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Abstract

A new nonlinear Petrov-Galerkin approach has been develfpéroper Orthog-
onal Decomposition (POD) Reduced Order Modelling (ROM) leé Navier-Stokes
equations. The new method is based on the use of the cossbetween the advec-
tion direction in Cartesian space-time and the directiothefgradient of the solution.
A finite element pairPipgP2, Which has good balance preserving properties is used
here, consisting of a mix of discontinuous (for velocity gmnents) and continuous
(for pressure) basis functions. The contribution of thespre paper lies in applying
this new non-linear Petrov-Galerkin method to the reducddmNavier-Stokes equa-
tions, and.thus improving the stability of ROM results witthduning parameters. The
results of numerical tests are presented for a wind driveig@® and the flow past a
cylinder, which are simulated using the unstructured mestefelement CFD model
in order to illustrate the numerical performance of the radthThe numerical results
obtained show that the newly proposed POD Petrov-Galerkihad can provide more
accurate and stable results than the POD Bubnov-Galerkimade
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1. Introduction

The proper orthogonal decomposition(P@Balerkin method has been used ex-
tensively for reduced order models (ROMs). The POD methdiingtly extracts the
few most energetic modémses from the numerigakperimental solutions that can
accurately represent the system dynamics. The POD appnaecimtroduced in 1901,
referred then as Principal Component Analysis (PCA) by swafl]. Later work
includes P, 3] in statistics, or empirical orthogonal functions (EOF)dneanogra-
phy, (Jollite [4]) and meteorologyd]. The POD methods, in combination with the
Galerkin projection procedure, have also provided fiitient means for generating
reduced-order model§,7, 8]. In POD reduced order modelling, the Galerkin method
is used to project the original equations onto a finite nunoh&OD bases and yields
a set of ordinary dierential equations in time. POD has been used successidbyi
eral fields, such as fluid dynamic [LO, 11], signal processing and pattern recognition
[3], inverse problems]2, 13] and ocean modelling and four-dimensional variational
(4D-Var) data assimilationl, 15, 16, 17].

However, the POMalerkin finite element model (FEM) lacks stability and spur
ous oscillations can degrade the reduced order solutiofidims with high Reynolds
numbers 18]. The instabilities commonly observed.in the POD methoddareto os-
cillations forming in the solutions as a result of applyingtandard Bubnov-Galerkin
projection of the equations onto the reduced order spacés iFlvery similar to the
oscillations that form in FEM solutions when the standartov-Galerkin method is
applied. These oscillations feed into the non-linear textmsoderate to high Reynolds
numbers resulting in unstable simulations. In this papahle results are obtained
by using a suitable Petrov-Galerkin projection with ROMrivas methods have been
developed to overcomethe POD stability problem. Aubry e{&l] succeeded in sta-
bilising the PODGalerkin‘approximation of the Navier-Stokes equationsrpleying
numerical dissipation. The numerical stability of the RGialso related to the choice
of the inner product used to define the Galerkin projectiostable symmetrical inner
product that guarantees certain stability bounds for thealiized compressible Euler
equations was proposed by Kalashnikova and Bard®g [Angelo et al. RO, 21]
proposed two stabilization methods for PG@M: one that relies on the explicit ad-
dition of an artificial dissipation term whose constructisisimilar to that of the Lax-
Wendrdt scheme; another one that consists in constructing the POlpth function
and gradient values (POD I;) (calibration). Another type of regularization is found
to improve the stability of the POBalerkin models of strongly-sfisystems 22).
The method replaces the POD eigenmodes of the non-lineas tey their Helmholtz
filtered counterparts, while the other terms remain uncleng

Another dfficulty that arises in applying the P@®alerkin method to nonlinear
fluid problems involves theficient computation of the projection of the nonlinear
terms that are present in the equations. Recently, sevapabaches have been pro-
posed for retaining the intendeffieiency of O(M) (where M is the number of reduced
basis modes) of the ROM, instead of O(N) (where N is the nurabgrid-points in the
full high-fidelity simulation). S. Chaturantabut et 823 proposed a non-linear model
reduction via the discrete empirical interpolation metlip&IM) [25, 26], which is
the discrete version of the empirical interpolation metiigtM) [24]. This method
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was applied by these authors in conjunction with POD to titeatreduction of non-
linear miscible viscous fingering in porous mede]| and derived state space error
bounds for the solutions of PQDEIM [28]. Another similar technique for non-linear
treatments is the best points interpolation method (BPIR4].[ Nguyen et al. B(]
also addressed the issue for the reduction of the non-lellyatic equation and highly
non-linear time-dependent convectiorffdsion equations through the reduced basis
approximation (RBA) technique. For such classes of FEM P Diss reduced-order
modeling provided by the standard Galerkin projection idamger dficient.. This is
because the evaluation of the integrals involving the nin@and non-linear terms
is computationally expensive and cannot be pre-comp8d [The RBA technique
does vary from the standard POD method but does use the EIk fiorimulation.

A comparison of a number of POD formulations (including theegly reduced order
approximation (ROA), the reduced-basis approach (RBAR4f31] and the standard
Galerkin projection approach has been provide®ij.|

Recently, Carlberg et al. introduced the Petrov-Galerkathmd to control the
stability of reduced order modelling of a 1D nonlinear stgroblem B2, 33]. This
method dfers a natural and easy way to introduce ffugdion term into ROM without
requiring tuningoptimising and provides appropriate modeling and statiitis for the
POD numerical solution. More recently, a new Petrov-Gatemethod for reduced or-
der modelling has been proposed for nonlinearly discontisuGalerkin modelling in
order to control numerical oscillations, and applied to lim@ar hyperbolic problems
[34]. The approach is based on the use of the cosine rule betlheetection direc-
tion in Cartesian space-time and the solution gradienttioe.

In the present work, the new Petrov-Galerkin meth®4 [s used for the stabilisa-
tion of reduced order modelling of a nonlinear hybrid unstuwed mesh model which
is applied to the Navier Stokes equations. A miggP, finite element pair 35
which remains Ladyzanskya Babuska Brezzi(LBB) stable aaslgood balance pre-
serving properties, is introduced here to further stabiliee numerical oscillation. It
consists of discontinuous linear elements for velocity eadtinuous quadratic ele-
ments for pressure in the Navier-Stokes equati@ts 38]). To efficiently treat the
non-linear components of the equation, we have used theoahgtioposed in39,
which.assumes that the system of discrete equations areaticad his is an approxi-
mationbut.is motivated by the observation that the contiistDE (the Navier Stokes
eguations) has a quadratic non-linearity and thus can loeedized using a quadratic
discrete system of equations. The CPU cost of thig(1®) per time step, and since
the magnitude oM is relatively small the method is highlyfeient.

The remainder of the paper is organized as follows. Se&imtroduces the gov-
erning equations used in this work. Sect®presents the derivation of the new Petrov-
Galerkin approach for a single scalar time dependent taaheguation, and this is then
extended to a set of coupled time dependent equations ilmisdctSections provides
the derivation of reduced order modelling of Navier Stokgisagions using the newly
proposed Petrov-Galerkin approach. In sectothe novel reduced order nonlinear
hybrid unstructured mesh model is applied to two test casergly, a wind driven 2D
Gyre and flow past a cylinder. Finally, the summary and casichs of this article are
presented in section
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2. Governing Equations

The underlying model equations used here consist of the 8fBhydrostatic Navier-
Stokes equations:

V.-u = 0, (1)

a—u+u-Vu+fk><u
ot

-Vp+V-1, (2

whereu = (u,v,W)" = (u, Uz, Ug)" is the velocity vectorp is the perturbation pressure
(p := p/po, po is the constant reference density)represents the Coriolis inertial
force, andk is an unit vector along the vertical direction. The stresséer in the
diffusion term is used to represent the viscous terms and is défineerms of the
deformation rate tens@as

1(du  duj\ 1< adu .
Tij = 20 Sij, Sijzz(a—x'i+a—x:)—§za—xt, 1<i,j<3 (3)
k=1

where,u is the kinematic viscosity. In the previous definition, wewase no summa-
tion over repeated indices. In this paper, the horizontakiatic viscositiesuf1, u22)
and vertical kinematic viscosity:§s) take constant values with théfaliagonal com-
ponents ofr defined byui; = (uiixjj)Y/?. For barotropic flow, the pressupsconsists of
hydrostaticpn(Z) and non-hydrostatipyn(X, Y, z t) components. The hydrostatic com-
ponent of pressure balances exactly the constant buoyanoy &nd both terms are
therefore neglected at this stage.

The momentum equation discretised in space can be rewirit@matrix form:

ou ou ou ou
A‘ﬁ +Ax(u)&+Ay(u)a—y+Az(u)E+kau+Vp—V-r_0, (4)
where
1 0 O
A=[0 1 0, (5)
0O 0 1
u 0 0 v 0 O w 0O O
Ay=[0 u 0Of, A)=|0 v 0|, A,=|0 w O]. (6)
0 O u 0 0 v 0O 0 w

3. A Scalar Petrov-Galerkin Transport Equation

In order to derive the newly proposed Petrov-Galerkin apging the outline for a
scalar time dependent transport equation is derived firee Scalar time dependent
transport equation used is:

- Vs + o =S, (7)
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wherey represents field states (e.g. temperature, pollutantsy @nthe source term;
for 1D:ax = (& ax)', for 2D:ay = (& ax a,)" and for 3D:ax = (& ax a a;)"
and in 2D with time dependence this equation assumes the form
ata—w+axa—w+aya—w+m//—s=0. (8)
X y
Using the cosine rule between the two vectygsandV,w, in whiché, is the angle
between the two vectors, then:

Ay - Ve (9)
laxdl Vel

and the projection o onto Vywy may be written asj; = |axnaCcog6a) (with ny =
Ve ) or in the detailed form:

Coﬁa =

U
* (axt : thlp)vxtlp
o= — 10
Xt ||th¢||2 ( )
Thus
&, - V¥ = axe - Vsatt, (11)
or ( )
axt - Vxh) Vs _ )
( V2 ) V= 8 Vot (12)

A Petrov-Galerkin approach is used that modifies the gomgreguation by its
weighting with a stabilisation term. This is given by the ation,

(1~ V- aypi)(@xt - Vuay + o —8) =0, (13)

where the scalap;; is a function ofay, and the size and shape of the elements (to be

later defined-in 16), (17) and (L8)). Equation 3) is a consistent formulation which
stabilizes the solution by adding artificiaklision in the direction of its gradient. This
effectively smooths out the unphysical oscillations that famraxtreme regimes, such
as in high Reynolds numbers. This technique is how a commasgyl method for
stabilising finite element solution and its origins datektacthe work in B0, 41, 42,
43). Multiplying equation (3) by a space-time basis functidf; and integrating over
a single elemer¥e with boundaryl'e and applying integration by parts results in:

f NytirdVe — f Nuti (Nxt - axt) (¥ — Yoc) e+
Ve e (14)
f (thNxti) . af(tp;tr dVE + f Nxtinxt . a,*(tp;tr dFE = 0,

Ve e
In this formulation the termr is the residual, which is exgs®ed as = a- Vi +oy -,
and the termy, is the unit vector that is normal to the element in space-timehis
work the boundary informatios is treated in an upwind fashion. That ishif; - ax
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is negative themy. takes on the values of the neighbouring elements. Alteselstif

Nyt - 8yt IS positive then the values within the element are used. Ppecximation of

¥ will now be assumed to be expressed as a finite element expaisE Z’j‘il Nytjij.
Finally, the surface integral involving the residual islasgd to be zero, and this results
in the following formulation,

f Ny rdVe — f (Nt - 3N (¥ — Upe) Il + f (VoiNo) - BqpiardVe = 0. (15)
VE I'e Ve

The scalar jj which a function ofaj; and the size and shape of the elements, is
given, for example, by the following expression:

.1, _
p;t = Z(|axt : thNxtiD l- (16)

This expression is obtained from the Riemann finite elemesthod, for details see
[44]. This will choose the shape function which is aligned witk tirection ofay;, for
example, in the case for elements with equal sized edges.

Alternatively one can produce g that is independent afusing:

1
P = Mink{ 7 (% - VatNuad) ™). (17)

Notice that this expression uses the length scale of theegieimthe direction o&;.
Using the L2-norm and the finite element space-time Jacabarix Jy; (see equa-
tion (40)), an alternative expression tb4) has the following form:

1
P = 7 (05 allz) ™ (18)

The value of [} can be adjusted in order to ensure that the resulting valpg &f not
so large that it results in having more transport backwaad forward in the resulting
discrete system of equations by using:

1%

i} 11 -
P = min{——, Z (I %l2) b, (19)

in whicho + € > 0 ande is a small positive number that ensures we avoid dividing by
zeroo =0e.g.e = 1x 10710,

Continuous Petrov-Galerkin formulations use a factor%dﬁstead of%‘ as used
in the previous equations. This correctly centers the éguaesidual at the centre
of mass of the basis function, for continuous finite elemeptresentations. In the
present work, where discontinuous finite elements are wskdrmulate the space-time
discretisation, the centre of mass of the basis functiorigered at a distance
from the upwind boundary of the element. In the traditionetr®v-Galerkin method
ay, = ay in the aforementioned expression angdrpplaces f.

We can work with the stabilization in aftlision form by using:

f Ny rdVe — f Ny (Mt - B) (0 — wp)dle + f (V) TVWxsdVie = 0, (20)
Ve I'e Ve

6
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in which the scalar diusion codicient is:

(axt - V) P r
V="w o2
(IVxell
Alternatively, we can work only on the residual. That is,legingay; - Vx with the
residualr in (22), yields:

(21)

O TPT

Vv = 2
IVl

The ditusion codficienty is always non-negative sincé, fis non-negative. Equation
(22) for the diffusivity can be derived by re-defining the teaipin equation {0) to be:

(22)

" rv Y
Ay = ﬁ
IV xel

* Vi
Thenay - V) = o2 - Vb = T.

(23)

3.1. Simplified scalar equation
Discretising the time dependent term using the two lévelethod, the residual
becomes:

_ ¢n+l - lpn n+0 n+6 +6
r—a{T-Fa'Vlﬁ +O'l7[/ - g , (24)
witha = (ax ay a,)" andy™?’ = gy + (1 - g)y" also defining
n+l _ /n
Vth — (%’ (Vl//n+9)T)T- (25)

Using this definition (equatior2f)) enables the formalism of space-time discretisation
to be applied, for example:
(axt ) th‘/’)vxtl/’

26
IVt l13 (20)

ay=(a, am)l =
and
ota) (27)
o+e 4 ’

in which J is the block part of the matridy that is associated with Cartesian space.
The stabilized discrete equations in #wdsion form can be expressed by only using
the ditusion in Cartesian space:

f NirdV — f Ni(n - &) (™ — yp)dr + f (VN)TvWy™idV = 0, (28)
Ve I'e Ve
or in a form where we apply integration by parts of the tramsf@ems once:

n+l _ /n
f Ny 4 g™ - Ve - f V. (Naw™dy (29
Ve At Ve

Py = min{

+ f Ni(n - a)(yp:?)dle + f (VN)TvWy™idVe = 0. (30)
Te Ve
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4. Nonlinear Time Dependent Equations

4.1. The Petrov-Galerkin Navier-Stokes equations

The Petrov-Galerkin method discussed above is furtheliegppd the Navier-Stokes
equationsZ?), which can be rewritten as:

Axt- VU =s, (31)

inwhichAyx = (At Ax Ay A)T ands= —fk x u—-Vp+ V7. The projection of
ontoV,u can be written as:

A = V(Ax - V)V ([IVeull3) Vyu. (32)
Thus
Al Vel = Ayt - VU, (33)
or
(V(Ax- VetV (IIVxul3) V) - Viah = Axe - Ve, (34)

in whichV (Ay;- VxU) is a diagonal matrix containingyy; - VU, and the vect0||fotu||§
is such that th@™ entry is||Vxull3. = (VxiUy) - (VxUy).
The Petrov-Galerkin method’s modified form of théeiential equation is34]:

(= (Vxt- A;t)TP;k(t)(Aﬂ V) —s=0, (35)

whereP}; is a function ofA}; and the size and shape of the elements (see equasigns (
- (39)). Multiplying equation 85) by a diagonal matrix of space-time basis function
Ny (this has the basis functid¥y; along its main diagonal), integrating over a single
elementvg and applying integration by parts results in:

f Nytir dVe —f Nuti (Nxt - Axt) (¥ — Poe) dle

VE rE

+ f ((VxiNxgi) - Al TPLrdV + f Nyt Nyt - APl dle = 0, (36)
VE l—‘E

with.a finite element expansian = Z’j\il Nyijuj (whereu; is the velocity vector at
nodej) andr = Ay - ViU —Ss. In this work, only the incoming information is taken into
account, that is, ifiy; - Ay is negative, the®, is calculated from the neighbour ele-
ment (otherwise, it is calculated from the current elemeitpplying a zero boundary
condition for the residual = 0, yields:

f Nyir dVE + f (VxtNyg) - A;‘(t)TP;trdVE =0. (37)
Ve Ve
P;: is a function ofA}; and the size and shape of the elements, for example:
% 1 * -1
Py = Z(|Axt - VtNxtil) ™, (38)
8
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or using the 2 matrix norm and the space-time Jacobian majrix
I S T
Py = Z(H‘thletHZ) L (39)

Since the matrice;, A, A;, A; that contribute to building;, = (A; T, AxT, AT A;T)T
are diagonal, the matriR}, is also diagonal. In the traditional Petrov Galerkin method
A} = Ay in the aforementioned expression dngd replacesP;;. The finite element
space-time Jacobian matrix for 3D time dependent problesisraes the form:

12t 0 0 0

0 I1Z X &

_ ox ax )4
\]Xt = 0 Iﬂ Iﬂ |£ s (40)

3)” %y/ ay/

0 I1Z |12 &

a7 az oz

where the variables with are the local variables and whdrés the M x M identity
matrix in which M is the number of solution variables at each DG node, &inid a
time step size.

In a similar way to the scalar equation, the valud>gfcan be adjusted to ensure
that the resulting value d®;; is not so large to allow more transport backwards than
forward in the resulting discrete system of equations using

, P R S PP
P}t = min{E~, Z(”‘thletHZ) ). (41)

In this equation the diagonal entries of the matiare positive andE contains small
positive numbers to avoid dividing by zero or near zero whes ar more of the diag-
onals ofE is zero or very small e.g. £ 1071°.

We can work with the stabilization influsion form using the following equations:

f NxtirdVE & f Nxti (nxt . Axt)(lP - \Pbc)drE + f (thNxti)TKVX[UdVE = 0, (42)
Ve T'e Ve

or in a form where we apply integration by parts of the tramsfsms once:
| M99V - [ (T (A dve
VE VE
+f Nxti (Nxt - Axt)Pbe dl'e + (thNxti)TKvxtlp dVe =0, (43)

I'e Ve

in which theM x M diagonal matrix containing theflision codicients is:

K= V(Axt : thU)P;tVG|thu||§)7lv(r)~ (44)

The resulting diagonal matrix can be modified to ensure a non-negatiféugion
by setting any of its negative entries to zero or by switctimgheir absolute values.
Alternatively one can work with the residual only, by repharAy: - ViU with the
residualr, which results in:

K = V(1) TPV (IVxull3) v (r), (49)
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which is always positive sindg;; is positive semi-definite (as well as diagonal) and in
which V(r) is the diagonal matrix containing the residual of the gaireg equations
on its diagonal. Equatiorp) for the ditusivity can be derived by re-definin; in
equation 82) to:

Ay = VOV ((IVeul3) ViU, (46)

4.2. The simplified Petrov-Galerkin Navier-Stokes equnatio
Assuming the two time level-method is used for the discretisation of time:

un+l —un
r = AtT +A- Vun+9 - Sn+9, (47)
with A = (Ax Ay A)T, 80 = —flkxu™?— V™04 V.70 yn+d = @UTL+ (1 —@)u",
p™? = @p™+ (I -@)p", andr™? = O™ + (I —®)7", in which® is adiagonal matrix
containing the time stepping parameters, ahl = —fk x u™? — vp™? + v . ™9,
Defining
un+1 —un

Y=

enables the application of the formalism of space-timerditation developed here,
for example:

, (Vu“+€)T)T, (48)

A= (AT, AN = V(A Vi)V (IV5qUl2) VU, (49)

and

PR
Pl = min(E™, 20N ALlR) ™), (50)

in which J is the block part of the matridy that is associated with Cartesian space.
By applying the difusion only in Cartesian space the stabilized discrete amsin a
diffusion form<can be written:

f NirdV—f Ni(n - A)P™ -9t dle + | (VN)TKVU™dV =0, (51)
Ve T'e Ve

or in a form where we apply integration by parts:

\Pn+l —wyn
f Nj(Af———— - sn+9) dVg - f V- (NiA)‘I’n+9dV+ f Ni(n -A)‘I’gg‘9
Ve At Ve Te

+ f Ni(n- A)P™0 dre + f (VN)TKVP™L dVg = 0. (52)
FE VE

5. Petrov-Galerkin Reduced Order Modelling

The Petrov-Galerkin method described above is used to fatalde POD reduced
order model for nonlinear hybrid problems.

10
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For simplicity, we assume the discretisation of the origgtuations {) and @) at
a given time step has the following form:

AY = b, (53)

where¥ = (U,V,W,.P)", U = (Ug,...,U,...,Ux), V = (Vi,...,Vi,...,Vx), W =
(Wi, ..., Wi, ...,Wy) andP = (p1,..., Pis. .., Pnv) (NV is the number of nodes.in the
computational domain). The modified system of equat&8) ¢an then be written:

CTF!AY = CTF1p, (54)

in which for the least squares (LS) metho@s= A. Notice that the solution of this
equation b4) is the same as that of equatidsB), however critically it is not the same
when the reduced order modelling is applied. The weightiagrimF can be chosenin
order to render the system of equations dimensionally sterdi (and thus may contain
characteristic dimensions such as the time step Atzand a length scale) and also
contain the mass matrix of the system. The LS methods hasadis/e properties,
unlike Galerkin methods, but are not generally conseredir coupled systems of
equations. However the (LS) methods may be applied at eaddtieq level to render
them conservative, in which ca§emay contain just parts of the matrix

However, the above mechanics can also be applied to formeoaats/e stabiliza-
tion methods for ROMs which for non-linear problems haveraéncy to diverge due
to inadequate sub-grid-scale modelling (if Galerkin methare applied e.g. the POD
method). A common solution to the divergence of ROM solugiento add diusion
terms to the equations and tune thesudion terms to best match the full forward
solution. Thus, it seems natural to explore the Petrov+&iienethodology in order
to introduce difusion into ROMSs and avoid this tuning.

The matrix equation53) can now be converted into a reduced order system that
is spanned by a set afi POD basis functions denoted ®, ..., ®y}. Each POD
function is represented by a vector of sixethat represents the functions over the
finite element space. The POD functions are grouped togé@itea matrix M P°P
which is ‘of sizeN x M and given byMPOP = [®,, ..., ®y]. Using this matrix, the
reduced. order system can now be generated by operatinglglioecthe discretised
linear system given in equatiobd). That is, a standard Galerkin approach is applied,
whereby the full system is pre and post multiplied§°P" andMP°P, respectively.
The resulting reduced order system results,

M PODTAM PODWPOD _ PODT(b _ A@), (55)

where?POP are the reduced order solution gbeients,¥ is the mean of the variables
Y over the time, and the relationship between the pod vasadnhel full solutions is
given by,

¥ = MPODT (yPOD | ), (56)

For LS methods, equatioBY) is:

MPODT T E-1 )\ POD@POD _ \qPODT =T Fi(b - A‘f). (57)

11
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and using the non-linear Petrov-Galerkin methods destdbeve:
MPOPT (| 4 CTF1)AMPODYPOD _ \PODT (| 4 CTE-1)(h _ AY),  (58)
or in a ditusion form (analogous tetp) - (44)):
(MPOPT AMPOP | DYPOD — \PODT (h _ Ay, (59)

In equation $9) we have also introduced afflision matrixD, which has the following
form (where the surface integral is neglected since it liths #fect on results):

D, 0O 0 O
0O bp 0 O

DP=l0 0 b, 0 (60)

0 0 0 D
Dumk = fv VN 2Puf PPVN 9P dV, (61)
Dymk = fv VNP OPV Nk P dV, (62)
Dumk = fv VNt 2Pub CPVN P dV, (63)
Do = | TNGEORUEOOT NGO (64)

where theN,;?°P basis functions are interpolated using the finite elemesistfanc-
tions. the difusion codicient inD can be calculated using (analogous28){:

¢PODyx PODPOD
POD " POD  POD | POD)T _ Pxt (65)

u My Hw Hp ||thlﬂPOD||§ s

in the present work, the filusion terms are only applied to the momentum equations,
so thatp”2P = 0, p;,"°P is calculated:

S _
P 7 = min 2 (1a% - VueNoad) ™, (66)
or using the POD basis function:
1 -
i = mine 7 (- VN, %) ). (67)

The residual vector can be determined from:
rPOD _ EPOD—l((M PODT A\ POD)@POD _ PODT(b _ A@)), (68)
or since the absolute value of the residual may not matter:
POD _ gPOD-1)\ PODT|AM PODyPOD _ b - A‘?)I, (69)

whereE[°° = [, wPOPYPOPdV. Taking into account the ROM basis functions are
orthonormal, so thaE"°P = 1.

12
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Figure 1: a mixed finite elemeifpg P2 pair for velocity and pressure (white one for u nodes, blawok for
p nodes)

6. Application casesand numerical results

The Petrov-Galerkin method has been appliedinto a finiteete fluids model (Fluid-
ity, developed by the Applied Modelling and Computation Gyat Imperial College
London) to explore the stability and accuracy of reducecprdodelling in the two
test cases: a gyre case and the flow past a cylinder case.dntorcbmpare the results
obtained by either the Galerkin or the Petrov-Galerkin rmd{iReynolds numbers are
set with 2000 and 3600 for-a flow past a cylinder and 10000 foyre G

This paper presents results using both a mixed finite elep&nP;pcP; and a
P,P; formulation. TheP;P; element type has been included in the analysis due to
it being a popular.element choice, however it can in manyamsts cause solutions
to become unstable as it is a LBB unstable element. In thikwbe P,P; element
is stabilised by explicitly adding a fourth order stabitina term in pressure into the
continuity equation, as described in Pain et3.

Figure () shows the two dimensionBhps P, element which has three local nodes
associated with velocity and six associated with presstre velocity variation is dis-
continuous between elements and the pressure variablati®gous. The advantage
of this particular element choice is that the mass matrix&baocity is a block diagonal
matrix so that it can be trivially inverted; also it allowsetlorder of the pressure to
be increased to quadratic whilst maintaining LBB stabil@§]. This element also has
the ability represent very accurately the balance betwaemptessure or free surface
gradients and the Coriolis force as well as buoyancy forces.

The root mean square error (RMSE) and correlatiorffunient of results between
the POD and full model at the time lewelre used to estimate the divergence of POD
projection results:

R - v5,)?
N 2
where,y andyg; are the vectors containing the POD and full model resulthat t

RMSE = (70)
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1 4;»'? ’?‘ éy
AT
Yalociry
000 0286 0571 0857 .14 143 1.71  2.00
(a) full model
SRy
Valocity
0.00 0.286 0.571 0.857 1.14 143 1.71 2.00
(b) PODGalerkin

Valocity
0.00 0.286 0.571 0.857 1.14 1.43 1.71 2.00

(c) PODOPetrov-Galerkin

Figure 2: Flow past a cylinder: Velocity solution from thdlflPOD/Galerkin and POPPetrov-Galerkin
models using?;1P; (t = 3.6, Re= 2000).

nodei respectively. N represents number of nodes. The correlationffoment of
results between the POD and full models at the time laweith expected valueg,»
anduyn and standard deviations,» ando s is defined as:

COI’I’(l,bn, wg)n A coV(y", ‘/’g) _ E(y" - 0-90”)(1/’0 - (Tws). 71)

O'LpnO',/,g 0'¢"0'¢3

6.1. Case 1: flow past a cylinder

The non-dimensional 2D case is composed of a cylinder wittdaus of 3 in the com-
putational domain (50 long and 10 wide). An inlet boundaryhwa velocity of 1
(non-dimensional) flows parallel to the domain length ta¥gahe right of the domain.
The centre of the cylinder is placed 5 (non-dimensionalsuindom the inlet boundary.
The Reynolds numbeR@ are 2000 and 3600. Dirichlet boundary conditions are ap-
plied to the cylinder and no normal flow and zero shear (slgyruary conditions are
applied to both lateral sides. The simulation period is [D0] with a time step size of
At = 0.02. The solution att= 2.4 andt = 7 over the period [6 10] are chosen to show
the dfects. In order to show stabilisation of Petrov-Galerkinmoetfor Reduced order
model, 50 snapshots and 22 POD basis functions which ca@@dtepercent of energy
are chosen fou, vandp. Figure2 shows the results of full model usindPaP; element
type, together with the PQBalerkin and POPetrov-Galerkin models for Reynolds
number 2000. Both POD models have a reasonable qualitafreement with the full
model for this Reynolds number.

Then the Reynolds number is increased until PG&lerkin crashes. Figurg
shows the velocity field (vector) obtained from the full mb¢lesing P;P; element
type) and POD models using the Galerkin and Petrov-Galenkithods. The Reynolds

14
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e S Bk AN : =5
Valocity Valocity
000 0143 0286 0429 0571 0714 0857 100 000 _ 0.143 0286 0429 0571 0714 0.857  1.00

(&) full model att = 2.4 (b) full model att = 7

T elocily slosiiy

0.00 4.18 8.36 12.5 16.7 20:9 25.1 29.2 0.00 16.2 323 48.5 64.6 80.‘6 96.9 113.
] [
(c) PODGalerkin method att = 2.4 (d) PODGalerkin method at = 7
5 = = s =
i Valocity ) Valosity
0.00 0. 144 0.287 0.431 0.574 0.718 0.861 1.00 0.00 0.144 0.287 0.431 0.574 0.718 0.861 1.00
(e) PODyPetrov-Galerkin method at= 2.4 (f) PODyPetrov-Galerkin method at= 7

Figure 3: Flow past a cylinder: Velocity solution from thdlflPOD/Galerkin and POPPetrov-Galerkin
models using?1P; att = 2.4 andt = 7 (Re= 3600).

number is 3600. It can be seen in fig@réc) and (d) that the results of Reduced Order
model (ROM) using Galerkin method become unstable (thdisolof velocity is too
large, 29.2 whet = 2.4 and 113 when = 7. A variable colour legend is chosen to
show the large velocity value), while the results of ROM gdietrov-Galerkin method
are considerably more stable.

In order to further investigate the stability and accurafdye new Petrov-Galerkin
method in ROM, the velaocity solution at a specified deteatoeyilinder is plotted in
figure4. It shows that the dlierence of velocity results between the full model and the
POD model solution using Petrov-Galerkin methods is rashall.

A mixed P1pg P> finite element pair is introduced here to further stabillse tu-
merical oscillation, which consists of discontinuous énelements for velocity and
continuous gquadratic elements for pressure. Figyyeesents a comparison of the ve-
locity ‘solutions using the full and POD models with a mixeggP- finite element
pair. The Reynolds number is 3600. Figérehows the comparison of velocity value
between the full model, the P@Galerkin model and POPetrov-Galerkin model at
point(x=0.3 and y=0.3) along whole domain(reference coordinate system:x0< 2.2
and 0< y < 0.41). It can be seen that the POD results using the Galerkihadedre
unstable while those from the P@etrov-Galerkin model are stable. Figurshows
the correlation coicient of results between the POD and full models can achreve f
80% for the traditional Galerkin POD model to 98% if the Petf@alerkin approach
is used.

6.2. Case 2: Gyre

The Petrov-Galerkin Reduced order model is also tested igra @roblem in a com-
putational domain of horizontal dimensions, 1000 km by 1R@0with a depth of H
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Figure 4: Comparison of velocity results between the futl Retrov-Galerkin POD models at a point(near
right side of the circle).

0.00 0.286 0.571 0.857 1.14 1.43

0.00 0.286 0.571 0.857 1.14 143

(a) full model att = 2.4 (b) full model att = 7
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(e) PODPetrov-Galerkin method at= 2.4 (f) PODyPetrov-Galerkin method at= 7

Figure 5: Flow past a cylinder: solution of full model, P@alerkin and POPPetrov-Galerkin using
PipgP2 att = 2.4 andt = 7 (Re= 3600)
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Figure 6: The comparison of velocity solution at point(x3,y=0.3) between the GalerkihOD model and
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Figure 7: The correlation cdigcient of the GalerkifPOD and Petrov-GalerkiROD models using a mixed
finite elementP1pc P2 pair for velocity and pressure.
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500 m. The wind forcing on the free surface is given by
Ty = ToC0qny/L), 7x = 0.0, (72)

wherety andry are the wind stresses on the free surface along énedy directions
respectively, and. = 1000 km A maximum zonal wind stress af = 0.1 NntT?!

is applied in the latitudeyj direction. 8 = 1.8 x 101! and the reference density
po = 1000 kgnT! were used. In this case, The simulation period is-[0.6] with a
time step size oA = 0.01. 60 snapshots and 25 POD basis functions which capture
99% percent of energy are chosen &prv and p. In order to investigate theffects

of the new Petrov-Galerkin method, the Reynolds numbeicieased until the results
of ROM using the Galerkin method become unstable or crashk.Réynolds number

is chosen to be 10000. Dirichlet weakly boundary conditiares applied. Figur®
shows the velocity solution at= 0.35 become very large and stable while the results
of Petrov-GalerkirP;pc P2 are considerably more stable.

Figure 9 shows the RMSE between the full and POD model using the Galerk
method and Petrov-Galerkin method. In order to see clelael)RIMSE between Petrov-
Galerkin and full model, the Figuré(a) is enlarged into Figurg(b). From the value
of y axis, the RMSE between Petrov-Galerkin with full modehiuch smaller than
the RMSE between Galerkin method and full model. The RMSEéen the full and
POD models is decreased by 90%. The divergence of Gal®®in is well controlled
by the new Petrov-GalerkiROD.

It can be seen from figuresand10 that the POD reduced order results using the
Galerkin approach become oscillatory and unstable and Mh®ERof results increases
as the simulation time increases. By using the Petrov-&alétOD approach, the
RMSE of results is reduced while the correlation f@@@&nt increases to 999% after
a few time steps.

Tablel shows the CPU time of main process at each time step. It caedretkat
once the POD model is setup (involving assembling the metficocess), the reduced
order model saves 90% of CPU time required by the full model.

Table 1: Comparison of CPU (unit: s) required for runningfiiiemodel and ROM for each time step

Case Model assembling matrices solving | projecting back| total

Case 1| Full model 3.00373 0.112598 0.0000 3.116328
POD ROM 0.30280 0.000000 0.0199 0.322700

Case 2| Full model 2.96455 0.103687 0.0000 3.068237
POD ROM 0.29875 0.000000 0.0193 0.318050

7. Summary and conclusions

A new non-linear Petrov-Galerkin method for reduced ordavibr-Stokes equations
using a mixed continuoydiscontinuous finite element pair has been presented. This
method is used to stabilise the Reduced Order Navier-Stdpeations. The method
has been implemented in a finite element adaptive mesh refimeftaids model (Flu-
idity) and applied to a Gyre and flow past a cylinder test cases
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Figure 10: Correlation cdcient of GalerkifPOD model and Petrov-Galerki®fOD model.

The dfect of the new non-linear Petrov-Galerkin method on stsdtilbn of the
POD model is evaluated through comparison of results betwee=POD model using
the Petrov-Galerkin method and the traditional Galefk@®D model. The results show
that the GalerkifPOD model becomes oscillatory and unstable as the Reynaohdber
increases over a certain value. By introducing Petrov-®alenethod in reduced order
modelling, the stability of the results isimaintained.

An error analysis has also been carried out for the validagitd accuracy of the new
PODPetrov-Galerkin model. The RMSE of results between the P@dRaull model
is decreased while the correlation fio@ent is mostly larger than 99% 99.5%. The
new PODPetrov-Galerkin model does well in flow past a cylinder andegyFuture
work will investigate the fects of applying this new Petrov-Galerk©OD approach
to more complex fluid flow models.
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