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Abstract

A brief computational description of the Lin-Rood shallow water finite volume (SWfv) model is
provided. Along side, salient features of the model are described. 4D-VAR data assimilation
experiments using this model provided us avenues to study model error introduced by different
high order advection schemes (such as van Leer and PPM) in the framework of 4D-variational data
assimilation. This motivated us to derive the tangent linear model (TLM) and the adjoint model
of the SWfv model. Details of the development of these models along with detailed description and
flowcharts of the subroutines and results are provided in this technical document.

1 Introduction

Numerical weather prediction and climate models have traditionally been based on either finite
differences or spectral methods. Semi-implicit, semi-Lagrangian methods are known to be compu-
tationally efficient. Monotonicity preserving conservative difference schemes, such as van Leer and
PPM methods, (which are used to model fluid flows that involve shocks) are mass conserving and
more consistent with the physical process that we desire to simulate. The SWfv model of S.-J. Lin
and R. Rood is a semi-implicit, semi-Lagrangian flux-form conserving solver of the shallow water
equations on the sphere, see [1], [2], [3] and [4] for additional details.

The shallow water equations model the flow of a thin layer of fluid in the atmosphere and the
general circulation models couple such shallow water models vertically, using pressure as the ver-
tical coordinate, see [5]. The (shallow water) finite volume dynamical core is used at the NASA
Data Assimilation Office (DAO), now Global Modeling and Assimilation Office (GMAO) for nu-
merical weather prediction and climate simulations, the physics has been added to the model by a
cooperative effort between GMAO and National Center for Atmospheric Research (NCAR).

Here we deal with the core of the model, comprising of the shallow water equations model only. It is
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to be noted that future efforts to use the full physics 3-D finite volume model for data assimilation
requires both the TLM and adjoint of the dynamical core to be developed. Also, our effort is
entirely independent of those underway at GMAO.

2 Brief description of the Lin-Rood SWfv model

The SWfv model integrates the familiar shallow water equations on the sphere,

∂h

∂t
+∇ · (Vh) = 0 (1)

∂u

∂t
= Ωv − 1

a cosθ

∂

∂λ
[κ + ϕ] (2)

∂v

∂t
= −Ωu− 1

a

∂

∂θ
[κ + ϕ] (3)

where h represents the fluid height (above the surface height), u and v represent the zonal and
meridional wind velocities respectively, ω is the angular velocity of the earth, a is the radius of the
earth, θ is the latitude. λ is the longitude.

The free surface potential is given by
ϕ = ϕs + g h,

κ = 1
2V ·V is the kinetic energy, and Ω = 2ωsinθ +∇X V is the absolute vorticity.

The computation proceeds with a combination of the C-grid and D-grid. In the first half of the
time step, the advective winds are updated on the C-grid, and in the other half of the time step,
the prognostic variables are updated on the D-grid. For the advection scheme, one can use either
first order differencing, Piece-Wise Parabolic (PPM), and van Leer schemes (either unconstrained
or constrained). The poles have been treated in the same fashion as that in [6] using a polar Fourier
filter.

In particular, it is to be noted that the algorithm conserves total mass for all the time of the
numerical integration and, after a 60 day integration of the model, the loss in total energy is
approximately lost by 0.1%, and the loss in total enstrophy is 1%. More details are available in
Lin and Rood, 1997[1]. This is an excellent conservation of integral invariants of the shallow water
equations.

For our studies, we choose a resolution of 128 X 64 cells along the longitude, λ and latitude, θ (2.8o

X 2.8o) directions respectively, and a time step of 600 seconds. The wavenumber 4 Rossby-Haurwitz
initial condition test case has been used[8]. Fig. 3 shows the initial height field, and we show the
DAY-1 height field in fig. 4, obtained using the unconstrained van Leer on C-grid and monotonicity
preserving PPM on the D-grid.

Appendix A describes the flow of variables and a flowchart of the forward model.
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3 TLM of the SWfv model

We have used TAMC [7] and hand intervention to generate the TLM. Briefly, each line of the TLM
is generated by linearizing the non-linear statements within the forward model, further details
about writing a TLM can be found in [9].

To obtain initial conditions for the TLM, perturbations were taken as random fields over all the
model’ s grid points with the magnitude of the winds ranging from -3 to 3 ms−1 and height field
from -300 to 300 m2s−2.

If we consider a state vector x, its perturbation will be denoted by δx (these perturbations, provide
the initial conditions to the TLM).

Perturbations for the velocity components have been generated as,

δx = α ∗ 6 ∗ [RAND()− 1
2
], (4)

where x = u, v; α ranges from 1.0 to 10−10, and RAND() is the DOUBLE PRECISION pseudo
random number generator provided by FORTRAN90 compiler on SGI Origin 200, such that the
pseudo random numbers ∈ [0, 1].

In a similar fashion, perturbations for the height field are obtained as,

δh = α ∗ 600 ∗ [RAND()− 1
2
]. (5)

3.1 Verification of the TLM

Let x(t0) be integrated to a state xn (here, the model state is a vector of dimension n X 1, where
n is equal to three times the total number of grid points, mathematically, it can be written as
xT = [u, v, h]) using a nonlinear model M, i.e.,

xn = M [x(t0)],

and let
x

′n = M [x(t0) + δx(t0)],

and finally, let
4x = x

′n − xn = M [x(t0) + δx(t0)] − M [x(t0)].

Therefore, Taylor expansion around model state, x(t0) yields

4x = M [x(t0)] +R[δx(t0)] + O([δx(t0)]
2)−M [x(t0)],

where R is the Jacobian of M, with respect to the model state, thus it is the TLM.
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Hence,
4x = R[δx(t0)] + O([δx(t0)]

2).

Independently the TLM, L can be integrated to generate,

δxn = L[δx(t0)].

Let us consider the following two ratios,

f(α) =
|| 4 x||
||δxn||

,

and
r(α) =

|| 4 x|| − ||δxn||
||δxn||

.

Since 4x must be very well approximated by the result of integration of our TLM, δxn, which
implies that as α decreases, f(α) must tend to 1.0 and r(α) (see equations 4 and 5) must tend
to 0%. Indeed integration of our TLM for 1 day (the validity of the TLM for the shallow water
equations model is at-most 24-36 hours) indicates such a behavior as shown by figure 5. For
integrating the TLM, we have used the same value of the time-step as was used to integrate the
non-linear model.

Remark :

The norms in the above equations are weighted (total) energy norms, defined by, W which has
been chosen to be a block diagonal matrix, such that the velocity components are weighted by the
unit matrix, I, and the height field by W1, such that W1 = w1 ∗ I.

w1 = g ∗ [
1

Nx · Ny

∑
i,j

|hi,j |]−1,

where Nx = 128, and Ny = 65 cells, and acceleration due to gravity, g ≈ 9.81. Infact if h,u, and v
are respectively the vectors of height and velocity fields, then the weighted norm,

||x||2w = w1||h||2 + ||u||2 + ||v||2,

which is proportional to the total energy. In the above equation, ||x||2 =
∑

i,j x2
i,j .

Figures 6 and 7 provide the flowchart of the TLM (all the linearized variables have the same
nomenclature as their non-linear counterparts, and have ”g ” preceding the variable, for e.g., if z
is a non-linear variable, the corresponding linearized variable would be g z).

4 Adjoint Model

It may be of interest that to our knowledge we have not come across an adjoint model that is
based on flux-form conserving advection schemes. Also transposing the statements, in other words,
deriving the adjoint statements for the PPM and van Leer advection schemes has been laborious
and time consuming.
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The adjoint model satisfies two properties. It is the transpose of the TLM and also it provides us
the means to obtain the gradient of a cost functional (which uses the prognostic variables of the
model) with respect to the model initial conditions.

4.1 Transpose Check

This test checks whether the TLM and the adjoint model are transpose of each other. Let Q
represent the input to the linearized model, A be the linearization operator. Then AT represents
the adjoint operator. Hence AQ is the output of the linearized model, which leads to the following
identity:

(AQ)T (AQ) = QT [AT (AQ)]. (6)

It is obvious from the above equation that the left hand side (lhs) is entirely from the TLM, whereas
the right hand side (rhs) has a contribution from the adjoint model.

We have checked our adjoint model for the satisfaction of the above property for all the model
subroutines. The above equality is satisfied up-to 12 decimal digits for all of them.

4.2 Gradient check

This check is based on a Taylor series expansion of the cost functional, accurate up to first order,

J (x + ε∇J ) = J (x) + ε∇J T∇J + O(ε2), (7)

where ε is a scalar, and J is the cost functional based upon the u, v, h fields.

Therefore, as ε → 0, we expect that

γ(ε) =
J (x + ε∇J )− J (x)

ε||∇J ||2
−→ 1, (8)

where the euclidean norm is used for evaluating ||.||2. Also we have used the weighted energy norm
described in section 3.1 to evaluate the above norm.

In Figures 8- 12, we provide the verification of the equation (8) for various advection schemes using
both norms. Hence, our adjoint model indeed provides us the gradient of the cost functional J
with respect to the initial conditions.

Figures 13 and 14 provides a flowchart of the adjoint model (all the adjoint variables have their
names preceeded by ”ad”, for e.g., if x is a non-linear variable, then the corresponding adjoint
variable would be adx); the final values of the adjoint variables provide us the gradient of the cost
functional with respect to the initial condition.
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Efforts to use the adjoint model for various data assimilation and mathematical applications are
underway. We expect to submit for publication such studies shortly.
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Appendix A

1. Declare all the integer constants: (all of these are to be input)

IMR-resolution of grid along longitudinal direction (inside rslv.com),

JMR-resolution of grid along latitudinal direction (inside rslv.com),

n time steps- total number of time steps, for e.g., at a resolution of 128 X 64 cells, 600
seconds time step, for a 1 day run, n time steps = 144,

IREAD and IOUT- input and output files respectively,

IORD and JORD- advection scheme on D-grid, along the longitude and latitudes respec-
tively,

ICD and JCD- advection scheme on C-grid, along the longitude and latitudes respectively,

NDT- time step in seconds, NHT- time step for C-grid, NHT= NDT/2.

2. Declare all the geometric constants and variables: (these are calculated within the driver:
drv.f or by subroutine, calling setrig.f)

PI - π, Grav-g, acceleration due to gravity, AE- radius of the earth, OMEGA-angular
velocity of the earth,

DP- increment along latitude, ∆θ, DL- increment along longitude, ∆λ,

RDY = 1
AE∗DP , RCAP, ACAP, RDX- scaled polar cap areas (see drv.f)

UMAX- magnitude of maximum velocity, that is expected ( a suitable upper bound),

arrays, SINE, COSP, SINP- all of length JNP, all are calculated inside subroutine setrig.f,
they store sines and cosines of the latitudes.

arrays SINLON, COSLON- both of length IMR, are calculated inside drv.f, they store
sines and cosines of the longitudes.

hs- array of dimension (IMR,JNP), surface height field, it is a constant (based on bottom
topography, input from either IREAD or appropriate initial conditions),

f0 and fc- arrays of dimension (IMR,JNP), coriolis parameters either at cell centers or
cell corners (constants, calculated inside drv.f)

3. Time integrated variables:

u- array of dimension (IMR,JNP), U-wind, on D-grid,
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v- array of dimension (IMR,JNP), V-wind, on D-grid,

h- array of dimension (IMR,JNP), height field, is not updated and neither it is used on
C-grid (instead hm is used as a proxy for h on the C-grid),

vort- array of dimension (IMR,JNP), vorticity field (not a prognostic variable), initial
value of the vorticity is due to the coriolis force.

uc, vc- arrays of dimension (IMR,JNP) are the U- and V- winds on the C-grid,

ua, va- arrays of dimension (IMR,JNP) are the U- and V- winds on the A-grid,

4. Subroutines called by the driver (drv.f):

SUBROUTINE setrig- to obtain the values of DP,DL,COSP,COSE,SINP,SINE using val-
ues of IMR and JNP,

If the initial conditions (u,v,h) are read from a file, IREAD, then they are to be read on
the A-grid, these variables are then interpolated to D-grid using SUBROUTINE atod.

SUBROUTINE call sw uses all the constants and parameters and, the initial conditions
to integrate the variables (u,v,h,vort) forward in time up-to the n time steps.

SUBROUTINE swout is used to ouput the variables in binary format (to be visualized
using sw.ctl, for GrADS), the output file is controlled by the integer IOUT.

5. SUBROUTINE call sw:

The input to SUBROUTINE call sw are all the constants, parameters and initial values
of all dependent variables (from initial condition). Call sw updates these initial values of
u, v, h, vort to the final time of integration, in the following manner,

obtains the array hm, which serves as a proxy to h within the scope of the SUBROUTINE
ccore,

filters hm using the polar Fourier filter, by calling SUBROUTINE pft0 (the SUBROU-
TINES within filter.f serve as an interface between the FFT routines of ecmfft.f and call sw.f;
pft0 is one of the subroutines inside filter.f),

for the first half of the time step, obtain the values of the mid-time level prognostic winds:
UC and VC on the C-grid, variables u, v, h are not changed after a call to ccore; only UC,
VC and vort are updated,

in the other half of the time step, calls the SUBROUTINE dcore, which uses the (above
updated values of) UC, VC and vort to update u, v, h, vort on the D-grid; SUBROUTINE
dcore does not change values of UC and VC.

Figures 1 and 2 provide a flow chart of the forward model.
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Declare all the variables and initialize all the constants 

Call SUBROUTINE setrig

Calculate grid dependent
            parameters

Initialize all dependent variables to zero

Calculate coriolis terms and the initial vorticitity

Obtain the initial condition: u,v,h,hs.

Output the initial condition, by call to 
               SUBROUTINE swout

Start

Figure 1: Flow chart of the forward model
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Inside SUBROUTINE call_sw

Obtain hm

Filter hm by call to SUBROUTINE pft0

call SUBROUTINE ccore

call SUBROUTINE dcore

Do
until 
final
time 
step

Output the final values of u,v,h, by calling 
            SUBROUTINE swout

End

Figure 2: Flow chart of the forward model (continued)
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Figure 3: Initial height field
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Figure 4: DAY-1 height field
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Figure 5: Verification of the TLM
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Declare all the variables and initialize all the constants 

Call SUBROUTINE setrig

Calculate grid dependent
            parameters

Initialize all dependent variables to zero

Obtain the initial condition: g_u,g_v,
                  g_h,g_hs.

Output the initial condition, by call to 
               SUBROUTINE g_swout

Start

Figure 6: Flow chart of the TLM
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Inside SUBROUTINE call_g_sw

Obtain g_hm

Filter g_hm by calling SUBROUTINE pft0

call SUBROUTINE g_ccore

call SUBROUTINE g_dcore

Do
until
final 
time 
step

Output the final values of g_u,g_v,g_h
              by calling g_swout

End

Figure 7: Flow chart of the TLM (continued)
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Figure 8: Gradient verification for first order advection scheme
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Figure 9: Gradient verification for unconstrained van Leer advection scheme
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Figure 10: Gradient verification for constrained van Leer advection scheme
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Figure 11: Gradient verification for monotonically constrained PPM advection scheme
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Figure 12: Gradient verification for unconstrained PPM advection scheme
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Declare all the variables and initialize all the constants 

Call SUBROUTINE setrig

Calculate grid dependent
            parameters

Initialize all dependent (forward and 
backward) variables to zero

Obtain the initial condition for the 
forward variables: u,v,h,hs.
         

Start

Initialize coriolis
and vorticity

Call SUBROUTINE gradtest to integrate forward
and backwards in time.

Figure 13: Flow chart of the adjoint model
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Inside SUBROUTINE gradtest

Obtain hm

Filter hm by calling SUBROUTINE pft0

call SUBROUTINE ccore

call SUBROUTINE dcore

Do
until
final 
time 
step

Store forward variables: uc, vc, u, v, h.

Store forward variables: u,v,h after each time step

Evaluate the cost functional

Obtain initial values of adjoint variables:adu,adv,adh

use
here

Use the stored forward variables and, get hm and filter it

Call SUBROUTINE addcore

Call SUBROUTINE adccore

Filter adhm and use it to obtain adh

Do
until
initial
time
step

Stop

Figure 14: Flow chart of the adjoint model(continued)
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