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1. Abstract

This article presents a new reduced order model based upon proper orthogonal de-
composition (POD) for solving the Navier-Stokes equations. The novelty of the method
lies in its treatment of the equation’s non-linear operator, for which a new method is
proposed that provides accurate simulations within an efficient framework. The method
itself is a hybrid of two existing approaches that have already been developed to treat
non-linear operators within reduced order models. The first of these approaches is
one that approximates non-linear operators through quadratic expansions, and this is
then blended within a second technique known as the Discrete Empirical Interpolation
Method (DEIM). The method proposed applies the quadratic expansion to provide a
first approximation of the non-linear operator, and DEIM is then used as a corrector to
improve its representation. In addition to the treatment of the non-linear operator the
POD model is stabilized using a Petrov-Galerkin method. This adds artificial dissipa-
tion to the solution of the reduced order model which is necessary to avoid spurious
oscillations and unstable solutions.

A demonstration of the capabilities of this new approach is provided by simulating
a flow past a cylinder and gyre problems. Comparisons are made with other treat-
ments of non-linear operators, and these show the new method to provide significant
improvements in the solution’s accuracy.
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2. Introduction

Reduced order models (ROMs) have become important to many fields of physics
as they offer the potential to simulate dynamical systems with substantially increased
computation efficiency in comparison to traditional techniques. Among the model re-
duction techniques, the proper orthogonal decomposition (POD) method has proven
to be an efficient means of deriving the reduced basis for high-dimensional nonlinear
flow systems. The POD method and variants of it have been successfully applied to
a number of research fields. In signal analysis and pattern recognition it is known as
Karhunen-Love method[1], in statistics it is referred to as principal component analysis
(PCA)[2], and in geophysical fluid dynamics and meteorology it is termed empirical
orthogonal functions (EOF) [3, 4]. The POD method has since been applied to ocean
models in Cao et al. [5], Vermeulen and Heemink [6] and also shallow water equations,
this includes the work of Daescu and Navon [7], Chen et al. [8, 9], Altaf et al. [10], Du
et al[11], as well as Fang et al. [12].

In this paper we develop a reduced order model for the reduction in the dimension
of a Navier-Stokes equations using the POD approach. The equations are first dis-
cretised via a finite element Bubnov Galerkin discretisation of the Fluidity model[13]
and the POD model is generated through the method of snapshots. In this approach,
solutions of the full model are recorded (as a sequence of snapshots), and from this
data appropriate basis functions are formed that optimally represent the problem. This
method itself is quite standard and has been applied successfully throughout the lit-
erature. However, due to the high nonlinearities of the 3-D Bubnov-Galerkin Navier
Stokes equation, the computational complexity of the reduced model still depends on
dimension of the full Navier-Stokes discretisation [14]. To mitigate this problem, one
approach is to apply the discrete empirical interpolation method (DEIM) to address
the reduction of the nonlinear components and reduce the computational complex-
ity by implementing it with the POD/DEIM method. DEIM is a discrete variant of
the empirical interpolation method (EIM)[15] proposed by Barrault et al. for con-
structing approximation of a non-affine parameterized function, which was proposed
in the context of reduced-basis model order reduction discretization of nonlinear par-
tial differential equations. DEIM methods have been demonstrated to be able to obtain
factors of 10-100 speed up in CPU time over the original non-reduced model. The
economy in CPU time is proportional to the dimension of the reduced order model
(see for instance Stefanescu and Navon, 2013[16]) and therefore to the number of
DEIM points. The application was suggested and analysed by Chaturantabut and
Sorensen[17, 18, 19] for application to POD in the framework of Discrete Empirical
Interpolation Method (DEIM). Other important contributions to the Empirical Interpo-
lation Method (EIM) include that by Barrault et al.[15] and the group of Prof Anthony
Patera at MIT related to another model reduction approach namely the reduced basis
approach [20, 21, 22, 23].

Regarding the use of hyper-reduced order models i.e. DEIM like approaches, they
presented a strategy for choosing the optimal set of sampling points at the discrete
level. The algorithm consists of selecting the sampling components that minimize the
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distance between the recovered reduced basis coefficients and the optimal coefficients
(which are obtained by projecting the snapshots onto the reduced order subspace). The
main advantage of their algorithm is that only values at the nodes of the finite element
mesh are required for the gappy reconstruction, but these sampling components can
be guaranteed to be optimal. This results in a strategy very convenient for the recon-
struction of non-smooth functions, like the right-hand-side of the system of equations
arising from the reduced order strategy for the incompressible Navier-Stokes equations
with the formulation used herein.

An alternative treatment of the non-linear terms of PDEs is through the quadratic
expansion method [11]. This method is suitable for the treatment of the discretised
quadratic non-linear operators as the method represents them through expansions of
precomputed matrices. Critically, as these matrices are precomputed they can easily
be transformed into reduced equation sets, however the method’s drawback is that its
accuracy will decay with the less quadratic nature of the operator.

Both the novel quadratic expansion method and novel DEIM have been developed
in order to maintain the ROM’s efficiency. In this article a new method is proposed
which is a new hybrid of both schemes that we call residual DEIM. It is based on ini-
tially applying the quadratic expansion method to the non-linear terms and then apply-
ing the DEIM approach to resolve the residual between it and the full model. That is,
the DEIM is used to absorb the remaining errors left over from the quadratic expansion
approach. This approach means that the method can still exactly represent discrete
quadratic non-linearities - unlike DEIM - but can also be used for highly non-linear
discrete systems - unlike the quadratic expansion approach. In addition to this a non-
linear Petrov-Galerkin discretization [24, 12] is used to form the ROM and stabilize
the reduced system of equations, which would otherwise become unstable especially
for moderate/high Reynolds number flows. This introduces additional non-linearities
and thus the residual DEIM method is well suited to dealing with these potentially
highly non-linear discrete systems of equations, see, for example, Baiges[25] for simi-
lar approaches. The paper demonstrates the superior accuracy of residual DEIM to the
quadratic expansion method.

The structure of the paper is as follows. Section 3 presents the governing equations,
followed by the description of the finite element Bubnov-Galerkin discretisation of the
Navier Stokes equations. Section 4 presents the derivation of the POD model reduc-
tion and re-formulation of the Navier Stokes equations using the method of snapshots.
The section concludes with the stabilization of the POD model reduction by the intro-
duction of an adequately chosen dissipation term. Section 5 focuses on the non-linear
operator treatment of the Navier-Stokes equations and describes the methods of DEIM
and quadratic expansion. This section then presents the mixed residual DEIM formu-
lation. This is based on a DEIM representation of a residual term that is left over from
first applying a quadratic representation of the non-linear operator. Section 6 illustrates
the methodology derived via two numerical examples. This is based on two test prob-
lems where the flow past a cylinder and flow within a gyre are resolved. Finally in
section 7 conclusions are presented and the novelty of the present manuscript is duly
summarized and illuminated.
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3. Governing Equations

This article considers the three dimensional non-hydrostatic Navier-Stokes equations
describing the conservation of mass and momentum of a fluid,

∇ · u = 0, (1)
∂u
∂t

+ u · ∇u + f k × u = −∇p + ∇ · τ. (2)

In these equations the terms u ≡ (ux, uy, uz)T denote the velocity vector, p the pertur-
bation pressure (p := p/ρ0, ρ0 is the constant reference density) and f the Coriolis
inertial force. The stress tensor τ included in the diffusion term represents the viscous
forces, and this is defined in terms of a deformation rate tensor S which is given as,

τi j = 2µi jS i j, S i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
−

1
3

3∑
k=1

∂uk

∂xk
, i, j = {x, y, z}. (3)

In this expression µ denotes the kinematic viscosity and it is assumed that there is no
summation over repeated indices. The horizontal (µxx, µyy) and vertical (µzz) kinematic
viscosities are assumed to take constant values and define the off diagonal components
of τ in equation 3 by µi j = (µiiµ j j)1/2. For barotropic flow, the pressure p consists
of hydrostatic ph(z) and non-hydrostatic pnh(x, y, z, t) components. The hydrostatic
component of pressure balances the constant buoyancy force exactly, and so both terms
are neglected at this stage. The momentum equation can be expressed more fully as,

At
∂u
∂t

+ Ax(u)
∂u
∂x

+ Ay(u)
∂u
∂y

+ Az(u)
∂u
∂z

+ f k × u + ∇p − ∇ · τ = 0, (4)

where the time term At and streaming operators Ax, Ay and Az denote diagonal matrices
that are given by,

At =

 1 0 0
0 1 0
0 0 1

 , (5)

and

Ax =

ux 0 0
0 ux 0
0 0 ux

 , Ay =

uy 0 0
0 uy 0
0 0 uy

 , Az =

uz 0 0
0 uz 0
0 0 uz

 , (6)

respectively.
In this article a finite element Bubnov-Galerkin discretisation of the Navier Stokes

equations [13] is employed. In this formulation the velocity components and pressure
terms of the solution are represented by the expansions,

ux =

Fu∑
j

N jux j, uy =

Fu∑
j

N juy j, uz =

Fu∑
j

N juz j, (7)

and

p =

Fp∑
j

M j p j, (8)
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respectively, where N j and M j denote the finite element basis functions. To solve for
the coefficients u. j and p j the discretised equations are formed by weighting equations
1 and 2 by Mi and Ni, respectively, and integrating over space,∫

v
Mi∇ · u dv = 0, (9)∫

v
Ni
∂u
∂t

+ u · ∇u + f k × u dv = −∇p + ∇ · τ. (10)

When the approximations 7 and 8 are inserted into these equations the following sys-
tems are formed,

Ctu = 0,

N
∂u
∂t

+ A(u)u + Ku + Cp = s. (11)

In these equations the matrix C denotes the pressure gradient matrix, N is the mass
matrix involving the finite element basis functions Ni, A(u) is the solution dependent
discretised streaming operator, K is the matrix related to the rest of the linear terms of
velocity, and s is the vector accounting for the forces acting upon the solution. In the
momentum equation the time term is treated using the θ-method to yield,

N
un+1 − un

∆t
+ A(un)un+θ + Kun+θ + Cpn+1 = 0, (12)

where θ ∈ [0, 1] and the terms un+θ is given by,

un+θ = θun+1 + (1 − θ)un. (13)

The full system of equations can now be grouped together to form the general linear
system for each time step,[

B C
CT 0

] [
un+1

pn+1

]
=

[
B
′

0
0 0

] [
un

pn

]
+

[
s
0

]
, (14)

where B and B
′

are matrices of similar form but differ through the choice of θ. In this
system the matrix B is non-linear as it depends on the solution u. On the RHS, the
vector [s, 0]T contains the discretised sources and the terms within the matrix system
account for the solution from the previous time step.

Alternative but identical expressions of the above system of equations can be writ-
ten in order to help develop the methods derived in the following sections. One expres-
sion is derived by condensing the expression into the single system of equations given
by,

P(y)yn+1 = Q(y)yn + s, (15)

where yn denotes the full solution vector at time step n, i.e. the concatenation of all
velocity and pressure components. Another representation of this equation is to re-
write system 15 with separated linear (L superscript) and non-linear (N superscript)
terms,

(PL + PN)yn+1 = (QL + QN)yn + s. (16)

The following theory will be built upon one of these identical expressions of the dis-
cretised Navier-Stokes equations.
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4. POD method for the Navier-Stokes Equations

In the following subsections the POD method is described together with its applica-
tion to the modelling of the Navier-Stokes equation and its stabilisation. In the theory
that follows in this and the next section the notation becomes quite involved and so
table 1 has been included in order to make clear the variable definition.

Variable Definition
S Total number of arbitrary snapshot set.
S u Total number of snapshot for velocity components.
S p Total number of snapshot for pressure components.
F Total number of nodes on arbitrary finite element discretisation.
Fu Total number of nodes on finite element discretisation of the velocity.
Fp Total number of nodes on finite element discretisation of the pressure.
P Total function in an arbitrary POD basis set.
Pu Total number of functions in the velocity POD basis set.
Pp Total number of functions in the pressure POD basis set.
Φ General POD basis functions.
Φp Standard POD basis functions.
Φd DEIM POD basis functions.

Table 1: The table lists the variables and their definition used in this article.

4.1. The POD Model

In the POD formulation a new set of basis functions are constructed from a collec-
tion of snapshots that are taken at a number of time instances of the full model solution.
That is, the model described in equation 14 is solved and snapshots of the solution are
taken as it evolves through time. In the formulation presented here snapshots of each
component of the velocity vector (ux, uy, uz) and pressure p are recorded individually.
Each snapshot is a vector of size Fu or Fp (depending on whether it is of a velocity
component of pressure term) and holds the values of the respective solution compo-
nent at the nodes of the finite element mesh. For each direction or pressure component,
these snapshots are collated together over all time instances to form four separate ma-
tricesUx,Uy,Uz andUp (where the superscripts denote direction or pressure). From
here on each snapshot matrix will be treated separately but in an identical manner, and
so the superscripts are omitted and the details are given for a general snapshot matrix
U.

The dimensions of U is F × S , where F denotes the general number of nodes on
the finite element mesh and S the total number of snapshots (this will be of value S u

and S p for the velocity and pressure, respectively). Once the full set of snapshots have
been collated, it is then custom to remove from each snapshot the mean value of all
snapshots. That is, a modified snapshot matrixU is generated by,

Uk,i = Uk,i − Φi, i ∈ {1, 2, . . . , S }, (17)
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where the vector Φ (of size F) holds the average value of all snapshot on each node i:

Φi =
1

Nk

Nk∑
j=1

U j,i, i ∈ {1, 2, . . . , F}. (18)

A reduced-order basis set of functions {Φu} are now obtained by means of the
Proper Orthogonal Decomposition method. This involves performing a Singular Value
Decomposition (SVD) of the snapshot matrixU given by the form,

U = UΣVT , (19)

The terms U and V are unitary matrices of dimension F × F and S × S , respectively,
and Σ is a diagonal matrix of size F × S . The non zero values of Σ are the singular
values of U, and these are assumed to be listed in order of their magnitude. It can be
shown [17] that the POD functions can be defined as the column vectors of the matrix
U,

Φ j = U:, j, for j ∈ {1, 2 . . . S }, (20)

and the optimal basis set of size P are the functions corresponding to the largest P
singular values (i.e. the first P columns of U). These functions are optimal in the sense
that no other rank P set of basis functions can be closer to the snapshot matrixU in the
Frobenius norm. That is, if one used only the first P singular values in equation 20 (and
so the first P vectors in U), the resulting matrix is the closest possible (in the relevant
norm) to the matrix U. Another relevant property is that due to U being unitary, the
POD vectors are orthonormal.

To efficiently construct the POD vectors defined by U one of two approaches may
be taken. Depending on the dimensions of U a reduced symmetric linear system can
be formed by the pre or post multiplication of U by its transpose. If the number of
finite element nodes are smaller than the number of snapshots (F << S ), then post
multiplying byU

T
results in an F × F system with the property,

UU
T

= UΛ2UT . (21)

This enables one to perform an eigenvalue decomposition on the system 21 to obtain
U directly. Alternatively, if the number of snapshots is smaller than the number finite
element functions (S << F), the pre multiplication ofU byU

T
results in,

U
T
U = VT Λ2V (22)

In this case one can perform the eigenvalue decomposition of system 22 to obtain the
matrix V and singular values Λ. Once these are available the vectors of U can be
formed by substituting into system 19.

As mentioned previously, only a small number of P POD functions are used in the
reduced order model. Although these POD functions provide an optimal representation
of the snapshot matrix, some information is inevitably lost. This loss of information
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can be quantified by the following ratio, which is usually termed energy, of the squared
singular values,

I =

∑P
i=1 Λ2

i,i∑S
i=1 Λ2

i,i

. (23)

The value of I will tend to 1 as P is increased to the value S , and so this value can be
used to provided an appropriate truncation point of the POD expansion set. Having set
the size P, the P POD functions can now be used to form a basis that represents the
snapshot data set. That is, a vector u of size F can be represented by the expansion,

u = Φ +

P∑
j

α jΦ j, (24)

where α j denote the expansion coefficients.

4.2. Forming the POD formulation of the Navier Stokes Equations
To form the reduced order system of the Navier Stokes equations, the velocity and

pressure components are expanded over their respective POD basis functions. Their
finite element solution variables (equation 14) are re-written in the form of equation 24
to give,

un
x = Φ

x
+

Pu∑
j

αx,n
j Φx

j , un
y = Φ

y
+

Pu∑
j

α
y,n
j Φ

y
j, un

z = Φ
z
+

Pu∑
j

αz,n
j Φz

j, (25)

for the velocities and,

pn = Φ
p

+

Pp∑
j

α
p,n
j Φ

p
j , (26)

for the pressure. The POD expansion sizes of the velocity and pressure terms are
denoted by Pu and Pp respectively, and the α terms denote the expansion coefficients.
These expansions can be represented in the following matrix vector form,

un = Φ
x

+ Φxαx,n, vn = Φ
y

+ Φyαy,n, wn = Φ
z
+ Φzαz,n, pn = Φ

p
+ Φpαp,n, (27)

where Φx, Φy and Φz denote matrices of size Fu × Pu, Φp is a matrix of size Fp × Pp,
Φ

x
, Φ

y
and Φ

z
are vectors of size Fu and Φ

p
is a vector is a vector of size Fp.

If the solution variables are also represented by a single vector, as in equation 15,
then the reduced order representation can also read as,

yn =


ux

uy

uz

p


n

= Φ
y

+ Φyαy,n =


Φ

x

Φ
y

Φ
z

Φ
p

 +


Φx 0 0 0
0 Φy 0 0
0 0 Φz 0
0 0 0 Φp



αx,n

αy,n

αz,n

αp,n

 . (28)

This is an identical expression to those of equation 27 since the terms Φ
y

and Φy are
formed from the combination of all the POD matrices and vectors. The coefficients
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in the discretised system 14 (or 15) are then replaced by their POD representation of
equation 27 (or 28), and the resulting system is pre-multiplied by the transpose of the
POD matrices in order to form the reduced system. For now we work on the equation
in the form of 14 and the reduced system reads as,[

BPOD CPOD

(CPOD)T 0

] [
αu,n+1

αp,n+1

]
=

[
B
′POD 0
0 0

] [
αu,n

αp,t

]
−

[
su

sp

]
+

[
sPOD

0

]
. (29)

It can be seen that the system retains the same structure of the original full system
in equation 14. The reduced matrix BPOD is of size 3Pu × 3Pu and can be written as
BPOD = (Φu)T BΦu (with a similar expression of B

′POD) where,

Φu =

Φ
x 0 0

0 Φy 0
0 0 Φz

 . (30)

Similarly the matrix CPOD is a reduced system of size 3Pu × Pp and this is given by
CPOD = (Φu)T CΦp. The reduced source terms is a vector of size Pu and is formulated
as sPOD = (Φu)T s. The additional source terms in equation 29 result from contribution
of the average snapshot vectors, and these are given by,[

su

sp

]
=

(Φu)T BΦ
u

+ (Φu)T CΦ
p

(Φp)T CΦ
u

 . (31)

4.3. Stabilisation of the POD Model

The POD model described in equation 29 will often require an additional modifi-
cation through a stabilisation term to ensure it remains stable and free from unphysical
oscillations. The full details of the stabilisation technique is described in full in [24] ,
and so only the main concepts are reviewed here. Stabilisation is added to the model
though an additional diffusion operator. It is included into the LHS matrix of equation
29 by adding to it the block diagonal diffusion matrix,

D =


Dx 0 0 0
0 Dy 0 0
0 0 Dz 0
0 0 0 Dp

 . (32)

This matrix is size (3Pu + Pp) × (3Pu + Pp) and is composed of the three sub-matrices,

Dxi j =

∫
V
∇Φx

i µx∇Φx
j dV, (33)

Dyi j =

∫
V
∇Φ

y
i µy∇Φ

y
j dV, (34)

Dzi j =

∫
V
∇Φz

iµz∇Φz
j dV, (35)

(36)
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that are of size Pu × Pu and the matrix,

Dpi j =

∫
V
∇Φ

p
i µp∇Φ

p
j dV, (37)

which is of size Pp × Pp. Each matrix places diffusion in their respective velocity or
pressure terms, and the amount of diffusion is governed by the coefficients µ. The
calculation of the diffusion coefficients are detailed in [24] and so are omitted here.
However it is important to stress that its inclusion introduces strong non-quadratic non-
linearities to the formulation that must be resolved by the following reduced order
schemes. In this work it was not necessary to stabilise the pressure and so the diffusion
coefficient relating to it has been set to zero.

5. Efficient treatments of the Non-linear operators

In the following sections a review of the current approaches to resolving the non-
linear operators are presented. This is then followed by the details of the proposed
residual DEIM method.

5.1. DEIM treatment of the Non-Linear Operator

This section presents the application of DEIM which will be used in the following
sections to resolve the non-linear terms of the Navier-Stokes equations within an effi-
cient reduced order model. For now the method is described in the general sense for
an arbitrary differential equation that is expressed in terms of its linear (L) and non-
linear (N) components. When discretised through a finite element representation the
following model is formed,

dy
dt

(t) = Ly(t) + N(y(t)), A ∈ RF×F . (38)

In this equation the new solution variables y(t) = [y1(t), y2(t), .., yF(t)] ∈ RF define the
solution’s values over the F nodes of the finite element mesh. As the term N is a non-
linear function it requires y(t) to be evaluated component wise at each time instance t,
i.e. N = [N(y1(t)), ..,N(yF(t))]. It is this re-evaluation that makes the reduced order
modelling inefficient if the standard POD approach (as described in the previous sec-
tion) is applied. This is because if the nonlinear term is represented through a POD
model, i.e. it is pre and post multiplied by ΦT

p and Φp respectively (the subscript p
denotes standard POD functions), the resulting reduced space formulation will read as,

Ñ(ỹ) = ΦT
p︸︷︷︸

P×F

N(Φpỹ(t))︸      ︷︷      ︸
F×1

= ΦT
p︸︷︷︸

P×F

f (t)︸︷︷︸
F×1

. (39)

This expression shows that even in the reduced space, the model requires an operation
with complexity of order F at each time step. The model is therefore no longer efficient
to compute, i.e. it is the same order of the non-reduced model, and so an alternative
approach must be applied.
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The DEIM approach is one such method used to treat the non linear terms of PDEs
within a reduced order framework. The approach is to use a separate POD model to
construct a basis of the space spanned by the non-linear components of the equation.
That is, a snapshot matrixUd of the non-linear terms is constructed by,

Ud = {N(y1),N(y2), . . . ,N(yn)}, (40)

from which a POD model is built using the approach described in the previous section.
Using Φd to denote this POD basis set, which is analogous to that in equation 20, the
term f (t) in equation 39 can be represented by,

f (t) = Φdc(t). (41)

The dimension of Φd is of F×D, where D denotes the size of the reduced representation
of the nonlinear terms (D << F) and c(t) is a coefficient vector of size D that has yet
to be determined. If one now inserts 41 into 39 the following results,

Ñ(ỹ) = ΦT
p Φd︸︷︷︸

P×D

c(t)︸︷︷︸
D×1

, (42)

for which the matrix in this expression is time independent. The matrix can therefore
be precomputed, which in turn means that once c(t) is known, the non linear expression
can be computed with order of complexity D.

The vector c(t) is constructed by solving a reduced form of the over determined
system 41, and this is given by,

Φdρ︸︷︷︸
RD×D

c(t)︸︷︷︸
RD

= fρ(t)︸︷︷︸
RD

, (43)

where the c(t) vector remains the same as that in the original system. The new system
in equation 43 is of size D × D, and this is formed by extracting D rows from the
original F × D system. The selection of which rows (or interpolation points) to use is
discussed in [17, 26], but once determined the selected row indices are indicated by the
indexing vector ρ̂, which is of size D (i.e. if the kth selected point corresponds to row i
then ρ̂k = i). Using this vector the elements of the system 43 are given as,

{Φdρ}i j = {Φd}ρ̂iρ̂ j , and fρ(t)i = f (t)ρ̂i , (44)

respectively. Provided that the matrix is invertible, the system 43 can be solved to
obtain c(t),

c(t) = Φ−1
dρ fρ(t). (45)

One can now generate the matrix P = [eρ1 , .., eρm ] ∈ RF×D, which is formed from
the vectors ei which have the value 1 in their component ρi and zero else where, that
is eρi = [0, 0, .., 1︸︷︷︸

ρi

, .., 0, 0]T ∈ RF . This matrix can be used to represent the reduced

components in equation 45 through their original matrices and vectors by,

Φdρ = PT Φd, (46)
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and
fρ(t) = PT f (t), (47)

respectively. Expression 45, 46 and 47 can now be combined and used within 41 to
give the following formulation,

f (t) = Φd(PT Φd)−1PT f (t). (48)

The final form of the reduced model of the non-linear component can now be formed
by inspecting equation 39 and noting that,

fρ(t) = PT f (t) = PT F(Φpỹ(t)) = F(PT Φpỹ(t)). (49)

Replacing this expression inside 49 gives,

f (t) = Φd(PT Φd)−1F(PT Φpỹ(t)), (50)

which is then substituted within 39 to give the final form of the non-linear reduced
order model,

Ñ(ỹ) ≈ ΦT
p Φd(PT Φd)−1︸             ︷︷             ︸

precomputed P×D

F(PT Φpỹ(t))︸         ︷︷         ︸
D×1

. (51)

As indicated, the computationally expensive matrix can be precomputed due to its time
independence. Therefore, at each time instance of the reduced order model, only a
matrix vector multiplication involving a system of the size Np × Nd is required.

5.2. Quadratic expansion of the Non-Linear Operator
An alternative approach for efficiently treating the non-linear terms within a re-

duced order model is through the quadratic expansion method proposed in [11]. The
approach is reviewed here by considering the matrix operator B in equation 14, for
which the non-linear components arise from the streaming operator in the Navier Stokes
equation. The matrix is re-written by the following summation involving the Pu + 1
sub-matrices,

B = B +

Pu∑
i=1

B̂i. (52)

In this expression the matrix B is of size 3Fu×3Fu, and this is dependent on the average
velocity components u, i.e. B = B(u). The matrices B̂i in the summation are also of
size 3Fu × 3Fu and these are decomposed further into the following form,

B̂i =

α
1
i B̂x

i 0 0
0 α2

i B̂y
i 0

0 0 α3
i B̂z

i

 . (53)

Here the sub-matrices B̂ j
i are of size Fu × Fu and these are dependent on the ith POD

function that is associated with direction component j. In this expression the expan-
sion multiplies the matrices by their respective POD coefficients α j

i , however the sub-
matrices themselves are fixed and so can be precomputed. The precomputing can be
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accomplished by considering a perturbation to the average vector u. The perturbations
are defined in the POD space, and so three vectors of size Pu are created that relate to
all POD functions for each of the three velocity components. Their values are all set to
zero except for a small perturbation ε in one element of a vector. For example, in the
vector relating to the direction x, the ith perturbation is given by,

ε x
i = {0, . . . , 0, ε︸︷︷︸

i

, 0 . . . , 0}, εy
i = {0, . . . , 0, . . . , 0}, εz

i = {0, . . . , 0, . . . , 0}. (54)

These perturbed POD coefficients provide a the perturbed velocity solution given as,

ũ =

u
x

uy

uz

 = u +

εΦ
x

0
0

 , (55)

which can be used in expression 52 to give the expression of B̂ j
i ,

B̂ j
i =

1
ε

(B(ũ) − B(u)). (56)

The same approach can be applied to obtain all matrices in the summation 52, and
once computed they can be represented in the reduced space by their projection with
the POD functions. That is,

B̂POD
i = (Φu)T B̂iΦ

u, (57)

which are in turn used to define the reduced B matrix,

BPOD = B
POD

+

Pu∑
i

B̂POD
i , (58)

where B
POD

= (Φu)T BΦu is the projection of B onto the reduced space.

5.3. The Residual DEIM Method
A mixed DEIM-quadratic expansion formulation of the nonlinear reduced order

operator is now derived. It is based on a DEIM representation of a residual term that is
left over from first applying a quadratic representation of the non-linear operator. The
method is derived from equation 16 which represents the full model discretised into its
linear and non-liner components. The system is now rewritten as,

(PL + PN
f + PN

q − PN
q )yn+1 = (QL + QN

f + QN
q − QN

q )yn + s, (59)

where the subscripts f and q denote the full and quadratic operators, respectively. This
is then re-arranged into the form of

(PL + PN
q )yn+1 = (QL + QN

q )yn + s + {(−QN
f + QN

q )yn + (−PN
f + PN

q )yn+1}. (60)

The system on the left hand side now only contains a linear and a nonlinear component
that is represented by the quadratic expansion. This and the first two terms on the
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RHS (which also contain only quadratic representations of the non-linear terms) are
therefore re-cast into an efficient reduced order model using the method described in
sections 4.2 and 5.2. These reduced systems (denoted with a .̃) are given by,

P̃L = ΦT
p PLΦp, Q̃L = ΦT

p QLΦp and b̃ = ΦT
p b (61)

for the linear terms and

P̃N = ΦT
p PNΦp and Q̃L = ΦT

p QLΦp, (62)

for the non linear quadratic terms (note that the terms PN and QN have representations
as given in equation 52).

The remaining term on the RHS of 60 (closed within the brackets) is the residual
that is formed from applying the quadratic approximation of the non-linear operator.
These operators are also non-linear and so it is these that are represented by the DEIM
method. That is, the non-linear operator relating to equation 38 in the DEIM formula-
tion is expressed as,

N(y(t)) = (−QN
f + QN

q )yn + (−PN
f + PN

q )yn, (63)

which in turn has the reduced order formulation,

Ñ(ỹ) = ΦT
p Φd(PT Φd)−1PT F(Φpỹ(t)). (64)

Together the new reduced order model, which has been named the residual DEIM
model, reads as,

(P̃L + P̃N)ỹn+1 = (Q̃L + Q̃L)ỹn + b̃ + Ñ(ỹ) (65)

6. Numerical Examples

A demonstration in the use of the reduced order modelling scheme is presented in
this section. This is based on two test problems where the flow past a cylinder and flow
within a gyre are resolved. Both problems were initially solved in order to obtain a full
solution, and this was through the use of the fluidity model that is formulated within a
finite element framework [13]. This applied a P1DGP2 finite element formulation using
unstructured triangular meshes, and in both test cases a sufficiently resolved mesh was
used to ensure an accurate solution was obtained. From these full model simulations
the snapshots of both the solution variables and the non-linear terms were taken. Using
this snapshot data the reduced order models were then formed and used to re-solve the
problems.

In this demonstration a comparison between the quadratic treatment of the non-
linear terms and the residual DEIM approach has been made. In addition to comparing
solution profiles the analysis compares the solution errors as well as correlation coef-
ficients. The measured error is given by the root mean square error (RMSE) which is
calculated for each time step n by,

RMS En =

√∑F
i=1(ψn

i − ψ
n
o,i)

2

F
. (66)
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(a) 12 DEIM points for residual DEIM

(b) 48 DEIM points for residual DEIM

(c) 96 DEIM points for residual DEIM

Figure 1: Flow past a cylinder: DEIM points distribution (Re = 3200)

In this expression ψn
i and ψn

o,i denote the POD (mapped onto the full mesh) and full
model solution at the node i, respectively, and F represents number of nodes on the
full mesh. The correlation coefficient is computed for each time step, and is defined for
given expected values µψn and µψn

o and standard deviations σψn and σψn
o ,

corr(ψn, ψn
o)n =

cov(ψn, ψn
o)

σψnσψn
o

=
E(ψn − σψn )(ψn

o − σψn
o )

σψnσψn
o

. (67)

6.1. Case 1: Flow past a cylinder

In the first numerical example a 2 dimensional flow past a cylinder is simulated.
The problem domain is 50 units in length and 10 units in width, and it possesses a
cylinder of radius 3 units positioned over the point (5,5). The dynamics of the fluid
flow is driven by an in-flowing liquid with velocity 1 unit/sec, and this enters the do-
main through the left boundary. The fluid is allowed to flow past the cylinder and out
the domain through the right boundary. No slip and zero outward flow conditions are
applied to the upper and lower edges of the problem whilst Dirichlet boundary con-
ditions are applied to the cylinder’s wall. The properties of the fluid are such that the
Reynolds number for this problem is calculated to be Re = 3200.

The problem was simulated for a period of 10 seconds, and for all models a time
step size of ∆t = 0.01 was used. From the full model simulation, with a mesh of 3213
nodes, 375 snapshots were obtained at equal time intervals for each of the u, v and p
solution variables. Similarly, 375 snapshots of the corresponding non-linear residual
profiles, as described in equation 63, were also taken. Figure 1 presents the distribution
of the interpolation points when using DEIM to represent the residual terms. These
points can be thought as providing an indication as to where the quadratic expansion
method provides the least accurate reconstruction of the non-linear operators.
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(a) full model, t = 3.52 (b) full model, t = 10.0

(c) Quadratic expansion, t = 3.52 (d) Quadratic expansion, t = 10.0

(e) Residual DEIM, t = 3.52 (f) Residual DEIM, t = 10.0

Figure 2: These show the solutions of the flow past a cylinder problem at time instances 3.52 and 10.0
seconds. The solutions compare the predictions from the quadratic expansion and residual DEIM models
using 12 POD basis functions.

Figures 2 - 4 present the simulated flow patterns at time instances 3.52 and 10.0
seconds. They compare the full solution against reduced order model using both the
quadratic expansion and the residual DEIM methods. In each of the figures the number
of POD functions used in the simulation increases from 12 to 48 and then 96 functions.
In the residual DEIM calculations the number of interpolation points was set to the
same number of POD functions used. From these flow patterns it is shown that both the
quadratic expansion and residual DEIM methods are capable of capturing the solution’s
main structural details. It is also shown that the residual DEIM performs very well
using as few as 12 functions. In addition, the magnitude of the residual DEIM profiles
appears to be in closer agreement to the full model solutions. This is highlighted in
the graphs presented in figure 5 which show the solution velocities at 3 points in the
domain. The results highlight how the residual DEIM method improves the quadratic
expansion method by suppressing the over and under shoots that form in its solution.

The graphs in figures 6 and 7 show the two reduced order method’s errors and
correlation coefficients. The graphs presenting the errors show a noticeable improve-
ment in accuracy using the residual DEIM method where by the errors are reduced
by approximately 80%. The correlation graphs show the quadratic expansion’s coef-
ficient to vary about the values 0.6-0.8 where as for residual DEIM the values remain
around 0.9-0.98. This again illustrates the improved accuracy gained in using this new
approach.

6.2. Case 2: The Gyre problem

The second numerical example involves the simulation of a Gyre for which a cir-
culating fluid moves across a domain that is 1000×1000 km across and 500m in depth.
The solution’s free surface is driven by a wind with a force strength given by the ex-
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(a) full model, t = 3.52 (b) full model, t = 10.0

(c) Quadratic expansion, t = 3.52 (d) Quadratic expansion, t = 10.0

(e) Residual DEIM, t = 3.52 (f) Residual DEIM, t = 10.0

Figure 3: These show the solutions of the flow past a cylinder problem at time instances 3.52 and 10.0
seconds. The solutions compare the predictions from the quadratic expansion and residual DEIM models
using 48 POD basis functions.

(a) full model, t = 3.52 (b) full model, t = 10.0

(c) Quadratic expansion, t = 3.52 (d) Quadratic expansion, t = 10.0

(e) Residual DEIM, t = 3.52 (f) Residual DEIM, t = 10.0

Figure 4: These show the solutions of the flow past a cylinder problem at time instances 3.52 and 10.0
seconds. The solutions compare the predictions from the quadratic expansion and residual DEIM models
using 96 POD basis functions.
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pression,
τy = τ0cos(πy/L) and τx = 0.0, (68)

where L is the problem’s length scale given by L = 1000 km. The terms τx and τy are
the wind stresses on the free surface that act along the x and y directions, respectively.
In this example the maximum zonal wind stress was set to τ0 = 0.1 Nm−1 in the
latitude(y) direction. The Coriolis terms are taken into account with the beta-plane
approximation(f=βy) where β = 1.8×10−11 and the reference density of the fluid set to
ρ0 = 1000 kgm−1. With this setup the Reynolds number of the problem was calculated
to be Re = 250.

The Gyre was simulated through the full finite element model for a period of 194
days using a time step size of ∆t = 0.3311 days. From this simulation 120 snapshots
of the solution and non-linear terms were recorded and from this data 12 POD basis
functions were generated. It was found that the POD basis set of this size captured over
99% of the energy of the u, v and p snapshot data. The problem was then re-simulated
using the reduced order models with their non-linear terms represented through the
quadratic expansion and the residual DEIM methods. Figures 8 presents the velocity
profiles obtained through the full model at time instances 91 and 149 days, and these
show that the problem has formed several complex flow patterns involving a number
of eddies. Included in the figures are the respective solutions obtained through the two
reduced order models. Whilst the quadratic expansion method has performed well by
resolving the general profile of the solution at these two time instances, some of the
finer detail and smaller eddies were not completely captured. These finer solution de-
tails were however resolved through the residual DEIM approach. In fact the solutions
between the residual DEIM and full model are almost visually identical. The errors
between the two reduced models and the full solutions are presented in figure 9. Again
these show the residual DEIM method to be more accurate than the quadratic expan-
sion method. It is shown that the main gyre is more accurately resolved using residual
DEIM, but in addition the eddies around the central top region of the problem contain
less errors.

7. Conclusions

In this article a new reduced order model based upon Proper Orthogonal Decompo-
sition (POD) has been presented. The method is centred on resolving the Navier Stokes
equation and the novelty of the approach is in how the non-linear terms of the equa-
tions are resolved. The treatment of the non-linear terms within a reduced order model
requires special attention since a standard POD approach is no more computationally
efficient than a full model solution. Instead additional techniques such as the quadratic
expansion method and DEIM have been developed in order to maintain the ROM’s ef-
ficiency. In this article a new hybrid scheme has been developed that mixes these two
approaches. This is based on initially applying the quadratic expansion method to the
non-linear terms and then applying the DEIM approach to resolve the residual between
it and the full model. That is, the DEIM is used to mop up the remaining errors left
over from the quadratic expansion approach.
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This new method, named residual DEIM, has been applied to two 2 dimensional
fluid flow problems and compared to the ROM approach using a quadratic expansion.
The two problems were based on the simulation of flow past a cylinder and wind driven
gyres, both of which were of sufficient difficulty with Reynolds numbers large enough
to form complex flow patterns and eddies. In these demonstrations the residual DEIM
approach showed strong capabilities in resolving the complex flows efficiently. It was
also shown to improve the solution obtained from the ROM model using only quadratic
expansions of the non-linear terms. In addition, the reduced order models were devel-
oped from full models involving unstructured finite element meshes. It has been pre-
viously observed that unstructured meshes can cause stability issues for reduced order
models, but this was not the case for the residual DEIM approach. Finally, although
no computational times have been stated, the complexity of the residual DEIM is the
the same of that of DEIM and the quadratic expansion method. Computational times
should therefore be of similar scales to these two previous methods.
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Figure 5: The graphs shows the solution velocities predicted by the full model, the quadratic model and
the residual DEIM model at positions (a): (0.5,0.3), (b): (1.158,0.315) and (c) (0.574,0.107). These results
were obtained using a reduced order model with 48 POD functions and, in the case of residual DEIM, 48
interpolation points.
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Figure 6: The graph shows the RMSE errors calculated for the quadratic expansion and residual DEIM
methods.

Figure 7: The graph shows the correlation coefficient calculated for the quadratic expansion and residual
DEIM methods.
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Figure 8: These show the solutions of the gyre problem at time instance 91 (left) and 149 days (right). The
solutions compare the predictions from the full model (top), the residual DEIM model (middle) and the
quadratic expansion model (bottom). Both reduced order models used 12 POD functions.
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Figure 9: These show the solution errors of the gyre problem at time instance 91 (top) and 149 (bottom)
days. The solutions compare the errors in the residual DEIM model (left) and the quadratic expansion model
(right). Both reduced order models used 12 POD functions.
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