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Abstract

A new nonlinear Petrov-Galerkin approach has been developed for Proper Orthog-
onal Decomposition (POD) Reduced Order Modelling (ROM) of the Navier-Stokes
equations. The new method is based on the use of the cosine rule between the advec-
tion direction in Cartesian space-time and the direction ofthe gradient of the solution.
A finite element pair,P1DGP2, which has good balance preserving properties is used
here, consisting of a mix of discontinuous (for velocity components) and continuous
(for pressure) basis functions. The contribution of the present paper lies in applying
this new non-linear Petrov-Galerkin method to the reduced order Navier-Stokes equa-
tions, and thus improving the stability of ROM results without tuning parameters. The
results of numerical tests are presented for a wind driven 2Dgyre and the flow past a
cylinder, which are simulated using the unstructured mesh finite element CFD model
in order to illustrate the numerical performance of the method. The numerical results
obtained show that the newly proposed POD Petrov-Galerkin method can provide more
accurate and stable results than the POD Bubnov-Galerkin method.
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1. Introduction

The proper orthogonal decomposition(POD)/Galerkin method has been used ex-
tensively for reduced order models (ROMs). The POD method optimally extracts the
few most energetic modes/bases from the numerical/experimental solutions that can
accurately represent the system dynamics. The POD approachwas introduced in 1901,
referred then as Principal Component Analysis (PCA) by Pearson [1]. Later work
includes [2, 3] in statistics, or empirical orthogonal functions (EOF) inoceanogra-
phy, (Jolliffe [4]) and meteorology [5]. The POD methods, in combination with the
Galerkin projection procedure, have also provided an efficient means for generating
reduced-order models [6, 7, 8]. In POD reduced order modelling, the Galerkin method
is used to project the original equations onto a finite numberof POD bases and yields
a set of ordinary differential equations in time. POD has been used successfully in sev-
eral fields, such as fluid dynamics [9, 10, 11], signal processing and pattern recognition
[3], inverse problems [12, 13] and ocean modelling and four-dimensional variational
(4D-Var) data assimilation [14, 15, 16, 17].

However, the POD/Galerkin finite element model (FEM) lacks stability and spuri-
ous oscillations can degrade the reduced order solution forflows with high Reynolds
numbers [18]. The instabilities commonly observed in the POD method aredue to os-
cillations forming in the solutions as a result of applying astandard Bubnov-Galerkin
projection of the equations onto the reduced order space. This is very similar to the
oscillations that form in FEM solutions when the standard Bubnov-Galerkin method is
applied. These oscillations feed into the non-linear termsat moderate to high Reynolds
numbers resulting in unstable simulations. In this paper, stable results are obtained
by using a suitable Petrov-Galerkin projection with ROM. Various methods have been
developed to overcome the POD stability problem. Aubry et al., [10] succeeded in sta-
bilising the POD/Galerkin approximation of the Navier-Stokes equations by employing
numerical dissipation. The numerical stability of the ROM is also related to the choice
of the inner product used to define the Galerkin projection. Astable symmetrical inner
product that guarantees certain stability bounds for the linearized compressible Euler
equations was proposed by Kalashnikova and Barone [19]. Angelo et al. [20, 21]
proposed two stabilization methods for POD/ROM: one that relies on the explicit ad-
dition of an artificial dissipation term whose constructionis similar to that of the Lax-
Wendroff scheme; another one that consists in constructing the POD for both function
and gradient values (POD inH1) (calibration). Another type of regularization is found
to improve the stability of the POD/Galerkin models of strongly-stiff systems [22].
The method replaces the POD eigenmodes of the non-linear terms by their Helmholtz
filtered counterparts, while the other terms remain unchanged.

Another difficulty that arises in applying the POD/Galerkin method to nonlinear
fluid problems involves the efficient computation of the projection of the nonlinear
terms that are present in the equations. Recently, several approaches have been pro-
posed for retaining the intended efficiency of O(M) (where M is the number of reduced
basis modes) of the ROM, instead of O(N) (where N is the numberof grid-points in the
full high-fidelity simulation). S. Chaturantabut et al. [23] proposed a non-linear model
reduction via the discrete empirical interpolation method(DEIM) [25, 26], which is
the discrete version of the empirical interpolation method(EIM) [24]. This method
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was applied by these authors in conjunction with POD to treatthe reduction of non-
linear miscible viscous fingering in porous media [27], and derived state space error
bounds for the solutions of POD/DEIM [28]. Another similar technique for non-linear
treatments is the best points interpolation method (BPIM) [29]. Nguyen et al. [30]
also addressed the issue for the reduction of the non-linearelliptic equation and highly
non-linear time-dependent convection-diffusion equations through the reduced basis
approximation (RBA) technique. For such classes of FEM PDEs, the reduced-order
modeling provided by the standard Galerkin projection is nolonger efficient. This is
because the evaluation of the integrals involving the non-affine and non-linear terms
is computationally expensive and cannot be pre-computed [30]. The RBA technique
does vary from the standard POD method but does use the EIM in its formulation.
A comparison of a number of POD formulations (including the greedy reduced order
approximation (ROA), the reduced-basis approach (RBA) of [24, 31] and the standard
Galerkin projection approach has been provided in [30].

Recently, Carlberg et al. introduced the Petrov-Galerkin method to control the
stability of reduced order modelling of a 1D nonlinear static problem [32, 33]. This
method offers a natural and easy way to introduce a diffusion term into ROM without
requiring tuning/optimising and provides appropriate modeling and stabilisation for the
POD numerical solution. More recently, a new Petrov-Galerkin method for reduced or-
der modelling has been proposed for nonlinearly discontinuous Galerkin modelling in
order to control numerical oscillations, and applied to nonlinear hyperbolic problems
[34]. The approach is based on the use of the cosine rule between the advection direc-
tion in Cartesian space-time and the solution gradient direction.

In the present work, the new Petrov-Galerkin method [34] is used for the stabilisa-
tion of reduced order modelling of a nonlinear hybrid unstructured mesh model which
is applied to the Navier Stokes equations. A mixedP1DGP2 finite element pair [35]
which remains Ladyzanskya Babuska Brezzi(LBB) stable and has good balance pre-
serving properties, is introduced here to further stabilise the numerical oscillation. It
consists of discontinuous linear elements for velocity andcontinuous quadratic ele-
ments for pressure in the Navier-Stokes equations [36, 38]). To efficiently treat the
non-linear components of the equation, we have used the method proposed in [39],
which assumes that the system of discrete equations are quadratic. This is an approxi-
mation but is motivated by the observation that the continuous PDE (the Navier Stokes
equations) has a quadratic non-linearity and thus can be discretized using a quadratic
discrete system of equations. The CPU cost of this isO(M3) per time step, and since
the magnitude ofM is relatively small the method is highly efficient.

The remainder of the paper is organized as follows. Section2 introduces the gov-
erning equations used in this work. Section3 presents the derivation of the new Petrov-
Galerkin approach for a single scalar time dependent transport equation, and this is then
extended to a set of coupled time dependent equations in section 4. Section5 provides
the derivation of reduced order modelling of Navier Stokes equations using the newly
proposed Petrov-Galerkin approach. In section6, the novel reduced order nonlinear
hybrid unstructured mesh model is applied to two test cases,namely, a wind driven 2D
Gyre and flow past a cylinder. Finally, the summary and conclusions of this article are
presented in section7.
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2. Governing Equations

The underlying model equations used here consist of the 3-D non-hydrostatic Navier-
Stokes equations:

∇ · u = 0, (1)
∂u
∂t
+ u · ∇u + f k × u = −∇p+ ∇ · τ, (2)

whereu ≡ (u, v,w)T ≡ (u1, u2, u3)T is the velocity vector,p is the perturbation pressure
(p := p/ρ0, ρ0 is the constant reference density),f represents the Coriolis inertial
force, andk is an unit vector along the vertical direction. The stress tensorτ in the
diffusion term is used to represent the viscous terms and is defined in terms of the
deformation rate tensorS as

τi j = 2µi j Si j , Si j =
1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

−
1
3

3
∑

k=1

∂uk

∂xk
, 1 ≤ i, j ≤ 3, (3)

where,µ is the kinematic viscosity. In the previous definition, we assume no summa-
tion over repeated indices. In this paper, the horizontal kinematic viscosities (µ11, µ22)
and vertical kinematic viscosity (µ33) take constant values with the off-diagonal com-
ponents ofτ defined byµi j = (µiiµ j j )1/2. For barotropic flow, the pressurep consists of
hydrostaticph(z) and non-hydrostaticpnh(x, y, z, t) components. The hydrostatic com-
ponent of pressure balances exactly the constant buoyancy force and both terms are
therefore neglected at this stage.

The momentum equation discretised in space can be rewrittenin a matrix form:

At
∂u
∂t
+ Ax(u)

∂u
∂x
+ Ay(u)

∂u
∂y
+ Az(u)

∂u
∂z
+ f k × u + ∇p− ∇ · τ = 0, (4)

where

At =





















1 0 0
0 1 0
0 0 1





















, (5)

Ax =





















u 0 0
0 u 0
0 0 u





















, Ay =





















v 0 0
0 v 0
0 0 v





















, Az =





















w 0 0
0 w 0
0 0 w





















. (6)

3. A Scalar Petrov-Galerkin Transport Equation

In order to derive the newly proposed Petrov-Galerkin approach, the outline for a
scalar time dependent transport equation is derived first. The scalar time dependent
transport equation used is:

axt · ∇xtψ + σψ = s, (7)

4
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whereψ represents field states (e.g. temperature, pollutants) ands is the source term;
for 1D: axt = (at ax)T , for 2D: axt = (at ax ay)T and for 3D:axt = (at ax ay az)T

and in 2D with time dependence this equation assumes the form:

at
∂ψ

∂t
+ ax

∂ψ

∂x
+ ay

∂ψ

∂y
+ σψ − s= 0. (8)

Using the cosine rule between the two vectorsaxt and∇xtψ, in whichθa is the angle
between the two vectors, then:

cosθa =
axt · ∇xtψ

|axt| |∇xtψ|
, (9)

and the projection ofaxt onto∇xtψ may be written asa∗xt = |axt|nacos(θa) (with na =
∇xtψ

|∇xtψ|
) or in the detailed form:

a∗xt =
(axt · ∇xtψ)∇xtψ

||∇xtψ||2
. (10)

Thus

a∗xt · ∇xtψ = axt · ∇xtψ, (11)

or
(

(axt · ∇xtψ)∇xtψ

||∇xtψ||2

)

· ∇xtψ = axt · ∇xtψ. (12)

A Petrov-Galerkin approach is used that modifies the governing equation by its
weighting with a stabilisation term. This is given by the equation,

(1− ∇xt · a∗xtp
∗
xt)(axt · ∇xtψ + σψ − s)= 0, (13)

where the scalarp∗xt is a function ofa∗xt and the size and shape of the elements (to be
later defined in (16), (17) and (18)). Equation (13) is a consistent formulation which
stabilizes the solution by adding artificial diffusion in the direction of its gradient. This
effectively smooths out the unphysical oscillations that formin extreme regimes, such
as in high Reynolds numbers. This technique is now a commonlyused method for
stabilising finite element solution and its origins date back to the work in [40, 41, 42,
43]. Multiplying equation (13) by a space-time basis functionNxti and integrating over
a single elementVE with boundaryΓE and applying integration by parts results in:

∫

VE

NxtirdVE −

∫

ΓE

Nxti(nxt · axt)(ψ − ψbc) dΓE+

∫

VE

(∇xtNxti) · a
∗
xtp
∗
xtr dVE +

∫

ΓE

Nxtinxt · a∗xtp
∗
xtr dΓE = 0,

(14)

In this formulation the term r is the residual, which is expressed asr = a ·∇xtψ+σψ−s,
and the termnxt is the unit vector that is normal to the element in space-time. In this
work the boundary informationψbc is treated in an upwind fashion. That is, ifnxt · axt

5
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is negative thenψbc takes on the values of the neighbouring elements. Alternatively if
nxt · axt is positive then the values within the element are used. The approximation of
ψ will now be assumed to be expressed as a finite element expansion,ψ =

∑N
j=1 Nxt jψ j .

Finally, the surface integral involving the residual is assumed to be zero, and this results
in the following formulation,

∫

VE

NxtirdVE −

∫

ΓE

(nxt · axt)Nxti(ψ − ψbc)dΓE +

∫

VE

(∇xtNxti) · a
∗
xtp
∗
xtrdVE = 0. (15)

The scalar p∗xt which a function ofa∗xt and the size and shape of the elements, is
given, for example, by the following expression:

p∗xt =
1
4

(|a∗xt · ∇xtNxti |)
−1. (16)

This expression is obtained from the Riemann finite element method, for details see
[44]. This will choose the shape function which is aligned with the direction ofa∗xt, for
example, in the case for elements with equal sized edges.

Alternatively one can produce a p∗xt that is independent ofi using:

p∗xt = mink{
1
4

(|a∗xt · ∇xtNxtk|)
−1}. (17)

Notice that this expression uses the length scale of the element in the direction ofa∗xt.
Using the L2-norm and the finite element space-time JacobianmatrixJxt (see equa-

tion (40)), an alternative expression to (17) has the following form:

p∗xt =
1
4

(||J−1
xt a∗xt||2)

−1. (18)

The value of p∗xt can be adjusted in order to ensure that the resulting value ofp∗xt is not
so large that it results in having more transport backward than forward in the resulting
discrete system of equations by using:

p∗xt = min{
1

σ + ǫ
,
1
4

(||J−1
xt a∗xt||2)−1}, (19)

in whichσ + ǫ > 0 andǫ is a small positive number that ensures we avoid dividing by
zeroσ = 0 e.g.ǫ = 1× 10−10.

Continuous Petrov-Galerkin formulations use a factor of1
2 instead of1

4 as used
in the previous equations. This correctly centers the equation residual at the centre
of mass of the basis function, for continuous finite element representations. In the
present work, where discontinuous finite elements are used to formulate the space-time
discretisation, the centre of mass of the basis function is centered at a distance of∆x

4
from the upwind boundary of the element. In the traditional Petrov-Galerkin method
a∗xt = axt in the aforementioned expression and pxt replaces p∗xt.

We can work with the stabilization in a diffusion form by using:

∫

VE

NxtirdVE −

∫

ΓE

Nxti(nxt · axt)(ψ − ψbc)dΓE +

∫

VE

(∇xtNxti)
Tν∇xtψdVE = 0, (20)

6
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in which the scalar diffusion coefficient is:

ν =
(axt · ∇xtψ)p∗xtr

||∇xtψ||2
. (21)

Alternatively, we can work only on the residual. That is, replacingaxt · ∇xtψ with the
residualr in (21), yields:

ν =
rp∗xtr

||∇xtψ||2
. (22)

The diffusion coefficientν is always non-negative since p∗xt is non-negative. Equation
(22) for the diffusivity can be derived by re-defining the terma∗xt in equation (10) to be:

a∗xt =
r∇xtψ

||∇xtψ||2
. (23)

Thena∗xt · ∇xtψ =
r∇xtψ

||∇xtψ||2
· ∇xtψ = r.

3.1. Simplified scalar equation
Discretising the time dependent term using the two levelθ-method, the residual

becomes:

r = at
ψn+1 − ψn

∆t
+ a · ∇ψn+θ + σψn+θ − sn+θ, (24)

with a = (ax ay az)T andψn+θ = θψn+1 + (1− θ)ψn also defining

∇xtψ = (
ψn+1 − ψn

∆t
, (∇ψn+θ)T)T . (25)

Using this definition (equation (25)) enables the formalism of space-time discretisation
to be applied, for example:

a∗xt = (a∗t , a∗T)T =
(axt · ∇xtψ)∇xtψ

||∇xtψ||
2
2

, (26)

and

p∗xt = min{
1

σ + ǫ
,
1
4

(||J−1a∗||2)−1}, (27)

in which J is the block part of the matrixJxt that is associated with Cartesian space.
The stabilized discrete equations in a diffusion form can be expressed by only using
the diffusion in Cartesian space:

∫

VE

NirdV −
∫

ΓE

Ni(n · a)(ψn+θ − ψn+θ
bc )dΓ +

∫

VE

(∇Ni)Tν∇ψn+1dV = 0, (28)

or in a form where we apply integration by parts of the transport terms once:
∫

VE

Ni(at(
ψn+1 − ψn

∆t
) + σψn+θ − sn+θ)dVE −

∫

VE

∇ · (Nia)ψn+θdV (29)

+

∫

ΓE

Ni(n · a)(ψn+θ
bc )dΓE +

∫

VE

(∇Ni)Tν∇ψn+1dVE = 0. (30)

7
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4. Nonlinear Time Dependent Equations

4.1. The Petrov-Galerkin Navier-Stokes equations

The Petrov-Galerkin method discussed above is further applied to the Navier-Stokes
equations (2), which can be rewritten as:

Axt · ∇xtu = s, (31)

in whichAxt = (At Ax Ay Az)T ands = − f k × u − ∇p+ ∇ · τ. The projection ofAxt

onto∇xtu can be written as:

A∗xt = V(Axt · ∇xtu)V(||∇xtu||22)−1∇xtu. (32)

Thus

A∗xt · ∇xtu = Axt · ∇xtu, (33)

or
(

V(Axt · ∇xtu)V(||∇xtu||22)−1∇xtu
)

· ∇xtu = Axt · ∇xtu, (34)

in whichV(Axt ·∇xtu) is a diagonal matrix containingAxt ·∇xtu, and the vector||∇xtu||22
is such that theµth entry is||∇xtu||22µ = (∇xtuµ) · (∇xtuµ).

The Petrov-Galerkin method’s modified form of the differential equation is [34]:

(I − (∇xt · A∗xt)
TP∗xt)(Axt · ∇xtu) − s = 0, (35)

whereP∗xt is a function ofA∗xt and the size and shape of the elements (see equations (38)
- (39)). Multiplying equation (35) by a diagonal matrix of space-time basis function
Nxti (this has the basis functionNxti along its main diagonal), integrating over a single
elementVE and applying integration by parts results in:

∫

VE

Nxtir dVE −

∫

ΓE

Nxti(nxt · Axt)(Ψ −Ψbc) dΓE

+

∫

VE

((∇xtNxti) · A
∗
xt)

TP∗xtrdV+
∫

ΓE

Nxtinxt · A∗xtP
∗
xtr dΓE = 0, (36)

with a finite element expansionu =
∑N

j=1 Nxt ju j (whereu j is the velocity vector at
node j) andr = Axt ·∇xtu− s. In this work, only the incoming information is taken into
account, that is, ifnxt · Axt is negative, thenΨbc is calculated from the neighbour ele-
ment (otherwise, it is calculated from the current elements). Applying a zero boundary
condition for the residualr = 0, yields:

∫

VE

NxtirdVE +

∫

VE

(∇xtNxti) · A
∗
xt)

TP∗xtrdVE = 0. (37)

P∗xt is a function ofA∗xt and the size and shape of the elements, for example:

P∗xt =
1
4

(|A∗xt · ∇xtNxti |)
−1, (38)

8
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or using the 2 matrix norm and the space-time Jacobian matrixJxt:

P∗xt =
1
4

(||J−1
xt A∗xt||2)−1. (39)

Since the matricesA∗t , A∗x, A∗y, A∗z that contribute to buildingA∗xt = (A∗t
T ,A∗x

T ,A∗y
T ,A∗z

T )T

are diagonal, the matrixP∗xt is also diagonal. In the traditional Petrov Galerkin method
A∗xt = Axt in the aforementioned expression andPxt replacesP∗xt. The finite element
space-time Jacobian matrix for 3D time dependent problems assumes the form:

Jxt =



































I 1
2∆t 0 0 0
0 I ∂x

∂x′ I ∂y
∂x′ I ∂z

∂x′

0 I ∂x
∂y′ I ∂y

∂y′ I ∂z
∂y′

0 I ∂x
∂z′ I ∂y

∂z′ I ∂z
∂z′



































, (40)

where the variables with′ are the local variables and whereI is theM×M identity
matrix in whichM is the number of solution variables at each DG node, and∆t is a
time step size.

In a similar way to the scalar equation, the value ofP∗xt can be adjusted to ensure
that the resulting value ofP∗xt is not so large to allow more transport backwards than
forward in the resulting discrete system of equations using:

P∗xt = min{E−1,
1
4

(||J−1
xt A∗xt||2)

−1}. (41)

In this equation the diagonal entries of the matrixE are positive andE contains small
positive numbers to avoid dividing by zero or near zero when one or more of the diag-
onals ofE is zero or very small e.g. 1× 10−10.

We can work with the stabilization in diffusion form using the following equations:

∫

VE

NxtirdVE −

∫

ΓE

Nxti(nxt ·Axt)(Ψ −Ψbc)dΓE +

∫

VE

(∇xtNxti)
TK∇xtudVE = 0, (42)

or in a form where we apply integration by parts of the transport terms once:
∫

VE

Nxti(−s)dV−
∫

VE

(∇xt · (NxtiAxt))Ψ dVE

+

∫

ΓE

Nxti(nxt · Axt)Ψbc dΓE +

∫

VE

(∇xtNxti)
TK∇xtΨ dVE = 0, (43)

in which theM×M diagonal matrix containing the diffusion coefficients is:

K = V(Axt · ∇xtu)P∗xtV(||∇xtu||22)
−1V(r). (44)

The resulting diagonal matrixK can be modified to ensure a non-negative diffusion
by setting any of its negative entries to zero or by switchingto their absolute values.
Alternatively one can work with the residual only, by replacing Axt · ∇xtu with the
residualr, which results in:

K = V(r)TP∗xtV(||∇xtu||22)−1V(r), (45)

9
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which is always positive sinceP∗xt is positive semi-definite (as well as diagonal) and in
which V(r) is the diagonal matrix containing the residual of the governing equations
on its diagonal. Equation (45) for the diffusivity can be derived by re-definingA∗xt in
equation (32) to:

A∗xt = V(r)V(||∇xtu||22)−1∇xtu. (46)

4.2. The simplified Petrov-Galerkin Navier-Stokes equations

Assuming the two time levelθ-method is used for the discretisation of time:

r = At
un+1 − un

∆t
+ A · ∇un+θ − sn+θ, (47)

with Ax = (Ax Ay Az)T , sn+θ = − f k×un+θ−∇pn+θ+∇·τn+θ, un+θ = Θun+1+(I−Θ)un,
pn+θ = Θpn+1+ (I−Θ)pn, andτn+θ = Θτn+1+ (I−Θ)τn, in whichΘ is a diagonal matrix
containing the time stepping parameters, andsn+θ = − f k × un+θ − ∇pn+θ + ∇ · τn+θ.
Defining

∇xtu = (
un+1 − un

∆t
, (∇un+θ)T)T , (48)

enables the application of the formalism of space-time discretisation developed here,
for example:

A∗xt = (A∗t
T
, A∗x

T)T = V(Axt · ∇xtu)V(||∇xtu||22)
−1∇xtu, (49)

and

P∗xt = min{E−1,
1
4

(||J−1A∗x||2)−1}, (50)

in which J is the block part of the matrixJxt that is associated with Cartesian space.
By applying the diffusion only in Cartesian space the stabilized discrete equations in a
diffusion form can be written:

∫

VE

NirdV−
∫

ΓE

Ni(n · A)(Ψn+θ −Ψn+θ
bc ) dΓE +

∫

VE

(∇Ni)TK∇un+1dV = 0, (51)

or in a form where we apply integration by parts:

∫

VE

Ni(At
Ψn+1 − Ψn

∆t
− sn+θ) dVE −

∫

VE

∇ · (NiA)Ψn+θdV+
∫

ΓE

Ni(n · A)Ψn+θ
bc

+

∫

ΓE

Ni(n · A)Ψn+θ dΓE +

∫

VE

(∇Ni)TK∇Ψn+1 dVE = 0. (52)

5. Petrov-Galerkin Reduced Order Modelling

The Petrov-Galerkin method described above is used to form astable POD reduced
order model for nonlinear hybrid problems.

10
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For simplicity, we assume the discretisation of the original equations (1) and (2) at
a given time step has the following form:

AΨ = b, (53)

whereΨ = (U,V,W,P)T, U = (u1, . . . , ui , . . . , uN), V = (v1, . . . , vi , . . . , vN), W =

(w1, . . . ,wi , . . . ,wN ) andP = (p1, . . . , pi , . . . , pN ) (N is the number of nodes in the
computational domain). The modified system of equation (53) can then be written:

CTF−1AΨ = CTF−1b, (54)

in which for the least squares (LS) methods,C = A. Notice that the solution of this
equation (54) is the same as that of equation (53), however critically it is not the same
when the reduced order modelling is applied. The weighting matrix F can be chosen in
order to render the system of equations dimensionally consistent (and thus may contain
characteristic dimensions such as the time step size∆t and a length scale) and also
contain the mass matrix of the system. The LS methods have dissipative properties,
unlike Galerkin methods, but are not generally conservative for coupled systems of
equations. However the (LS) methods may be applied at each equation level to render
them conservative, in which caseC may contain just parts of the matrixA.

However, the above mechanics can also be applied to form conservative stabiliza-
tion methods for ROMs which for non-linear problems have a tendency to diverge due
to inadequate sub-grid-scale modelling (if Galerkin methods are applied e.g. the POD
method). A common solution to the divergence of ROM solutions is to add diffusion
terms to the equations and tune these diffusion terms to best match the full forward
solution. Thus, it seems natural to explore the Petrov-Galerkin methodology in order
to introduce diffusion into ROMs and avoid this tuning.

The matrix equation (53) can now be converted into a reduced order system that
is spanned by a set ofm POD basis functions denoted by{Φ1, . . . ,ΦM}. Each POD
function is represented by a vector of sizeN that represents the functions over the
finite element space. The POD functions are grouped togetherinto a matrixMPOD

which is of sizeN ×M and given byMPOD = [Φ1, . . . ,ΦM]. Using this matrix, the
reduced order system can now be generated by operating directly on the discretised
linear system given in equation (53). That is, a standard Galerkin approach is applied,
whereby the full system is pre and post multiplied byMPODT andMPOD, respectively.
The resulting reduced order system results,

MPODT
AMPODΨPOD =MPODT

(b − AΨ̄), (55)

whereΨPOD are the reduced order solution coefficients,Ψ̄ is the mean of the variables
Ψ over the time, and the relationship between the pod variables and full solutions is
given by,

Ψ =MPODT
(ΨPOD + Ψ̄). (56)

For LS methods, equation (55) is:

MPODT
CTF−1AMPODΨPOD =MPODT

CTF−1(b − AΨ̄). (57)

11
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and using the non-linear Petrov-Galerkin methods described above:

MPODT
(I + CTF−1)AMPODΨPOD =MPODT

(I + CTF−1)(b − AΨ̄), (58)

or in a diffusion form (analogous to (42) - (44)):

(MPODT
AMPOD + D)ΨPOD =MPODT

(b − AΨ̄). (59)

In equation (59) we have also introduced a diffusion matrixD, which has the following
form (where the surface integral is neglected since it has little effect on results):

D =





























Du 0 0 0
0 Dv 0 0
0 0 Dw 0
0 0 0 Dp





























, (60)

Dumk =

∫

V
∇Nxt

POD
m µPOD

u ∇Nxt
POD
k dV, (61)

Dvmk =

∫

V
∇Nxt

POD
m µPOD

v ∇Nxt
POD
k dV, (62)

Dwmk =

∫

V
∇Nxt

POD
m µPOD

w ∇Nxt
POD
k dV, (63)

Dpmk =

∫

V
∇Nxt

POD
m µPOD

p ∇Nxt
POD
k dV, (64)

where theNxt
POD
k basis functions are interpolated using the finite element basis func-

tions. the diffusion coefficient inD can be calculated using (analogous to (22)):

(µPOD
u µPOD

v µPOD
w µPOD

p )T =
rPODp∗xt

PODrPOD

||∇xtψPOD||22

, (65)

in the present work, the diffusion terms are only applied to the momentum equations,
so thatpPOD = 0, p∗xt

POD is calculated:

p∗xt
POD
= mink{

1
4

(|a∗xt · ∇xtNxtk|)
−1}, (66)

or using the POD basis function:

p∗xt
POD
= mink{

1
4

(|a∗xt · ∇xtNxt
POD
k |)−1}. (67)

The residual vector can be determined from:

rPOD = EPOD−1
((MPODT

AMPOD)ΨPOD −MPODT
(b − AΨ̄)), (68)

or since the absolute value of the residual may not matter:

rPOD = EPOD−1
MPODT

|AMPODΨPOD − (b − AΨ̄)|, (69)

whereEPOD
i j =

∫

V
ΨPOD

i ΨPOD
j dV. Taking into account the ROM basis functions are

orthonormal, so thatEPOD = I.
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Figure 1: a mixed finite elementP1DGP2 pair for velocity and pressure (white one for u nodes, black one for
p nodes)

6. Application cases and numerical results

The Petrov-Galerkin method has been applied into a finite element fluids model (Fluid-
ity, developed by the Applied Modelling and Computation Group at Imperial College
London) to explore the stability and accuracy of reduced order modelling in the two
test cases: a gyre case and the flow past a cylinder case. In order to compare the results
obtained by either the Galerkin or the Petrov-Galerkin method, Reynolds numbers are
set with 2000 and 3600 for a flow past a cylinder and 10000 for a Gyre.

This paper presents results using both a mixed finite elementpair P1DGP2 and a
P1P1 formulation. TheP1P1 element type has been included in the analysis due to
it being a popular element choice, however it can in many instances cause solutions
to become unstable as it is a LBB unstable element. In this work, the P1P1 element
is stabilised by explicitly adding a fourth order stabilization term in pressure into the
continuity equation, as described in Pain et.al.[37].

Figure (1) shows the two dimensionalP1DGP2 element which has three local nodes
associated with velocity and six associated with pressure.The velocity variation is dis-
continuous between elements and the pressure variable is continuous. The advantage
of this particular element choice is that the mass matrix forvelocity is a block diagonal
matrix so that it can be trivially inverted; also it allows the order of the pressure to
be increased to quadratic whilst maintaining LBB stability[38].This element also has
the ability represent very accurately the balance between the pressure or free surface
gradients and the Coriolis force as well as buoyancy forces.

The root mean square error (RMSE) and correlation coefficient of results between
the POD and full model at the time leveln are used to estimate the divergence of POD
projection results:

RMS En =

√

∑N
i=1(ψn

i − ψ
n
o,i)

2

N
, (70)

where,ψn
i andψn

o,i are the vectors containing the POD and full model results at the

13



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a) full model

(b) POD/Galerkin

(c) POD/Petrov-Galerkin

Figure 2: Flow past a cylinder: Velocity solution from the full, POD/Galerkin and POD/Petrov-Galerkin
models usingP1P1 (t = 3.6, Re= 2000).

node i respectively.N represents number of nodes. The correlation coefficient of
results between the POD and full models at the time leveln with expected valuesµψn

andµψn
o

and standard deviationsσψn andσψn
o

is defined as:

corr(ψn, ψn
o)n =

cov(ψn, ψn
o)

σψnσψn
o

=
E(ψn − σψn)(ψn

o − σψn
o
)

σψnσψn
o

. (71)

6.1. Case 1: flow past a cylinder

The non-dimensional 2D case is composed of a cylinder with a radius of 3 in the com-
putational domain (50 long and 10 wide). An inlet boundary with a velocity of 1
(non-dimensional) flows parallel to the domain length towards the right of the domain.
The centre of the cylinder is placed 5 (non-dimensional) units from the inlet boundary.
The Reynolds number (Re) are 2000 and 3600. Dirichlet boundary conditions are ap-
plied to the cylinder and no normal flow and zero shear (slip) boundary conditions are
applied to both lateral sides. The simulation period is [0− 10] with a time step size of
∆t = 0.02. The solution att = 2.4 andt = 7 over the period [0−10] are chosen to show
the effects. In order to show stabilisation of Petrov-Galerkin method for Reduced order
model, 50 snapshots and 22 POD basis functions which capture99% percent of energy
are chosen foru, v andp. Figure2 shows the results of full model using aP1P1 element
type, together with the POD/Galerkin and POD/Petrov-Galerkin models for Reynolds
number 2000. Both POD models have a reasonable qualitative agreement with the full
model for this Reynolds number.

Then the Reynolds number is increased until POD/Galerkin crashes. Figure3
shows the velocity field (vector) obtained from the full model (using P1P1 element
type) and POD models using the Galerkin and Petrov-Galerkinmethods. The Reynolds

14
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(a) full model att = 2.4 (b) full model att = 7

(c) POD/Galerkin method att = 2.4 (d) POD/Galerkin method att = 7

(e) POD/Petrov-Galerkin method att = 2.4 (f) POD/Petrov-Galerkin method att = 7

Figure 3: Flow past a cylinder: Velocity solution from the full, POD/Galerkin and POD/Petrov-Galerkin
models usingP1P1 at t = 2.4 andt = 7 (Re= 3600).

number is 3600. It can be seen in figure3 (c) and (d) that the results of Reduced Order
model (ROM) using Galerkin method become unstable (the solution of velocity is too
large, 29.2 whent = 2.4 and 113 whent = 7. A variable colour legend is chosen to
show the large velocity value), while the results of ROM using Petrov-Galerkin method
are considerably more stable.

In order to further investigate the stability and accuracy of the new Petrov-Galerkin
method in ROM, the velocity solution at a specified detector in cylinder is plotted in
figure4. It shows that the difference of velocity results between the full model and the
POD model solution using Petrov-Galerkin methods is rathersmall.

A mixed P1DGP2 finite element pair is introduced here to further stabilise the nu-
merical oscillation, which consists of discontinuous linear elements for velocity and
continuous quadratic elements for pressure. Figure5 presents a comparison of the ve-
locity solutions using the full and POD models with a mixedP1DGP2 finite element
pair. The Reynolds number is 3600. Figure6 shows the comparison of velocity value
between the full model, the POD/Galerkin model and POD/Petrov-Galerkin model at
point(x=0.3 and y=0.3) along whole domain(reference coordinate system: 06 x 6 2.2
and 06 y 6 0.41). It can be seen that the POD results using the Galerkin method are
unstable while those from the POD/Petrov-Galerkin model are stable. Figure7 shows
the correlation coefficient of results between the POD and full models can achieve from
80% for the traditional Galerkin POD model to 98% if the Petrov-Galerkin approach
is used.

6.2. Case 2: Gyre

The Petrov-Galerkin Reduced order model is also tested in a Gyre problem in a com-
putational domain of horizontal dimensions, 1000 km by 1000km with a depth of H

15
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Figure 4: Comparison of velocity results between the full and Petrov-Galerkin POD models at a point(near
right side of the circle).

(a) full model att = 2.4 (b) full model att = 7

(c) POD/Galerkin method att = 2.4 (d) POD/Galerkin method att = 7

(e) POD/Petrov-Galerkin method att = 2.4 (f) POD/Petrov-Galerkin method att = 7

Figure 5: Flow past a cylinder: solution of full model, POD/Galerkin and POD/Petrov-Galerkin using
P1DGP2 at t = 2.4 andt = 7 (Re= 3600)
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Figure 6: The comparison of velocity solution at point (x=0.3,y=0.3) between the Galerkin/POD model and
Petrov-Galerkin/POD model usingP1DGP2.
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Figure 7: The correlation coefficient of the Galerkin/POD and Petrov-Galerkin/POD models using a mixed
finite elementP1DGP2 pair for velocity and pressure.
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500 m. The wind forcing on the free surface is given by

τy = τ0cos(πy/L), τx = 0.0, (72)

whereτx andτy are the wind stresses on the free surface along thex andy directions
respectively, andL = 1000 km. A maximum zonal wind stress ofτ0 = 0.1 Nm−1

is applied in the latitude (y) direction. β = 1.8 × 10−11 and the reference density
ρ0 = 1000 kgm−1 were used. In this case, The simulation period is [0− 0.6] with a
time step size of∆ = 0.01. 60 snapshots and 25 POD basis functions which capture
99% percent of energy are chosen foru, v and p. In order to investigate the effects
of the new Petrov-Galerkin method, the Reynolds number is increased until the results
of ROM using the Galerkin method become unstable or crash. The Reynolds number
is chosen to be 10000. Dirichlet weakly boundary conditionsare applied. Figure8
shows the velocity solution att = 0.35 become very large and stable while the results
of Petrov-GalerkinP1DGP2 are considerably more stable.

Figure9 shows the RMSE between the full and POD model using the Galerkin
method and Petrov-Galerkin method. In order to see clearly the RMSE between Petrov-
Galerkin and full model, the Figure9(a) is enlarged into Figure9(b). From the value
of y axis, the RMSE between Petrov-Galerkin with full model is much smaller than
the RMSE between Galerkin method and full model. The RMSE between the full and
POD models is decreased by 90%. The divergence of Galerkin/POD is well controlled
by the new Petrov-Galerkin/POD.

It can be seen from figures9 and10 that the POD reduced order results using the
Galerkin approach become oscillatory and unstable and the RMSE of results increases
as the simulation time increases. By using the Petrov-Galerkin POD approach, the
RMSE of results is reduced while the correlation coefficient increases to 99.99% after
a few time steps.

Table1 shows the CPU time of main process at each time step. It can be seen that
once the POD model is setup (involving assembling the matrices process), the reduced
order model saves 90% of CPU time required by the full model.

Table 1: Comparison of CPU (unit: s) required for running thefull model and ROM for each time step

Case Model assembling matrices solving projecting back total
Case 1 Full model 3.00373 0.112598 0.0000 3.116328

POD ROM 0.30280 0.000000 0.0199 0.322700
Case 2 Full model 2.96455 0.103687 0.0000 3.068237

POD ROM 0.29875 0.000000 0.0193 0.318050

7. Summary and conclusions

A new non-linear Petrov-Galerkin method for reduced order Navier-Stokes equations
using a mixed continuous/discontinuous finite element pair has been presented. This
method is used to stabilise the Reduced Order Navier-Stokesequations. The method
has been implemented in a finite element adaptive mesh refinement fluids model (Flu-
idity) and applied to a Gyre and flow past a cylinder test cases.
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(a) full model velocity (b) full model pressure

(c) POD/Galerkin method velocity (d) POD/Galerkin method pressure

(e) POD/Petrov-Galerkin method velocity (f) POD/Petrov-Galerkin method pressure

Figure 8: Gyre: Comparison of the results between the full and POD models att = 0.35 usingP1DGP2.
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Figure 9: Gyre:RMSE between Full model and POD model
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Figure 10: Correlation coefficient of Galerkin/POD model and Petrov-Galerkin/POD model.

The effect of the new non-linear Petrov-Galerkin method on stabilisation of the
POD model is evaluated through comparison of results between the POD model using
the Petrov-Galerkin method and the traditional Galerkin/POD model. The results show
that the Galerkin/POD model becomes oscillatory and unstable as the Reynolds number
increases over a certain value. By introducing Petrov-Galerkin method in reduced order
modelling, the stability of the results is maintained.
An error analysis has also been carried out for the validation and accuracy of the new
POD/Petrov-Galerkin model. The RMSE of results between the POD and Full model
is decreased while the correlation coefficient is mostly larger than 99%− 99.5%. The
new POD/Petrov-Galerkin model does well in flow past a cylinder and gyre. Future
work will investigate the effects of applying this new Petrov-Galerkin/POD approach
to more complex fluid flow models.
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