solution, and the reduced
IDS solution are derived. The paper is organized as follows: Section 2 is devoted to describing
the IDS for the two-dimensional unsaturated flow equation and generating snapshots from the IDS
solutions. The optimizing reduced IDS based on POD technique for the two-dimensional unsat-
urated flow equation is derived in Section 3. Error estimates between the true solution, the usual
IDS solution, and the reduced IDS solution are derived in Section 4. In Section 5, some numerical
examples using the technology of local refined grids are presented to validate the theoretical results.
Finally, conclusions are provided in Section 6.

2. IMPLICIT DIFFERENCE SCHEME FOR THE TWO-DIMENSIONAL UNSATURATED
FLOW EQUATION AND SNAPSHOTS GENERATION

2.1. The two-dimensional unsaturated soil water flow

With an underground pipeline being infiltrated, the soil water moves around the underground
pipeline, and the problem is reduced to a two-dimensional unsaturated soil water flow problem
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of soil vertical profiles (see Figure 1). A homogeneous and isotropic porous soil medium is consid-
ered. As shown in Figure 1, the x-axis and the ´-axis denote the horizontal (i.e., positive rightward)
and vertical directions (i.e., positive downward), respectively.

According to Darcy’s law, the two-dimensional unsaturated soil water flow problem can be
expressed as follows (see [28]).
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where M , QM , and T are three positive real numbers, �.x, ´, t / is the volumetric soil moisture con-
tent, Sr is the source absorption rate, and QK.�/ and D.�/ are the hydraulic conductivity and the
hydraulic diffusivity, respectively. QK.�/ and D.�/ are formulated as in [29]8̂̂̂
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where �s is saturated soil moisture content, Ks is the saturated hydraulic conductivity, ‰s is the
saturated water potential, and b is a parameter related to the soil property.

The corresponding initial and boundary conditions are expressed as follows.
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Figure 1. Soil profile for the leakage from underground pipeline.
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�D.�/
@�

@x
D 0, x DM , ´ 2 .0, QM�, t 2 .0,T � (8)

where �0 > 0 is initial soil moisture content, and ´D QM and x DM represent the lower boundary
and the right boundary of the domain, respectively. We suppose that �0 and Sr are both smooth
enough to ensure the analysis validity.

2.2. The discretization of the two-dimensional unsaturated flow equation and snapshots generation

Obviously, Equation (1) is a nonlinear partial differential equation (PDE), and it is difficult to obtain
its analytical solution. However, obtaining an approximated numerical solution by numerical com-
putation method become very popular with the advent of computer technology. So, the numerical
computation of Equation (1) is conducted by means of IDS in this paper.

Figure 2 shows the rectangular soil vertical profile with width M and height QM , which has been
discretized into J � K square cells. Cell nodes are described with a two-dimensional coordinate
system .j , k/ .j D 0, 1, : : : ,J I k D 0, 1, : : : ,K/.

In the following, we apply IDS to discretize Equation (1) at each cell node, and assume Sr equal
to zero. The five case studies are listed as follows.

(I) When k D 0 and Equation (5) are combined, the discretizations of Equation (1) on these nodes
are written as follows:
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Figure 2. The rectangular soil vertical profile with width M and height QM is composed of J �K square
cells.
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�nC1j ,0 � �
n
j ,0

�t
D�DnC1

j� 12 ,0

 
�nC1j ,0 � �

nC1
j�1,0

�x2

!
CDnC1

j , 12

 
�nC1j ,1 � �

nC1
j ,0

�´2

!
�

1

�´
QKnC1
j , 12

, j D J

(12)
which yields�

�
�t

�x2
DnC1

j� 12 ,0

�
�nC1j�1,0C

�
1C

�t

�x2
DnC1

j� 12 ,0
C

�t

�´2
DnC1

j , 12

�
�nC1j ,0

C

�
�
�t

�´2
DnC1

j , 12

�
�nC1j ,1 D �

n
j ,0 �

�t

�´
QKnC1
j , 12

, j D J (13)

(II) When j D 0 and Equation (6) are combined, the discretizations of Equation (1) on these nodes
are written as follows:
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(III) When k D K and Equation (7) are combined, the discretizations of Equation (1) on these
nodes are written as follows:
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(IV) When j D J and Equation (8) are combined, the discretizations of Equation (1) on these
nodes are written as follows:
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are expressed as follows:
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2.3. Implementation of the numerical algorithm for two-dimensional unsaturated flow equation

The coefficient matrix of IDS (10), (11), (13), (15), (16), (18), (20), (22), (24), (26), (28), (30), and
(32) is strictly diagonally dominant, so the IDS has a unique solution. In the following, we give the
implementation of algorithm for solving IDS (10), (11), (13), (15), (16), (18), (20), (22), (24), (26),
(28), (30), and (32) from nth step to .nC 1/th step, which consists of five steps.

Step 1. Let DnC1

j˙ 12 ,k
D
�
DnC1
j ,k D

nC1
j˙1,k

� 1
2

, DnC1

j ,k˙ 12
D
�
DnC1
j ,k D

nC1
j ,k˙1

� 1
2

, QKnC1
j˙ 12 ,k

D
�
QKnC1
j ,k
QKnC1
j˙1,k

� 1
2

,

and QKnC1
j ,k˙ 12

D
�
QKnC1
j ,k
QKnC1
j ,k˙1

� 1
2

, .j D 0, 1, 2, : : : ,J I k D 0, 1, 2, : : : ,KI nD 1, 2, : : : ,N/

for the calculation of the IDS equations depending on given �n
j ,k .j D 0, 1, 2, : : : ,J I k D

0, 1, 2, : : : ,KI nD 0, 1, 2, : : : ,N � 1/.
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Step 2. Write �ni D �n
j ,k .i D k.J C 1/ C .j C 1/, m D .J C 1/.K C 1/, i D 1, 2, : : : ,mI

j D 0, 1, 2, : : : ,J I k D 0, 1, 2, : : : ,KI nD 0, 1, : : : ,N � 1/. For given �ni .i D 1, 2, : : : ,mI
n D 0, 1, 2, : : : ,N � 1), compute D.�ni / and QK.�ni / with Equation (2) and endow with
Dn
i � D.�ni / and QKni � QK.�ni / (i D 1, 2, : : : ,m; n D 0, 1, : : : ,N � 1). Similarly, the

coefficient matrix of IDS (10), (11), (13), (15), (16), (18), (20), (22), (24), (26), (28), (30),
and (32) is a matrix depending on �t , �x2, �´2, and DnC1

i
QKnC1i .

Step 3. Solve (10), (11), (13), (15), (16), (18), (20), (22), (24), (26), (28), (30), and (32) by replacing
DnC1
i and QKnC1i in their coefficient matrix and right-hand-side term with Dn

i and QKni (i.e.,
Dn
i ) DnC1

i and QKni ) QKnC1i ) yields �nC1i (i D 1, 2, : : : ,mI n D 0, 1, 2, : : : ,N � 1) as
pre-estimate value.

Step 4. Update DnC1
i and QKnC1i in coefficient matrix and right-hand-side term with pre-estimate

value �nC1i (i D 1, 2, : : : ,mI nD 0, 1, 2, : : : ,N � 1) by Equation (2).
Step 5. Repeat steps 3 and 4 until �nC1i (i D 1, 2, : : : ,mI nD 0, 1, 2, : : : ,N � 1) are found out.

Thus, we may takem�L group of values consisting of the ensemble
®
� li
¯L
lD1

.16 i 6m/ (usually

L�N , known as ‘snapshots’ in POD method) from m�N group of
®
�ni
¯N
nD1

.16 i 6m/.

Remark 1
In real-life problems, the ensemble of snapshots is usually obtained from the previous experiments
or simulation results. We then restructure the optimal basis for the ensemble of snapshots by the
following POD and finally combine them with the Galerkin projection to produce a reduced dynam-
ical system model. Thus, the variation of soil moisture content can be quickly simulated, which is
of great practical value in actual real-life applications.

3. POD REDUCED MODEL FOR THE TWO-DIMENSIONAL UNSATURATED
FLOW EQUATION

In this section, we first find the POD basis from the ensemble of snapshots generated in Section 2
and then use the POD basis to construct a reduced optimizing IDS for two-dimensional unsaturated
flow equation.

3.1. Singular value decomposition and proper orthogonal decomposition optimal basis

The ensemble of snapshots
®
� li
¯L
lD1

.16 i 6m/ can be written as a m�L matrix A as follows:

A D

0
BBB@
�11 �21 � � � �L1
�12 �22 � � � �L2
...

...
...

...
�1m �2m � � � �Lm

1
CCCA (33)

Singular value decomposition (SVD) is an important tool for finding the optimal orthogonal basis
of matrix column vectors. For the matrix A 2Rm�L, there exists the SVD:

A D U

�
S 0

0 0

�
V T (34)

where U 2 Rm�m and V 2 RL�L are orthogonal matrices, S D diag ¹�1, �2, : : : , �`º 2 R`�` is
the diagonal matrix correspondent to A, and �i .i D 1, 2, : : : , `/ are positive singular values. The
matrices of U D .�1,�2, : : :�m/ 2 R

m�m and V D .'1,'2, : : :'L/ 2 R
L�L contain the orthog-

onal eigenvectors to the AAT and ATA, respectively. The columns of these eigenvector matrices
are arranged so that the corresponding singular values �i .i D 1, 2, : : : , `/ comprised in S are in a
non-increasing order. The singular values of the decomposition and the eigenvalue of the matrices
AAT and ATA satisfy the relations: �i D �2i .i D 1, 2, : : : , `/. The number of grid nodes is far
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larger than that of transient moment points (i.e., m � L), that is, the order m for matrix AAT is
far larger than the order L for matrix ATA. However, their non-null eigenvalues are identical;
therefore, we first solve the eigen-equation of matrix ATA to find the eigenvectors 'j .j D
1, 2, : : : ,L/, and then the ` .`� L/ eigenvectors �j .j D 1, 2, : : : , `/ corresponding to the non-null

eigenvalues for matrix AAT are obtained by the relationship:

�j D
1

�j
A'j , j D 1, 2, : : : , ` (35)

Define the matrix norm k � k˛,ˇ as kAk˛,ˇ D sup x¤0
kAxk˛
kxkˇ

(where k � k˛ and k � kˇ are the

vector norms). According to the relationship between spectral radius and the matrix norm k � k2,2,
if M� < r D rank A .r 6 `6 L/, there is the following equation:

�.M�C1/ Dminrank.ˇ/6M� kA �Bk2,2 D kA �AM� k2,2 (36)

where AM� D
M�P
iD1

�i�i'
T
i , �i .i D 1, 2, : : : ,M� / and 'j .j D 1, 2, : : : ,M� / are first M� column

vectors of matrices U and V , respectively. It is obvious that the minimum distance between the
matrixA and B is �.M�C1/ and the matrix B is obtained withAM� defined in Equation (36).AM�
is the optimal representation of A, and the optimal bases should be found in the structure of AM� .
Using the property of eigenvectors, it is well known that ˆ D

�
�1,�2, : : : ,�M�

	
.M� 6 L/ is a

group of optimal bases that approximately represent the matrix A, and
®
�j
¯M�
jD1

are defined as the
POD optimal bases.

Denote the L column vectors of the matrixA by al D
�
� l1, � l2, : : : , � lm

	T
.l D 1, 2, : : : ,L/ and ©l

.l D 1, 2, : : : ,L/ by unit column vectors except that a component is 1, whereas the other components
are 0. Then by the compatibility of the norm for matrices and vectors, we have

kal �PM�

�
al
�
k2 Dk

�
A �AM�

	
©lk2 6 kA �AM� k2,2k©lk2

D �M�C1 D
q
�M�C1, l D 1, 2, : : : ,L (37)

where PM�
�
al
	
D

M�P
jD1

�
�j , al

	
�j ,

�
�j , al

	
is the canonical inner product for vector �j and vector

al . Inequality (37) shows that PM�
�
al
	

is the optimal approximation to al , and the error between
them is less than or equal to

p
�M�C1.

3.2. Reduced implicit difference scheme based on proper orthogonal decomposition for
two-dimensional unsaturated flow equation

The following work addresses how to use the POD bases found in order to restructure the reduced
IDS for the two-dimensional unsaturated flow equation. Write

™.t/D .�1.t/, �2.t/, : : : , �m.t//
T (38)

where �i .t/ D �j ,k.t/ .i D k.J C 1/ C .j C 1/,m D .J C 1/.K C 1/, i D 1, 2, : : : ,mI j D
0, 1, 2, : : : ,J I k D 0, 1, 2, : : : ,KI t 2 .0,T //. Combine the equations (I), (II), (III), (IV), and (V),
the discrete equations being rewritten as the following vector formulation:

A™nC1 D ™nC
�t

�´
F
�
™nC1

	
, nD 0, 1, 2, : : : ,N � 1 (39)

where A is a coefficient matrix about ™nC1, F
�
™nC1

	
is the vector function obtained from the

discrete equation. Put

™n Dˆ˛nM� (40)
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where ™.t/D .�1.t/, �2.t/, : : : , �m.t//
T ,ˆ D

�
�1,�2, : : : ,�M�

	
, and’M� D

�
˛1,˛2, : : : ,˛M�

	T
.

Inserting Equation (40) into Equation (39) and noting that ˆ is the orthogonal matrix consisting of
the POD bases, we can obtain the reduced IDS which has M� .M� �m/ unknown variables:

Aˆ’nC1M�
Dˆ’nM� C

�t

�´
F
�
ˆ’nC1M�

�
(41)

where nD 0, 1, 2, : : : ,N , and the initial values are ’0M� Dˆ
T ™0.

Remark 2
Compared with Equation (39), it is obvious that Equation (41) has much fewer unknown variables.
After one has obtained ’nM� from Equation (41), one can obtain the POD optimal solutions, which

are formulated as ™�nDˆ’nM� by Equation (40), where ™�nD
�
��n1 , ��n2 , : : : , ��nm

	T
.iD k.JC1/C

.jC1/,mD .JC1/.KC1/, i D 1, 2, : : : ,mI j D 0, 1, 2, : : : ,J I k D 0, 1, 2, : : : ,KInD 0, 1, 2, : : : ,
N � 1/. One only needs to solve Equation (41) with M� � N .M� � L�m/ freedom degrees
instead of the usual IDS (39) with m �N freedom degrees. Thus, both the computational load and
memory requirements can be greatly reduced.

4. ERROR ANALYSIS

In this section, the error estimates between the true solution ¹� .i , tn/º
m
iD1, usual IDS solution

™n, and the reduced IDS solution ™�n based on POD bases are provided, and three theorems
are obtained. We assume that the source term Sr is smooth enough. Because 0 < � 6 � 6 �s,
and D.�/ and QK.�/ being sufficiently smooth, the solution � for Equation (1) in � (where
� D .0,M/� .0, QM/) belongs to Sobolev space H rC2.�/ .r > 1/. However, because the compu-
tational domain is quadrilateral, � 2 H 2.�1/ (where �1 D .Œ0,M1� � Œ0,M1�/[ .Œ0,M1� � Œ QM �
M1, QM�/[ .ŒM �M1,M�� Œ QM �M1, QM�/[ .ŒM �M1,M�� Œ0,M1�/, M1 > 2max¹4x,4yº/ in
the vicinity of the corner point on @�, according to the regularity of the nonlinear parabolic equation
solutions [30]. Thus, the approximation error in the vicinity of the corner point (e.g., the subdomain
�1 	� ) exists only in first-order accuracy, which is presented as the following result.

Theorem 1
The usual IDS solution �ni 2 ™

n for the two-dimensional unsaturated Equation (1) has the following
error:

jEn
�
�ni
	
j � j� .i , tn/� �

n
i j DO

�
�t ,�x2,�´2

	
, if .xj , ´k/ 2�=�1 (42)

jEn
�
�ni
	
j � j� .i , tn/� �

n
i j DO .�t ,�x,�´/ , if .xj , ´k/ 2�1 (43)

where m D .J C 1/.K C 1/, 1 6 i 6 m, and 1 6 n 6 N .i D k.J C 1/C .j C 1/; j D 0, 1, 2,
: : : ,J I k D 0, 1, 2, : : : ,K/.

Proof
First, if .xj , ´k/ 2�=�1, �j ,k 2H

rC2.�=�1/ .r > 1/ as we discuss in preceding text. Expanding
each term of Equation (31) at node .xj , ´k/ in a Taylor expansion, we have

�nj ,k D �
nC1
j ,k C .��t/

�
@�

@t

�nC1
j ,k
C
.��t/2

2Š

�
@2�

@t2

�nC1
j ,k
C
.��t/3

3Š

�
@3�

@t3

�nC1
j ,k
C � � � (44)

DnC1

jC 12 ,k
DDnC1

j ,k C

�
�x

2

��
@D

@x

�nC1
j ,k
C
1

2Š

�
�x

2

�2 �
@2D

@x2

�nC1
j ,k
C
1

3Š

�
�x

2

�3 �
@3D

@x3

�nC1
j ,k
C� � �

(45)
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�nC1
jC1,k D �

nC1
j ,k C .�x/

�
@�

@x

�nC1
j ,k
C
1

2Š
.�x/2

�
@2�

@x2

�nC1
j ,k
C
1

3Š
.�x/3

�
@3�

@x3

�nC1
j ,k
C � � � (46)

DnC1

j� 12 ,k
DDnC1

j ,k �

�
�x

2

��
@D

@x

�nC1
j ,k
C
1

2Š

�
�
�x

2

�2 �
@2D

@x2

�nC1
j ,k
�
1

3Š

�
�x

2

�3 �
@3D

@x3

�nC1
j ,k
C� � �

(47)

�nC1
j�1,k D �

nC1
j ,k C .��x/

�
@�

@x

�nC1
j ,k
C
1

2Š
.��x/2

�
@2�

@x2

�nC1
j ,k
C
1

3Š
.��x/3

�
@3�

@x3

�nC1
j ,k
C � � �

(48)

DnC1

j ,kC 12
DDnC1

j ,k C

�
�´

2

��
@D

@´

�nC1
j ,k
C
1

2Š

�
�´

2

�2 �
@2D

@´2

�nC1
j ,k
C
1

3Š

�
�´

2

�3 �
@3D

@´3

�nC1
j ,k
C� � �

(49)

�nC1
j ,kC1 D �

nC1
j ,k C .�´/

�
@�

@´

�nC1
j ,k
C
1

2Š
.�´/2

�
@2�

@´2

�nC1
j ,k
C
1

3Š
.�´/3

�
@3�

@´3

�nC1
j ,k
C � � � (50)

DnC1

j ,k� 12
DDnC1

j ,k �

�
�´

2

��
@D

@´

�nC1
j ,k
C
1

2Š

�
�
�´

2

�2 �
@2D

@´2

�nC1
j ,k
�
1

3Š

�
�´

2

�3 �
@3D

@´3

�nC1
j ,k
C� � �

(51)

�nC1
j ,k�1 D �

nC1
j ,k C .��´/

�
@�

@´

�nC1
j ,k
C
1

2Š
.��´/2

�
@2�

@´2

�nC1
j ,k
C
1

3Š
.��´/3

�
@3�

@´3

�nC1
j ,k
C � � �

(52)

QKnC1
j ,kC 12

D QKnC1
j ,k C

�
�´

2

� 
@ QK

@´

!nC1
j ,k

C
1

2Š

�
�´

2

�2  
@2 QK

@´2

!nC1
j ,k

C
1

3Š

�
�´

2

�3  
@3 QK

@´3

!nC1
j ,k

C � � �

(53)

QKnC1
j ,k� 12

D QKnC1
j ,k �

�
�´

2

� 
@ QK

@´

!nC1
j ,k

C
1

2Š

�
�
�´

2

�2 
@2 QK

@´2

!nC1
j ,k

�
1

3Š

�
�´

2

�3 
@3 QK

@´3

!nC1
j ,k

C � � �

(54)

Inserting Equations (44)–(54) into Equation (31), we have 
@�

@t
�
@

@x

�
D.�/

@�

@x

�
�
@

@´

�
D.�/

@�

@´

�
C
@ QK.�/

@´

!nC1
j ,k

D
�t

2

�
@2�

@t2

�nC1
j ,k

C
1

24
.�x/2

�
@�

@x

@3D

@x3

�nC1
j ,k
C
1

8
.�x/2

�
@2�

@x2
@2D

@x2

�nC1
j ,k
C
1

6
.�x/2

�
@3�

@x3
@D

@x

�nC1
j ,k
C

1

24
.�´/2

�
@�

@´

@3D

@´3

�nC1
j ,k
C
1

8
.�´/2

�
@2�

@´2
@2D

@´2

�nC1
j ,k
C
1

6
.�´/2

�
@3�

@´3
@D

@´

�nC1
j ,k
C � � � (55)
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Note that �i D �j ,k.i D k.J C 1/ C .j C 1/,m D .J C 1/.K C 1/, i D 1, 2, : : : ,mI j D
0, 1, 2, : : : ,J I k D 0, 1, 2, : : : ,K/. Thus, when the usual IDS (32) approaches the PDE (1), the
truncation error (TE) is given by

TEDO
�
�t ,�x2,�´2

	
(56)

Second, if .xj , ´k/ 2 �1, then �j ,k 2 H
2.�1/ as we discuss in preceding text. According to the

definition of Sobolev space H 2.�1/, Equations (46), (48), (50), and (52) can be written as follows:

�nC1
jC1,k D �

nC1
j ,k C .�x/

�
@�

@x

�nC1
j ,k
C
1

2Š
.�x/2

�
@2�.	1, ´k , tnC1/

@x2

�
, 	1 2 .xj , xj C�x/ (57)

�nC1
j�1,k D �

nC1
j ,k C .��x/

�
@�

@x

�nC1
j ,k
C
1

2Š
.��x/2

�
@2�.	2, ´k , tnC1/

@x2

�
, 	2 2 .xj ��x, xj /

(58)

�nC1
j ,kC1 D �

nC1
j ,k C .�´/

�
@�

@´

�nC1
j ,k
C
1

2Š
.�´/2

�
@2�.xj , 
1, tnC1/

@´2

�
, 
1 2 .´k , ´k C�´/ (59)

�nC1
j ,k�1 D �

nC1
j ,k C .��´/

�
@�

@´

�nC1
j ,k
C
1

2Š
.��´/2

�
@2�.xj , 
2, tnC1/

@´2

�
, 
2 2 .´k ��´, ´k/

(60)

Combining Equations (44) and (1), we have

TEDO .�t ,�x,�´/ (61)

�

Theorem 2
Let ™n .n D 1, 2, : : : ,N/ be vectors constituted with solutions of usual IDS (39) and ™�n

.n D 1, 2, : : : ,N/ the vectors constituted with solutions of the reduced optimizing IDS (41). If
n 2 ¹1, 2, : : : ,Lº, the error estimates are obtained as follows:

k™nm � ™
�nk2 6

q
�M�C1, n 2 ¹1, 2, : : : ,Lº (62)

Else if n 62 ¹1, 2, : : : ,Lº, when tl .1 6 l 6 L/ are uniformly chosen from tn .1 6 n 6 N/, and


 @™.�1/@t





2
and




 @™�.�2/@t





2
are bounded .i.e.,




 @™.�1/@t





2
6 C and




 @™�.�2/@t





2
6 C ), the following error

estimates exist:

k™n � ™�nk2 6
q
�M�C1C

�tN

2L
C , n 62 ¹1, 2, : : : ,Lº (63)

where k � k is a vector norm, 16 i 6m and mD .J C 1/.K C 1/.

Proof
Let

¦D span¹�1,�2, : : : ,�M� º (64)

Then, for column vectors al .1 6 l 6 L/ of the matrix A, by Equation (37), we have al D ™l , and

there is a PM�

�
™l
�
D PM�

�
al
	
D

M�P
jD1

�
�j , al

	
�j D

M�P
jD1

�
�j , ™l

�
�j 2 ¦ such that

k™l �PM�

�
™l
�
k2 6

q
�M�C1, 16 l 6 L (65)
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If n D l 2 ¹1, 2, : : : ,Lº, ™�n D PM� .™
n/ D

M�P
jD1

�
�j , ™n

	
�j is obtained by the formula (40) and

(41); therefore, we have

k™n � ™�nk2 6
q
�M�C1, n 2 ¹1, 2, : : : ,Lº (66)

If n 62 ¹1, 2, : : : ,Lº, we assume that tn 2 .tl�1, tl/, and tn is the nearest point to tl . ™
n and ™�n are

expanded in a Taylor series expansion at point tl , respectively.

™n D ™l � s�t
@™ .�1/

@t
, tn 6 �1 6 tl (67)

™�n D ™�l � s�t
@™� .�2/

@t
, tn 6 �2 6 tl (68)

where s is the number of time steps from tn to tl . If tl .1 6 l 6 L/ are uniformly chosen from

tn .1 6 n 6 N/, we have s 6 N
2L

. Moreover, when



 @™.�1/@t





2

and



 @™�.�2/@t





2
are bounded .i.e.,


 @™.�1/@t





2
6 C and




 @™�.�2/@t





2
6 C ), by subtracting Equation (68) from Equation (67), we can

obtain that

k™n � ™�nk2 D
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Theorem 3
Under the assumptions of Theorem 2, let

p
�M�C1 DO.�t/; the following error estimate holds
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�
�t C
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(69)

j� .j , k, tn/� �
�n
j ,kj DO

�
�t C

q
�M�C1,�x,�´

�
, 16 n6N , if .xj , ´k/ 2�1 (70)

where 16 j 6 J and 16 k 6K.

Proof
Note that the absolute value of each component of a vector is not more than any norm of the vector.
Combining Theorems 1 and 2, we have
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n
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i j6 j� .i , tn/� �ni j C j�ni � ��ni j
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�
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q
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�
, 16 n6N , if .xj , ´k/ 2�=�1
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n
i C �

n
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i j6 j� .i , tn/� �ni j C j�ni � ��ni j

DO

�
�t C

q
�M�C1,�x,�´

�
, 16 n6N , if .xj , ´k/ 2�1

�

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:1324–1340
DOI: 10.1002/fld



AN OPTIMIZING IMPLICIT DIFFERENCE SCHEME BASED ON POD 1337

5. NUMERICAL EXPERIMENT

In this section, a numerical example of the two-dimensional unsaturated soil flow model is con-
ducted to validate the feasibility and efficiency of the POD method. The computational domain
consists of a square vertical profile with dimensions 50 cm � 50 cm. �0 and �s are 0.16 and 0.48,
respectively. Let M1 D QM1 D 1 cm such that the initial value is continuous. The source term Sr

is taken as 0. As the singular boundary source �.0, 0, t / D �s is used, the single moderate grid is
not suitable for the numerical test. In accordance with Theorem 1, the uniform horizontal (vertical)
space step is 0.1 cm for the whole domain Œ0,M� � Œ0, QM�, and the uniform horizontal (vertical)
space step is 0.01 cm for the subdomain Œ0,M1�� Œ0, QM1�. The uniform time step �t is 0.02 h. We
obtain 20 discrete values (i.e., snapshots) at time t D 1 h, 2 h, 3 h, : : : , 20 h by solving the usual
IDS (39).

When t D 20 h, we obtain the solutions of the reduced IDS (40) and (41) depicted on the right-
hand sides of Figure 3, where the number of POD bases M� is 7, whereas the solutions of usual
IDS (39) are depicted on the left-hand side of Figures 3 (because this figure is almost equal to the
solutions obtained with 20 POD bases, it is also referred to as the figure with full bases). Figure 4 is
the result of rotating Figure 3 by 180ı.

In order to further compare the difference between the usual IDS solutions and the reduced IDS
solutions, the contour isolines of soil moisture content and the figure of wetting front (i.e., � D 0.2)
are illustrated. Figure 5 shows the contour isolines plot of soil moisture content when t D 20 h.
The usual IDS solutions are depicted on the left-hand side, whereas the reduced IDS solutions with
seven POD bases are depicted on the right-hand side. The wetting front (i.e., � D 0.2) is drawn once
every 4 h for 20 h, the results of which are shown in Figure 6.

The phenomenon that the vertical movement is faster than the horizontal movement is illustrated
in Figure 6. Likewise, the usual IDS solutions and the reduced IDS solutions are depicted on the left-
hand side and right-hand side, respectively. Figure 7 shows the mean absolute error (MAE) between
solutions obtained with different number of POD bases and the solutions obtained with full bases.
By implementing the numerical simulation of the soil moisture content for 20 h, we find that the
central processing unit (CPU) time consumed by the usual IDS is 112 s, whereas that of the reduced
IDS with seven POD bases is only 1 s (i.e., the CPU time required by the usual IDS is 111 times
larger than that of the reduced IDS with seven POD bases), and the MAE between the solutions
does not exceed 4.6� 10�3, which is the result of numerical computing, whereas

p
�8 D 0.03 and

the error 0.052 obtained by Equation (63). Moreover, we find that the MAEs on Œ0, 1� � Œ0, 1� are
approximately those on �n.Œ0, 1� � Œ0, 1�/, which shows that the results obtained for the numerical
example are consistent with those obtained for the theoretical ones, but the numerical results are

Figure 3. When t D 20 h, the soil moisture figure for full bases solutions (left-hand side figure) andM� D 7
solutions of reduced IDS based on POD (right-hand side figure).
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Figure 4. The results of rotating Figure 3 by 180ı.

Figure 5. When t D 20 h, the contour isolines plot of soil moisture content for full bases solutions (left-hand
side figure) and M� D 7 solutions of reduced IDS based on POD (right-hand side figure).

Figure 6. The variation of wetting front (i.e., � D 0.2) in 20 h for full bases solutions (left-hand side figure)
and M� D 7 solutions of reduced IDS based on POD (right-hand side figure). In each subplot, the result is

plotted once every 4 h.
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Figure 7. The mean absolute error for different number of POD bases.

better than the theoretical results (also see Figure 7). Also, the memory requirements in the com-
putational process are greatly reduced. It is also found that the POD method is very effective in
solving the two-dimensional equation with high number of degrees of freedom. Although what we
have done here is a re-computation in order to validate the POD method, when it comes to actual
problems, we may structure the snapshots and POD bases with interpolation or data assimilation for
samples from experiments and then solve directly the optimizing reduced IDS. Moreover, because
the two-dimensional unsaturated flow equation includes �s (usually the empirical saturate value of
soil moisture), �0 (usually taken as the residual value of soil moisture), and other parameters, POD
basis is dependent on these given data, which vary with them.

6. CONCLUSIONS

In this paper, an optimizing reduced IDS for the two-dimensional unsaturated flow equation is pre-
sented by implementing the SVD and POD techniques into the usual IDS of the corresponding
equation. The ensemble of data is compiled from transient solutions obtained with the usual IDS.
However, in actual applications, the ensemble of snapshots is usually obtained from the physical
system trajectories by drawing samples from experiments and interpolation (or data assimilation).
We then implemented the SVD technique for deriving POD basis from the ensemble of data and sub-
stituted the usual IDS with the optimizing reduced IDS, based on the POD basis. Because only few
bases in the POD basis are used, the reduced IDS is optimal. We have analyzed the error between
the POD reduced IDS solution and the usual IDS solution. It is shown by using a numerical example
that the error between the POD approximate solution and the full IDS solution is consistent with
the theoretical error results derived. Thus, both the feasibility and efficiency of our reduced IDS
are validated. The theoretical and numerical results in this paper also demonstrate that the method
has extensive potential applications in solving complicated systems of nonlinear PDEs by using the
POD method to structure the optimizing reduced IDS from the usual IDS.
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