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SUMMARY

A proper orthogonal decomposition (POD)-based reduced-order model of the parabolized Navier–Stokes
(PNS) equations is derived in this article. A space-marching finite difference method with time relaxation is
used to obtain the solution of this problem, from which snapshots are obtained to generate the POD basis
functions used to construct the reduced-order model. In order to improve the accuracy and the stability of the
reduced-order model in the presence of a high Reynolds number, we applied a SobolevH1 norm calibration
to the POD construction process. Finally, some numerical tests with a high-fidelity model as well as the POD
reduced-order model were carried out to demonstrate the efficiency and the accuracy of the reduced-order
model for solving the PNS equations compared with the full PNS model. Different inflow conditions and dif-
ferent selections of snapshots were experimented to test the POD reduction technique. The efficiency of the
H1 norm POD calibration is illustrated for the PNS model with increasingly higher Reynolds numbers, along
with the optimal dissipation coefficient derivation, yielding the best root mean square error and correlation
coefficient between the full and reduced-order PNS models. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For steady two-dimensional or three-dimensional flow, the complete Navier–Stokes equations can
be simplified by eliminating some specific terms to provide detailed flow descriptions for large
Reynolds number flows. If second-order viscous terms are eliminated and only convection and pres-
sure gradient terms are retained, we can obtain the inviscid equations (Euler equation). If only
the streamwise second-order viscous terms (i.e. in the x direction along the surface, downstream
direction) are eliminated, we can obtain the so-called parabolized Navier–Stokes (PNS) equations.

The PNS equations are mathematically a set of mixed hyperbolic–parabolic equations along the
assumed local streamwise flow direction, which can be used to predict complex three-dimensional
steady, supersonic, viscous flow fields in an efficient manner. These types of equations satisfy cer-
tain conditions based on the coefficients of the terms in the equations and also accepts one real
solution in the streamwise direction. The efficiency of the PNS equations is achieved because of the
fact that the equations can be solved using a space-marching finite difference technique as opposed
to the time-marching technique, which is normally employed for the complete Navier–Stokes equa-
tions. In these simplified equations, just like in the boundary layer equations, one can obtain the
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solution by marching in the streamwise direction (i.e. the x direction) from some known initial loca-
tion. This is possible because the streamwise momentum equation (i.e. the x-momentum equation)
has only first-order terms in the streamwise direction with the second-order viscous terms having
been already eliminated. The PNS equations can propagate the information only in the downstream
direction; thus, they are not suitable for general flow situations, especially flows with separation.

Proper orthogonal decomposition (POD), also known as Karhunen–Loeve expansions in signal
analysis and pattern recognition [1], or principal component analysis in statistics [2], or the method
of empirical orthogonal functions in geophysical fluid dynamics [3] or meteorology [4], is a model
reduction technique offering adequate approximation for representing fluid flows with a reduced
number of degrees of freedom, that is, with lower-dimensional models [5–7]. The POD method
changes the complex partial differential equations to a set of much simpler ordinary differential
equations of an efficiently reduced order so as to alleviate both the computational load and the
memory requirements.

Because of the truncation applied in the POD reduced-order space, there is some information of
the state variables missing in the POD reduced-order model. This neglected information has a very
important impact on the efficiency and the stability of the POD reduced-order model for flows with
high Reynolds number (e.g. 103) as is our case. To improve the accuracy and the long-term stability
of the POD reduced-order model, Galerkin projection is insufficient and numerical stabilization is
required. This is provided by an artificial dissipation that is introduced using the Sobolev H1 inner
product norm to calibrate the POD method.

In the present article, we apply the POD method to derive a reduced-order model of the PNS equa-
tions and introduce an H1 norm POD calibration to solve the reduced-order model more robustly.
The feasibility of the POD reduced-order model compared with the full PNS model and the effi-
ciency of theH1 norm POD calibration in the presence of high Reynolds number are both analyzed.
Because the PNS equations are already simplified Navier–Stokes equations, the POD reduced-order
modeling applied to the PNS equations will yield a double benefit, namely the POD model reduc-
tion as well as the simplification of the PNS equations. To the best of our knowledge, this is a new
contribution and the first application of POD reduced-order modeling to the PNS equations.

The present paper is organized as follows. Section 2 presents the specific model description of the
PNS equations and the space-marching finite difference scheme with time relaxation to be used here.
Section 3 provides the construction process of the POD reduced-order model, consisting of Sec-
tion 3.1, where the basic theory of the POD method is provided, and Section 3.2, which illustrates
the process of applying the POD method to the PNS equations to obtain the POD reduced model,
which are a set of ordinary differential equations of the POD coefficients. Section 4 presents the
Sobolev H1 inner product norm calibration being applied to the POD construction process in order
to enhance dissipation and increase the relevance of small-scale information in the POD reduced-
order model for a high Reynolds number case. In Section 5, we present numerical results, which
demonstrate the efficiency of the reduced-order method for solving the PNS equations compared
with the full PNS model, using the POD reduced-order model. Different inflow conditions and dif-
ferent numbers of snapshots are experimented to test the POD reduction technique. The efficiency
of the Sobolev H1 norm POD calibration in the presence of increasingly higher Reynolds numbers
is also demonstrated using a numerically derived optimal dissipation coefficient. In Section 6, the
summary and conclusions are provided, including a discussion related to future research work.

2. PNS MODEL DESCRIPTION

For the PNS equations, the streamwise momentum equation (i.e. the x-momentum equation) has
only first-order terms in the streamwise direction with the second-order viscous terms having been
already eliminated. The PNS equations can propagate the information only in the downstream
direction; thus, they are not suitable for general flow situations, especially flows with separation.
However, the PNS equations have been applied successfully for a variety of two-dimensional and
three-dimensional supersonic flows, even with real gas effects, such as compressible hypersonic
flows and flows with upstream influences due to strong shock interactions and confined regions of
reverse flow.
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In this paper, the two-dimensional steady supersonic laminar flow is modeled by the PNS equa-
tions [8]. This model is valid if the flow is supersonic along the x coordinate, and the second-order
viscous effects along this direction are negligible, a fact that allows a rapid decrease in the com-
putational time required to complete the calculation [9]. The following equations describe an
under-expanded jet (Figure 1) in this flow.
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(2.1)

where u and v represent the velocity components along the x and y directions, respectively, � repre-
sents the flow density, p the pressure, e the specific energy,R the gas constant, T the temperature,Cv

the specific volume heat capacity, and � the specific heat ratio. Besides, Re D .�1u1ymax/=.�1/

is the Reynolds number, where1 indicates the inflow boundary parameter, ymax is the length of the
flow field in the y direction, and � represents viscosity.

The following conditions are used for the inflow boundary (see A in Figure 1):

�.0, y/D �1.y/, u.0,y/D u1.y/, v.0,y/D v1.y/, e.0, y/D e1.y/, (2.2)

where �1.y/, u1.y/, v1.y/, and e1.y/ are all given functions.
The lateral boundary (see B and C in Figure 1) conditions are prescribed as follows:
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A space-marching finite difference discretization [10] is employed in Equations (2.5)–(2.8) to
derive the solution of this problem. The finite difference discretization is of second-order accuracy
in the y direction and of first order in the x direction. At every step along the x coordinate, the flow
parameters are calculated from the initial inflow location in an iterative manner assuming the form
of time relaxation.
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�nC1i ,j � �
n
i ,j

�
Cuni ,j

�ni ,j � �
n
i�1,j

4x
Cvni ,j

�nC1i ,jC1 � �
nC1
i ,j�1

24y
C�ni ,j

�
uni ,j � u

n
i�1,j

4x
C
vni ,j � v

n
i ,j�1

4y

�
D 0

(2.5)

Figure 1. Flow region. A, inflow boundary; B and C, lateral boundaries; D, outflow boundary
(measurement).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:710–730
DOI: 10.1002/fld



REDUCED-ORDER MODELING BASED ON POD OF A PNS EQUATION MODEL 713

Momentum equations:
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Energy equation:
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where i and j denote the node index along the x and y coordinates, respectively, n is the number
of time iterations, and � is the relaxation factor.

3. POD REDUCED-ORDER MODEL OF PNS

Proper orthogonal decomposition is a technique that provides a useful tool for efficiently approx-
imating a large amount of data and representing fluid flows with a reduced number of degrees of
freedom. It is also very efficient in the sense that it can capture the greatest possible energy in a
reduced space [11]. We apply this method to obtain a reduced-order model of the above PNS equa-
tions and expect it to yield a decrease in both the computational load and the CPU time, which lays
the foundation for proceeding to the next stage, that is, the POD 4-D VAR [6, 11] inverse problem
[12–14].

3.1. Proper orthogonal decomposition

Let V represent the model variables (e.g. u, v, e, and p ). The ensemble of snapshots sampled at
designated time steps ¹V lºL

lD1
D ¹V li º

L
lD1

.16 i 6M/ (L6N ) can be expressed as the following
M �L matrix AV , where M is the number of nodes, N is the number of time steps, and L is the
number of snapshots.

AV D

0BBB@
V 11 V 21 � � � V L1
V 12 V 22 � � � V L2

...
...

...
...

V 1M V 2M � � � V LM

1CCCA (3.1)

The average of the ensemble of snapshots ¹ViºMiD1 is defined as
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1

L

LX
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V li , 16 i 6M , (3.2)

bV li D V li � Vi , 16 i 6M , 16 l 6 L, (3.3)
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which constructs an M �L matrix A D ¹bV lºL
lD1

.
The essence of the POD method is to find a set of orthogonal basis functions ¹�iº.i D 1, : : : ,L/

to maximize the inner product defined as
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Because the basis functions can be represented as the linear combination of the solution snapshots,
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the optimization problem changes to the following eigenvalue problem:
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In order to solve the above eigenvalue problem, we employed the singular value decomposition
method to obtain an optimal representation for A and the eigenvectors for C [5, 15], which is an
important tool to construct the optimal basis of reduced-order approximation.

By neglecting the modes corresponding to the smallest singular eigenvalues, we can estimate the
energy captured by the first m POD basis functions using [16, 17]
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�i
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iD1

�i

, (3.10)

where I.m/ represents the ratio of energy captured in the first m modes to the total energy .
Hence, the state variable can be represented by the linear combination of the retained POD basis

functions as follows:

V.x,y/D V C
mX
iD1

˛i .x/�i .y/, (3.11)

where ˛i .x/ .i D 1, : : : ,m/ are the POD coefficients corresponding to every POD basis function.
Note that the x direction is taken as time and the y direction is taken as space in the PNS model.
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3.2. POD reduced model

In the following, we use the POD basis functions derived above to develop a reduced-order PNS
model, in which the marching direction x is taken to represent the time evolution. The flow variables
are modeled as
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�
i .x/�
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i .y/, (3.12)
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v
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e
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where �, u, v, and e represent the mean of the ensemble of snapshots for the variables of the PNS
equations; ˛�i , ˛ui , ˛vi , and ˛ei ,.16 i 6m/ are coefficients related to the POD basis functions for the
state variables to be determined; and ˛i .0/ are the known coefficients at the inflow location defined
by the following:
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iD1
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e
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After substituting Equations (3.8)–(3.11) into the parabolic Navier–Stokes equations of
Equation (2.1) and then taking the inner product with the POD basis for each flow variable, we
obtain a set of ordinary differential equations of the POD coefficients ˛�i ,˛ui ,˛vi , and ˛ei .

Thus, we can obtain the POD reduced-order model of size 4�m �M (m << L << N ), which
can be compared with the full PNS of size 4�N �M .

4. FORMULATION OF POD CALIBRATION USING SOBOLEV H1 NORM

High Reynolds number flows exhibit dynamics on a wide range of scales. The POD reduced-order
model derived from the finite difference discretization is not sufficiently accurate in reproducing
the dynamics of high Reynolds number flows because the truncation applied in the POD subspace
neglects the low-energy modes that represent some important but fine-scale information of the fluid
flow [18]. The neglected POD modes corresponding to small-scale structures introduce dissipation
errors in the model because usually dissipation of energy occurs mainly on the level of scales that are
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unresolved in the discretization [19]. Consequently, the dynamic system may lose its long-term sta-
bility. To ensure that the smaller scales are retained in the POD model and enhance dissipation, we
introduced an artificial dissipation by using a Sobolev H1 inner product norm to calibrate the POD
method, that is, the derivatives of the snapshots and those of the basis functions are both included in
the formulation of the optimization problem [20].

Thus, the optimization problem in this calibrated POD process consists in seeking the POD basis
functions �i , i D 1, : : : ,L to maximize

1

L

LX
iD1

.< A,�i >/
2 D
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Z
�

A�id�C 	
Z
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rAr�id� (4.1)

subject to

< �i ,�j >H1D 1, i D j
< �i ,�j >H1D 0, i ¤ j ,

(4.2)

where i , j D 1, : : : ,L.
The corresponding eigenvalue problem becomes

Cx D �x, (4.3)

Figure 2. The initial condition for the specific energy e at the inflow boundary A (see Figure 1).

(a) (b)

Figure 3. The (a) first and (b) second POD basis functions of the specific energy e.
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(a) Leading SVD eigenvalues corresponding to the 
specific energy e

(c) Leading SVD eigenvalues of the x component
of the velocity field

(d) Leading SVD eigenvalues of the y component
of the velocity field

(b) Leading SVD eigenvalues corresponding to the
density

Figure 4. (a–d) Singular value decomposition (SVD) eigenvalues in a decreasing order of magnitude
(Re D 1000).

(a) Full model solution of the specific energy e at
‘timestep’ (the x direction) 21

(b) Full model solution of the specific energy e at
‘timestep’ (the x direction) 41

Figure 5. (a) Full-model solution and (b) POD reduced-order model solution of the PNS equations
(Re D 1000).
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where

C D ¹ci ,j º
M
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(4.4)

where 	 is the dissipation coefficient whose value can be guessed to be proportional to T=Re because
of dimensional analysis considerations, where T is some appropriate timescale [20].

5. NUMERICAL RESULTS

In this section, the flow field is computed by marching along the x coordinate, which represents
the time evolution from x D 0 to x D xmax. The computational grid contains 50–100 points in the
marching direction (the x direction) and 100 points in the transversal direction (the y direction).
We experimented with different Reynolds numbers and different numbers of snapshots to test the
performance of the POD method.

(a) The RMSE for the specific energy e (b) The correlation coefficient for the specific
energy e

Figure 6. (a, b) Impact of the number of snapshots on the POD model reduction (blue: 100 snapshots, red:
200 snapshots) (Re D 1000). RMSE, root mean square error.

(a) The relation between    and the RMSE for e (b) The relation between    and the correlation

coefficient for e

Figure 7. The variation of the (b) root mean square error (RMSE) and the (b) correlation coefficient as a
function of different values of the dissipation coefficient 	 (Re D 1000).
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5.1. Numerical results of the POD reduced-order model

We chose the Reynolds number as Re D 103 in this test. Let the length of the flow field in the x
direction be normalized to 1. Figure 2 shows the initial specific energy e of the flow at the inflow
boundary A (x D 0, Figure 1), which was obtained using the logistic function. Figure 3 presents the
first and second POD basis functions for the specific energy e using 100 snapshots in which we can
observe that the first POD basis function captures the dominant characteristics of the specific energy
e. Figure 4 shows the first 30 leading eigenvalues of the singular value decomposition for the POD
model reduction of the PNS equations corresponding to the different state variables in a decreasing
order of magnitude, and one can observe that the first six leading POD eigenvalues account for more
than 99.9% of the total energy (see Equation (3.14)).

Figure 5 shows the full-model solutions compared with the corresponding POD reduced-order
solutions for the specific energy e at the 21st and 41st x-direction nodes.

In the present paper, the root mean square error (RMSE) and the correlation coefficient (COR)
between the full PNS and POD models are defined as

RMSEl D

vuuut MP
iD1

.V li � V
l
0,i /

2

M
, l D 1, : : : ,L (5.5)

and

CORl D

MP
iD1

.V li � V
l
/.V l0,i � V

l

0/s
MP
iD1

�
V li � V

l
�2s MP

iD1

�
V l0,i � V

l

0

�2 , l D 1, : : : ,L, (5.6)

where V li and V l0,i are vectors containing the POD reduced-order model solution and the full-model

solution of the state variables, respectively, V
l

and V
l

0 are average solutions over the y direction
corresponding to the POD reduced-order model and the full PNS model, respectively, M is the
number of nodes along the y direction, and L is the number of nodes in the x direction.

In order to study the impact of the number of snapshots on the POD model reduction, we doubled
the number of snapshots from 100 to 200. The RMSE and the COR between the full PNS model and
the POD reduced-order one derived using 100 and 200 snapshots are presented in Figure 6. We can
observe that the RMSE and the COR for the specific energy e are both improved with the increase

(a) The relation between    and the RMSE for e (b) The relation between    and the correlation
coefficient for e

Figure 8. The variation of the (a) root mean square error (RMSE) and the (a) correlation coefficient as a
function of different values of the dissipation coefficient 	 (Re D 1000).
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in the number of snapshots. Similar results (not shown) were obtained for the other components of
the PNS flow field.

The CPU time of the POD reduced-order PNS model is approximately 1 s compared with 6 s of
the full PNS model with the Core2 Duo CPU (2.80 GHz) and Windows XP operating system. Also,

(a) The first POD basis function (b) The second POD basis function

(c) The third POD basis function (d) The fourth POD basis function

(e) The fifth POD basis function (f) The sixth POD basis function

Figure 9. (a–f) The first six leading POD basis functions for e (blue: without POD calibration, red: with
POD calibration using the optimal dissipation coefficient 	 D 2� 10�2) (Re D 1000).
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(a) (b)

Figure 10. The (a) root mean square error (RMSE) and the (b) correlation coefficient for e between the
full and POD reduced-order PNS models (blue: without POD calibration, red: with POD calibration)

(Re D 1000).

Figure 11. The initial condition for the specific energy e at the inflow boundary A (see Figure 1).

(a) The relation between    and the RMSE for e (b) The relation between    and the correlation

coefficient for e

Figure 12. The variation of the (a) root mean square error (RMSE) and the (b) correlation coefficient as a
function of different values of the dissipation coefficient 	 (Re D 1000).
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the CPU time spent on the POD basis construction process was only 0.2 s, which is very efficient
compared with the simulation process.

5.2. Numerical results obtained with the H1 norm

Because our model uses a high Reynolds number (e.g. Re D 103), a calibration applied to the POD
construction process [21–27] is expected to yield better numerical results. In the Sobolev H1 inner
product norm POD calibration, it is very important to choose an appropriate dissipation coefficient 	
to improve the POD method efficiently. We tested the H1 norm POD calibration for the PNS model
with Re D 1.0� 103, Re D 0.6� 103, and Re D 1.2� 103.

5.2.1. Re D 1.0 � 103. For the Reynolds number Re D 1.0 � 103, we carried out a series of
numerical experiments to determine the optimal dissipation coefficient 	 for the specific energy e
corresponding to our test problem.

First, we chose the value of 	 in the interval 10�3 6 	 6 10 in increments of 10 to test the varia-
tion of the RMSE and the COR for the specific energy e between the full PNS model and the POD
reduced-order model. The optimal value was found to be 	 D 10�2 (see Figure 7).

A more precise value of 	 for the specific energy e was sought in the vicinity of 10�2 particularly.
The RMSE and the COR corresponding to different values of 	 in the interval 2�10�3 6 	 6 4�10�2
are presented in Figure 8, in which we can observe that the smallest RMSE and the largest corre-
lation number (0 6 COR 6 1) for the specific energy e between the full PNS model and the POD
reduced-order one were both attained for a value of 	 D 2� 10�2.

Figure 9 presents the first six leading POD basis functions with and without H1 norm POD
calibration when the optimal dissipation coefficient 	 D 2� 10�2 was chosen.

The RMSE and the COR of the specific energy e between the full PNS model and the reduced-
order PNS model using 100 snapshots with and without the Sobolev H1 norm POD calibration are
presented in Figure 10. We can conclude that the POD method with the Sobolev H1 norm cali-
bration and optimal dissipation coefficient 	 improves the long-term stability of the reduced-order
model.

Another inflow condition at the inflow boundary A (x D 0, Figure 1) is presented in Figure 11.
The variations of the RMSE and the COR for the specific energy e corresponding to different values
of the dissipation coefficient 	 in the interval 10�3 6 	 6 10 and 2 � 10�2 6 	 6 4 � 10�1 are
presented in Figures 12 and 13, respectively. The optimal dissipation coefficient 	 with the smallest
RMSE and the largest correlation number turned out to be 	 D 2� 10�2.

(a) The relation between    and the RMSE for e (b) The relation between    and the correlation 
coefficient for e

Figure 13. The variation of the (a) root mean square error (RMSE) and the (b) correlation coefficient as a
function of different values of the dissipation coefficient 	 (Re D 1000).
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(a) The first POD basis function (b) The second POD basis function

(c) The third POD basis function (d) The fourth POD basis function

(e) The fifth POD basis function (f) The sixth POD basis function

Figure 14. (a–f) The first six leading POD basis functions for e (blue: without POD calibration, red: with
POD calibration using the optimal dissipation coefficient 	 D 2� 10�2) (Re D 1000).

The first six leading POD basis functions with and without H1 norm POD calibration with
the optimal dissipation coefficient 	 D 2 � 10�2 are shown in Figure 14. The full and POD
reduced model solutions for the specific energy e at the 21st and 41st time steps are presented
in Figure 15.
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(a) Full-model solution of e at ‘timestep’ (the x 
direction) 21

(b) Full-model solution of e at ‘timestep’ (the x
 direction) 41

Figure 15. (a) Full-model solution and (b) POD reduced-order model solution of the PNS equations
(Re D 1000).

(a) The relation between    and the RMSE for e (b) The relation between    and the correlation 
coefficient for e

Figure 16. The variation of the (a) root mean square error (RMSE) and the (b) correlation coefficient as a
function of different values of the dissipation coefficient 	 (Re D 600).

(a) The relation between    and the RMSE for e (b) The relation between    and the correlation 
coefficient for e

Figure 17. The variation of the (a) root mean square error (RMSE) and the (b) correlation coefficient as a
function of different values of the dissipation coefficient 	 (Re D 600).
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5.2.2. Re D 0.6�103. A similar series of numerical experiments to determine the optimal dissipa-
tion coefficient 	 for the specific energy e was carried out for the Reynolds number Re D 0.6�103.
Figures 16 and 17 show the variation of the RMSE and the COR for the specific energy e with

respect to different values of 	 in the interval 10�3 6 	 6 10 and 2 � 10�3 6 	 6 4 � 10�2,
respectively. The optimal value was found to be 	 D 1� 10�2.

(a) The first POD basis function (b) The second POD basis function

(c) The third POD basis function (d) The fourth POD basis function

(e) The fifth POD basis function (f) The sixth POD basis function

Figure 18. (a–f) The first six leading POD basis functions for e (blue: without POD calibration, red: with
POD calibration using the optimal dissipation coefficient 	 D 1� 10�2) (Re D 600).
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(a) Full-model solution of e at ‘timestep’ (the x 
direction) 21

(b) Full-model solution of e at ‘timestep’ (the x
 direction) 41

Figure 19. (a) Full-model solution and (b) POD reduced-order model solution of the PNS equations
(Re = 600).

(a) The relation between    and the RMSE for e (b) The relation between    and the correlation 
coefficient for e

Figure 20. The variation of the (a) root mean square (RMSE) and the (b) correlation coefficient as a function
of different values of the dissipation coefficient 	 (Re D 1200).

(a) The relation between the dissipation coeffi-
cient   and the RMSE for e

(b) The relation between the dissipation coeffi-
cient   and the correlation coefficient for e

Figure 21. The variation of the (a) root mean square error (RMSE) and the correlation coefficient as a
function of different values of the dissipation coefficient 	 (Re D 1200).
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Figure 18 presents the first six leading POD basis functions with and without H1 norm POD
calibration using the optimal dissipation coefficient 	 D 1� 10�2.

The full-model solutions compared with the corresponding POD reduced-order solutions for the
specific energy e at the 21st and 41st x-direction nodes are shown in Figure 19.

(a) The first POD basis function (b) The second POD basis function

(c) The third POD basis function (d) The fourth POD basis function

(e) The fifth POD basis function (f) The sixth POD basis function

Figure 22. (a–f) The first six leading POD basis functions for e (blue: without POD calibration, red: with
POD calibration using the optimal dissipation coefficient 	 D 8� 10�2) (Re D 1200).
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5.2.3. Re D 1.2� 103. We carried out the same tests for the optimal dissipation coefficient 	 with
a higher Reynolds number of Re D 1.2 � 103. The RMSE and the COR for the specific energy e
corresponding to different values of 	 in the interval 10�3 6 	 6 10 and 2�10�2 6 	 6 4�10�1 are
presented in Figures 20 and 21, respectively. The smallest RMSE and the largest correlation number
were both obtained when 	 D 8� 10�2.

The first six leading POD basis functions with and without H1 norm POD calibration using the
optimal dissipation coefficient 	 D 8� 10�2 are presented in Figure 22.

Figure 23 shows the full-model solutions compared with the corresponding POD reduced-order
solutions for the specific energy e at the 21st and 41st x-direction nodes.

In conclusion, the optimal dissipation coefficient 	 varied as we increased the Reynolds number
in the PNS equations. The optimal dissipation coefficients for the PNS model with the Reynolds
number Re D 0.6� 103, Re D 1� 103, and Re D 1.2� 103 are 1� 10�2, 2� 10�2, and 8� 10�2,
respectively, which are all of the order 10�2 and increase in magnitude as the Reynolds number
becomes higher.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a POD method is applied to derive a reduced-order model for the PNS equations. First,
ensembles of snapshots were computed from transient solutions (along the x direction) obtained
with the space-marching finite difference scheme, and this process can be omitted in actual applica-
tions where the ensemble of snapshots can be obtained from physical system trajectories by drawing
samples from experiments and interpolation (or data assimilation). Then, we derived the POD basis
functions from the ensembles of snapshots and developed the reduced-order model, in which a
much smaller number of the POD basis functions make the reduced-order model optimal in the
sense of energy captured. To improve the accuracy and the stability of the reduced-order model in
the presence of increasingly higher Reynolds number, we applied the Sobolev H1 norm calibration
to the POD method. Finally, a number of numerical experiments were carried out to demonstrate
the accuracy of the POD reduced-order model compared with the full PNS model. The efficiency
of the H1 norm POD calibration in the presence of high Reynolds number was demonstrated. An
optimal dissipation coefficient yielding the best RMSE and COR between the full and reduced-
order PNS models was estimated for several cases of various Reynolds numbers. We also tested the
impact of the number of snapshots and different inflow conditions on the performance of the POD
reduced-order model.

(a) Full-model solution of the specific energy e at 
‘timestep’ (the xdirection) 21

(b) Full-model solution of the specific energy e at 
‘timestep’ (the xdirection) 41

Figure 23. (a) Full-model solution and (b) POD reduced-order model solution of the PNS equations
(Re D 1200).
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In a follow-up paper, we will apply the POD technique to the ill-posed inverse problem of the
PNS equations [12–14] to estimate the inflow parameters from the outflow measurements of the
two-dimensional supersonic laminar flow using some robust large-scale unconstrained minimization
methods. The efficiency and the feasibility of the POD technique applied to the inverse problem will
also be studied.
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