
Introduction
Knowledge of the sensitivity of a solution to small changes in the model parameters is exploited in many
areas in computational physics and used to perform mesh adaptivity (Power et al., 2006), or to correct
errors based on discretisation and sub-grid-scale modelling (Merton et al., 2013, 2014), to perform the
assimilation of data based on adjusting the most sensitive parameters to the model-observation misfit,
and similarly to form optimised sub-grid-scale models (Cacuci et al., 2005; Maday and Taddei, 2017;
Shah, 2017; Liu and Kalnay, 2008; Hossen et al., 2012). We present a goal-based approach for forming
sensitivity (or importance) maps using ensembles. These maps are defined as regions in space and time
of high relevance for a given goal, for example, the solution at an observation point within the domain.
The presented approach relies solely on ensembles obtained from the forward model and thus can be
used with complex models for which calculating an adjoint (Ionescu-Bujor and Cacuci, 2004; Wang
et al., 1992; Cacuci, 2015) is not a practical option. This provides a simple approach for optimisation of
sensor placement, goal based mesh adaptivity, assessment of goals and data assimilation. We investigate
methods which reduce the number of ensembles used to construct the maps yet which retain reasonable
fidelity of the maps.

The fidelity comes from an integrated method including a goal-based approach, in which the most up-to-
date importance maps are fed back into the perturbations to focus the algorithm on the key variables and
domain areas. Also within the method smoothing (Blum et al., 2009; Nerger et al., 2014; Attia, 2016) is
applied to the perturbations to obtain a multi-scale, global picture of the sensitivities; the perturbations
are orthogonalised (Attia, 2016; Leroux et al., 2018; Keller et al., 2010; Che et al., 2014) inverted; and
time windows (Attia, 2016) are applied (for time dependent problems) where we work backwards in
time to obtain greater accuracy of the sensitivity maps.

The theory section describes the background to our ensemble-based approach as well as outlining some
recent developments which we test on a porous media multi-phase flow problem in the results section of
this paper. We finish by drawing conclusions.
Theory
This paper describes a method of calculating the sensitivity of a functional with respect to the solution
based on an ensemble method.

We begin the theory section by showing how changes in the controls (problem parameters or inputs) or
the solutions affect the value of a functional (Calculating sensitivites). We demonstrate how ensembles
can approximate sensitivities in a steady-state setting (Forming sensitivites by using ensembles) and
then extend this to a time-dependent situations (Time dependent problems). Finally, we outline a novel
approach developed in Heaney et al. (2018) (Goal-based weighting of perturbations, Time windows).
Calculating sensitivities
Suppose we have inputs, mmm, for a computational model, and the corresponding outputs: the solution,
ψψψ , and a quantity of interest encapsulated by a functional of value F . We refer to these as unperturbed
quantities. Now we choose to run a similar problem but with slightly different inputs, mmm, producing
results ψψψ and F . These quantities are related to the previous, unperturbed quantites by the following

mmm = mmm+∆mmm , (1)
ψψψ = ψψψ +∆ψψψ , (2)
F = F +∆F , (3)

where ∆mmm are the perturbations made to the input controls, and ∆ψψψ and ∆F are the changes resulting
from this perturbation which occur in the solution and the functional respectively.

The influence that changing the controls has on the solution and the functional can be approximated as
a pair of first order Taylor series expansions

∆ψψψ = MMM∆mmm (4)

∆F = ∆mmmT dF
dmmm

, (5)

where
M =

dψψψ

dmmm
and F = F(ψψψ(mmm)),mmm) . (6)
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We wish to combine these expressions to come up with a relationship describing how a change in the
solution affects the functional. In order to obtain an expression for ∆mmm in terms of ∆ψψψ we apply the
Moore-Penrose pseudo-inverse to equation (4) which gives

∆mmm = (MMMT MMM)−1MMMT
∆ψψψ . (7)

After substituting this into equation (5) we have

∆F = ∆ψψψ
T
(

MMM(MMMT MMM)−1 dF
dmmm

)
=: ∆ψψψ

T ggg . (8)

We define ggg to be the relationship between a change in the solution and a change in the functional. From
equation (8), we can see that the term in brackets, ggg, is the total derivative of the functional with respect
to the solution variables, that is

ggg≡ dF
dψψψ

. (9)

Hence, ggg is equivalent to the functional’s sensitivity with respect to the solution. From this point on-
wards, ggg is referred to as a sensitivity map.
Forming sensitivities by using ensembles
In the previous section we used an ensemble of size one, i.e. there was one set of inputs and outputs from
an unperturbed model, and another set of inputs and outputs derived from perturbed controls. We now
consider the general case of an ensemble size of E . Each member of the ensemble has its own perturbed
controls, written as emmm, which satisfy emmm = mmm+∆emmm. Here e represents the ensemble index. We can
now study the sensitivity of the functional to the solution in an ensemble-based setting.

First, however, we make a change of variables to map the controls into a space where there is a reduced
number of variables. To this end, we introduce a second set of control variables ∆emmms. The number of
entries in this vector is equal to the ensemble size, E . The values of the entries are either zero or one:

(∆emmms)k =

{
0 for k ∈ {1, . . . ,E },k 6= e
1 for k = e . (10)

The relationship between ∆emmms and ∆emmm is given by

CCC∆
emmms = ∆

emmm ∀e , (11)

where CCCie = ∆emmmi. Performing a sensitivity analysis with the new variables means that we have the
following in place of equation (8)

∆F = ∆mmmT
s

dF
dmmms

= ∆ψψψ
T
(

MMMs(MMMT
s MMMs)

−1 dF
dmmms

)
= ∆ψψψ

T ggg . (12)

While the size of the matrix MMM was N by C (where C is the number of controls), the size of the matrix
MMMs is N by E . This change of variables has been advantageous because, for our applications, E � C .

We must to estimate MMMs and dF/dmmms if we wish to be able to calculate the sensitivity map (see equa-
tion (12)). The change of variables sets the perturbation size to be 1, which means we can make the
following estimations:

dF
dmmms

≈ d̂F
dmmms

= (1F−F , 2F−F , . . . ,EF−F)T (13)

MMMs =
dψψψ

dmmms
≈ M̂MMs = (1

ψψψ−ψψψ, 2
ψψψ−ψψψ, . . . , E

ψψψ−ψψψ). (14)

We insert these estimations into equation (12) and obtain

∆̂F = ∆̂ψψψ
T
(

M̂MMs(M̂MM
T
s M̂MMs)

−1 d̂F
dmmms

)
= ∆̂ψψψ

T
ĝgg , (15)
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where ∆̂F ≈ ∆F , ∆̂ψψψ ≈ ∆ψψψ and ĝgg≈ ggg.

Another advantage of the change of variables is that neither ̂dF/dmmms nor M̂MMs are influenced by the
controls, mmms, because ψψψ and F are also not influenced by mmms, see equations (13) and (14). As a result the
sensitivity map does not depend on the matrix CCC so we never have to construct this matrix. The inversion
of the matrix M̂MM

T
s M̂MMs, which is needed to calculate ĝgg, will also be realistic as its dimensions are the same

as the number of ensemble members used, E .
Time dependent problems
In order to decouple in time so we can solve for the sensitivity at each time level independently, we
apply the change of variables to equation (10) and the approximations given in equations (13), (14) and
following (15), which gives

∆̂ψψψ = M̂MMs∆mmms . (16)

where, in full, (
(∆̂ψψψ

1
)T , . . . ,(∆̂ψψψ

Nt
)T
)T

=
(
(M̂MM

1
s )

T , . . . ,(M̂MM
Nt

s )T
)T

∆mmms . (17)

In the above, we denote the time level by a superscript and the number of time levels is given by Nt . The
system of equations (17) can now be decoupled in time and, once the Moore-Penrose pseudo-inverse is
applied to the equation for each time level in turn, we have

ĝggn = M̂MM
n
s

(
(M̂MM

n
s )

T M̂MM
n
s

)−1 d̂F
dmmmn

s
, (18)

for time level n. For more information, see Heaney et al. (2018).

We now describe two novel contributions to ensemble generation: using the sensitivity map to weight
the perturbations and the introduction of time windows Heaney et al. (2018).
Goal-based weighting of the perturbations

Goal-based mesh adaptivity Power et al. (2006), and goal-based sensor optimisation methods Che et al.
(2014), share some similarities with this approach, however, the method described here will focus per-
turbations over the regions of interest rather than refine a mesh or observations over a region.

Closer inspeaction of equation (15) indicates that each contribution to ∆̂F takes the following form

∆̂ψψψ i ĝggi . (19)

The importance to the functional of the ith solution variable is determined by the value of the ith entry
of the sensitivity map. When ĝgg is close to zero, there will, therefore, be little gained by perturbing
the controls there. Concentrating the perturbations by weighting them from the sensitivity map was
motivated by equation (19). In doing this, we produce perturbations which will have the greatest effect
on the functional.

We now derive an expression for the goal-based weighting of the perturbations. The current value of ĝgg0

(the sensitivity map at at time level zero) can be used to concentrate the perturbations in the areas that
are of more significance to the goal of the particular problem:

∆mmmi→
|ĝggi

0|∆mmmi

||ĝgg0||∞
, (20)

where i is the node or control volume index and || · ||∞ represents is the Euclidean norm. (We do not
invoke the Einstein convention for the repeated index.)

Alongside the goal-based weighting, we use three well-known techniques when generating ensembles:
random perturbations, smoothing and orthogonalisation. Random perturbations will excite all solution
modes simultaneously. Using this approach, instead of perturbing each degree of freedom one-by-one,
can produce good results for smaller ensemble sizes. We also smooth the perturbations to lose noise
on the grid-scale Shapiro (1970). Larger-scale structures are identified by the smoothed perturbations,
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and this will also reduce the size of ensemble required. Finally, we apply the standard Gram-Schmidt
orthogonalisation to successive perturbations to ensure that the system is well posed.

Our recipe for generating ensemble perturbations is a combination of the above techniques:

• generate uniformly distributed random perturbations

• smooth the perturbations

• use the most recent sensitivity map to focus the perturbations

• apply Gram-Schmidt orthogonalisation

The modified perturbations are then added to the unperturbed initial conditions and the forward model
is run so we obtain the solution and the functional value. On the following page we give a more detailed
view of the whole algorithm for a time-dependent problem in Algorithm 1.
Time windows
For some time-dependent applications, it can be useful to split up the time domain into ‘time windows’
and apply the approach described here to each window in turn (starting with the last one chronologically
and working backwards in time). The perturbations can then be tailored for the physics in each time
window by the algorithm. If required, information can be passed back from one time window to another
by using the matrix M̂MM

n
s . For more details see Heaney et al. (2018).

This approach has similarities with adjoint methods which send back in time information from the func-
tional to discover which are the variables that influence the functional and how much they do so.

The time windows, goal-based weighting, use of random perturbations, smoothing and orthogonalisation
all contribute to the reduction of ensemble size required to attain a ‘reasonably’ accurate sensitivity map
and thus the computational efficiency of the proposed method.
Results
The presented formulation is tested in a multiphase porous media flow simulation in heterogeneous 2D
test case. For the forward model, ICFERST is used (Jackson et al. (2015); Gomes et al. (2017); Salinas
et al. (2017)).

To help the reader, a summary of the multi-phase porous media flow equations are presented, for a more
in depth description see Gomes et al. (2017). The saturation equation for an incompressible flow is as
follows:

φ
∂Sα

∂ t
+∇ · (uuuαSα) = 0, (21)

in which φ is the porosity, t is time, uuuα and Sα are the velocity and saturation of phase α .

Darcy’s equation is as follows:

µαSα (Krα
K)−1 uuuα =−∇p+ sssuα , (22)

where p is the global pressure of the system, sssuα
is a source term; here no sources are considered. K is the

permeability tensor and Krα
and µα are the relative permeability and viscosity of phase α respectively.

The final equation is the summation constraint:
n

∑
α=1

Sα = 1, (23)

n being the number of phases. The relative permeability is calculated using the Brooks-Corey model (Brooks
and Corey, 1964):

krw (Sw) =

(
Sw−Swirr

1−Swirr−Snwr

)nw

, (24)

krnw (Snw) =

(
Snw−Snwr

1−Swirr−Snwr

)nnw

, (25)

where Snwr is the irreducible non-wetting phase saturation and Swirr is the irreducible wetting phase
saturation; nw and nnw are the exponents for the wetting and non-wetting phases respectively.
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Algorithm 1 Calculate ĝgg using method in section
1: !! Run unperturbed forward model
2: mmm = read_in_initial_condition()
3: ψψψ = run_forward_model(mmm)
4: FFF = calculate_F(ψψψ)
5:
6: !! Initialise sensitivity map vector
7: ĝgg0 = 111
8:
9: for ensemble e = 1 to E do

10: ∆emmm = get_perturbation(ĝgg0)
11: emmm = get_perturbed_initial_condition(∆emmm, mmm)
12: eψψψ = run_forward_model(emmm)
13: eF = calculate_F(eψψψ)
14:
15: !! Calculate sensitivity map for time level 0 based on ensembles 1 to e
16: MMM0 = calculate_dψdm(1ψψψ0, 2ψψψ0, . . . , eψψψ0)
17: dF

dmmm = calculate_dFdm(1F, 2F, . . . , eF)

18: ĝgg0 = calculate_Importance_Map
(
MMM0, dF

dmmm

)
19: end for
20:
21: !! Calculate the sensitivity map at each desired time level
22: !! . . . based on all E ensembles
23: dF

dmmm = calculate_dFdm(1F, 2F, . . . ,E F)

24: for each time level n do
25: MMMn= calculate_dψdm(1ψψψn, 2ψψψn, . . . ,E ψψψn)
26: ĝggn = calculate_Sensitivity_Map

(
MMMn, dF

dmmm

)
27: end for

ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery
3–6 September 2018, Barcelona, Spain



2D porous media test case
The porous media model considered here consists of a square reservoir (Kout = 1 dimensionless per-
meability units) with a low permeable inclusion-square (Kout = 10−5 dimensionless permeability units);
the porosity of the domain is homogeneous and equal to 0.2. Initially the domain is saturated by the
non-wetting phase with an initial saturation of 1−Swirr. The wetting phase is injected from the left-hand
side at a rate of 1 dimensionless velocity units, displacing the wetting and non-wetting phases to the
right-hand-side. A viscosity ratio of 1 is considered. The time-step used is 0.001 and the final time is
0.1.

Figure 1 Top-left shows the mesh used for the experiments, the permeability map and the point of inter-
est. The other figures shows the saturation of the injected wetting phase at three different stages. The
fluids flow preferentially around the internal low permeable object.).

Figure 1 shows the mesh, the permeability map, the point of interest, towards which the sensitivity map
is calculated and the forward simulation at three different time-levels. These figures illustrate how the
fluid flows preferentially around the low permeable inclusion, as expected. Two sets of experiments are
carried out in which 40 ensembles are considered in both cases. In one set we use just one single time-
window and in the second set 4 time-windows of 5 time-levels is considered. Figure 2 shows the results
of the first set. It can be seen how both test cases provide the expected results, showing that the area of
interest goes around the low permeable inclusion. Comparing with the case using 4 time-windows, the
results are much better defined with much fewer oscillations in the results.
Conclusions
We present a demonstration of goal-based sensitivity maps (Heaney et al., 2018) applied to a porous
media flow problem. The approach uses an ensemble-based method which can concentrate perturbations
in the area in which they will have most influence on the functional. Time windows are shown to improve
the results, producing less fluctuating sensitivity maps.
Acknowledgements
The authors are grateful for the support of the EPSRC through: the Smart-GeoWells Newton grant
(P65437); Managing Air for Green Inner Cities (MAGIC, EP/ N010221/1); the multi-phase flow pro-
gramme grant (MEMPHIS, EP/ K003976/1); multi-phase flow for subsea applications (MUFFINS, EP/

ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery
3–6 September 2018, Barcelona, Spain



Figure 2 Left column shows the results using just one single time-window. Right column using 4 time-
windows. Top and bottom figures show the sensitivity map at two different time-levels. The results using
time-windows are more clearly defined than using just one. ).

P033148/1); and also funding from the European Union Seventh Frame work Programme under grant
agreement No.603663 for the research project Preparing for Extreme And Rare events in coastal regions
(PEARL).
References
Attia, A. [2016] Advanced Sampling Methods for Solving Large-Scale Inverse Problems. Ph.D. thesis,

Department of Computer Science, Virginia Polytechnic Institute and State University.
Blum, J., Le Dimet, F.X. and Navon, I.M. [2009] Data Assimilation for Geophysical Fluids. In: Temam,

R.M. and Tribbia, J.J. (Eds.) Special Volume: Computational Methods for the Atmosphere and the
Oceans, Handbook of Numerical Analysis, 14, Elsevier, 385–441.

Brooks, R.H. and Corey, A.T. [1964] Hydraulic properties of porous media. In: Hydrology Papers.
Cacuci, D.G. [2015] Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing

exactly and efficiently first- and second-order sensitivities in large-scale linear systems: I. Computa-
tional methodology. Journal of Computational Physics, 284, 687–699.

Cacuci, D.G., Ionescu-Bujor, M. and Navon, I.M. [2005] Sensitivity and Uncertainty Analysis, Volume
II: Applications to Large-Scale Systems. CRC Press.

Che, Z., Fang, F., Percival, J., Pain, C.C., Matar, O. and Navon, I.M. [2014] An ensemble method for
sensor optimisation applied to falling liquid films. International Journal of Multiphase Flow, 67,
153–161.

Gomes, J.L.M.A., Pavlidis, D., Salinas, P., Xie, Z., Percival, J.R., Melnikova, Y., Pain, C.C. and Jackson,
M.D. [2017] A Force-Balanced Control Volume Finite Element Method for Multiphase Porous Media
Flow Modelling. International Journal for Numerical Methods in Fluids, 83, 431–445.

Heaney, C.E., Salinas, P., Fang, F., Pain, C.C. and Navon, I.M. [2018] Goal-based sensitivity maps using
time windows and ensemble perturbations. ArXiv e-prints.

Hossen, M.J., Navon, I.M. and Daescu, D.N. [2012] Effect of random perturbations on adaptive obser-
vation techniques. International Journal for Numerical Methods in Fluids, 69(1), 110–123.

ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery
3–6 September 2018, Barcelona, Spain



Ionescu-Bujor, M. and Cacuci, D.G. [2004] A Comparative Review of Sensitivity and Uncertainty Anal-
ysis of Large-Scale Systems-I: Deterministic Methods. Nuclear Science and Engineering, 147(3),
189–203.

Jackson, M.D., Percival, J.R., Mostaghimi, P., Tollit, B.S., Pavlidis, D., Pain, C.C., Gomes, J.L.M.A.,
El-Sheikh, A.H., Salinas, P., Muggeridge, A.H. and Blunt, M.J. [2015] Reservoir Modeling for Flow
Simulation by Use of Surfaces, Adaptive Unstructured Meshes, and an Overlapping-Control-Volume
Finite-Element Method. SPE Reservoir Evaluation & Engineering, 18.

Keller, J.D., Hense, A., Kornblueh, L. and Rhodin, A. [2010] On the Orthogonalization of Bred Vectors.
Weather and Forecasting, 25, 1219–1234.

Leroux, R., Chatellier, L. and David, L. [2018] Time-resolved flow reconstruction with indirect mea-
surements using regression models and Kalman filtered POD ROM. Experiments in Fluids, 59, 1–27.

Liu, J. and Kalnay, E. [2008] Estimating observation impact without adjoint model in an ensemble
Kalman filter. Quarterly Journal of the Royal Meteorological Society, 134(634), 1327–1335.

Maday, Y. and Taddei, T. [2017] Adaptive PBDW approach to state estimation: noisy observations;
user-defined update spaces. ArXiv e-prints.

Merton, S.R., Buchan, A.G., Pain, C.C. and Smedley-Stevenson, R.P. [2013] An adjoint-based method
for improving computational estimates of a functional obtained from the solution of the Boltzmann
Transport Equation. Annals of Nuclear Energy, 54, 1–10.

Merton, S.R., Smedley-Stevenson, R.P., Pain, C.C. and Buchan, A.G. [2014] Adjoint eigenvalue correc-
tion for elliptic and hyperbolic neutron transport problems. Progress in Nuclear Energy, 76, 1–16.

Nerger, L., Schulte, S. and Bunse-Gerstner, A. [2014] On the influence of model nonlinearity and local-
ization on ensemble Kalman smoothing. Quarterly Journal of the Royal Meteorological Society, 140,
2249–2259.

Power, P.W., Piggott, M.D., Fang, F., Gorman, G.J., Pain, C.C., Marshall, D.P., Goddard, A.J.H. and
Navon, I.M. [2006] Adjoint goal-based error norms for adaptive mesh ocean modelling. Ocean Mod-
elling, 15(1), 3–38.

Salinas, P., Pavlidis, D., Xie, Z., Jacquemyn, C., Melnikova, Y., Pain, C.C. and Jackson, M.D. [2017] Im-
proving the Robustness of the Control Volume Finite Element Method with Application to Multiphase
Porous Media Flow. International Journal for Numerical Methods in Fluids, 85, 235–246.

Shah, A.J. [2017] Methods for Data Assimilation for the Purpose of Forecasting in the Gulf of Cambay
(Khambhat). IJSRSET, 3, 224–228.

Shapiro, R. [1970] Smoothing, Filtering and Boundary Effects. Review of Geophysics and Space
Physics, 8, 359–387.

Wang, Z., Navon, I.M., Le Dimet, F.X. and Zou, X. [1992] The second order adjoint analysis: Theory
and applications. Meteorology and Atmospheric Physics, 50(1), 3–20.

ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery
3–6 September 2018, Barcelona, Spain


